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RIASSUNTO

I modelli numerici oceanici soggetti al forzante atmosferico sono caratterizzati
da 2 tipi di variabilità: una risposta al forzante esterno (definito segnale) e
le variazioni interne generate indipendentemente da esso (che costituiscono
il rumore). Partendo dalla teoria dei modelli climatici stocastici (Hasselmann,
1976) e basandosi su un ensemble di 5 simulazioni del Mar Mediterraneo nel
2021 con lo stesso forzante atmosferico, ma con date di inizio distanziate di un
anno, il rumore o variabilità interna è studiata relativamente alla sua dipen-
denza dalla profondità e dalla stagione, alla sua distribuzione spaziale e alla
variabile utilizzata per descriverla ed è confrontata con il segnale tramite il rap-
porto segnale-rumore. Per la temperatura, il rumore è decisamente maggiore
in estate con un picco in corrispondenza del termoclino, mentre d’inverno è
maggiormente presente nel Mediterraneo orientale mantenendosi costante per
i primi 100 m. Tuttavia il segnale rimane pressoché dominante fino ai 100 m
di profondità. Relativamente alla salinità, la variabilità interna è chiaramente
legata alle zone con gradiente orizzontale di salinità più forte, come il Mare di
Alboràn, il Mar Egeo e a sud del Mar Ionio. Inoltre, sia per la salinità che per
la velocità della corrente il rumore è sempre predominante rispetto al segnale,
fatta eccezione per il Mar Adriatico e il Golf di Gabès. Infine, per la velocità
della corrente, il rumore è in ottimo accordo con l’intensità stessa della cor-
rente: zone con corrente media alta sono caratterizzate da grande rumore e
viceversa. In aggiunta, un confronto tra il rumore dato dall’ensemble prece-
dentemente definito e da un altro composto da 5 simulazioni analoghe, ma
con date di inizio tra agosto e dicembre 2020, ha permesso di ricavare delle
prime informazioni sul tempo di decorrelazione tra le simulazioni, trovando
che questo deve essere di almeno sei mesi, contrariamente a quanto assunto
in altri studi.
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CHAPTER

ONE

INTRODUCTION

Climate is a complex system with very many degrees of freedom in which dif-
ferent physical processes act on different temporal and spatial scales, from
the micro-scale’s turbulent eddies to the ocean-cryosphere interaction with a
time scale of decades or centuries. Moreover, all these components interact
with each other due to the inherently non-linear nature of the system itself
[1]. Climatic records are characterized by a continuous variance distribution
encompassing all frequencies with higher variance at lower values and, until
the work of Hasselmann (1976)[2], no clear explanation was given for the ob-
served ’red’ profile of the climate variance spectra.
Hasselmann proposed an alternative model of climate variability which is not
based on internal instabilities or variable external forcings and whose main
assumption is that the climate system may be divided into a rapidly varying
component, i.e. the atmosphere, and a slowly responding one (the ocean,
the cryosphere). Thus, the variability is attributed to internal random forc-
ing applied by the short time-scale components of the system on the slow
responding part. The latter behaves as an integrator of these inputs in the
same manner as a large particle interacts with an ensemble of lighter parti-
cles in the Brownian motion theory. In other words, the weather supplies the
slow components with energy allowing the existence of internal variability in
the climate system. Moreover, he proved that without stabilising internal feed-
back mechanism, climate variability would grow indefinitely. Consequently,
the investigation of climate variability must be shifted from looking for a pos-
itive feedback that enhances instabilities to finding a negative feedback that
allows the climate response to be a stationary process, similarly to the role of
friction in the Brownian motion problem.
In Hasselmann’s stochastic climate model, as a consequence of the time-scale
separation, the response of the climate system to the random forcing can be
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CHAPTER 1. INTRODUCTION

described to the first order as a Markov process, which is a stochastic process
where each state of the system depends only on the previous state. This is
obtained by replacing the original deterministic system with a stochastic one,
assuming the ergodicity of the system, i.e. the time average of the original
system is equivalent to the ensemble average of the stochastic one, and mod-
eling the fast variable as a white noise. Thus, it is said to be a stochastic
climate model since the variables that characterize the system are not any-
more deterministic, but are to be intended as stochastic processes. Indeed,
observations have shown that the behaviour of a complex deterministic system
is comparable to that of a stochastic process, if the evolution of the determin-
istic system is defined by independent factors or events. For instance, William
et al. [7] - [10] showed in a series of laboratory experiments how small scale
inertia–gravity waves can induce large scale regime transitions and that in a
numerical model a stochastic forcing was an appropriate representation of the
inertia–gravity waves.
By doing so, a great statistical reduction of the complete climate system is
achieved, and consequently, computation is eased, thanks to the time sepa-
ration property of the system. That is because it allows to perform statistical
closure thanks to the Central Limit Theorem, i.e. ”the response of a system
is statistically determined by the seconds moment of the input if the latter
consists of a superposition of small independent pulses of time scale short
with respect to the response time of the system itself” [2]. Hence, a stochastic
approach allows to adopt a different type of parameterization for the subscale
processes that are not of interest during the investigation of climate variability.
In fact, bulk parameterizations are the most common: they are deterministic
and based on the assumption that the unresolved scales depend on the re-
solved one. In terms of the Brownian motion analogy, while climate variability
analysis in such deterministic models would be equal to inferring the large
particles trajectories using only the interactions between them and the mean
pressure applied by the lighter ones, in stochastic models the paths of the
large particles are deduced by the statistics of the ensemble of the small ones.
Ultimately, stochastic methods for climate prediction proved to be necessary
to improve the representation of long-term climate variability and reduce un-
certainty and biases [4].
The intrinsic variability identified by Hasselmann is present everywhere in
the climate system and at all scales, due to both the nonlinearity and the
numerous degrees of freedom of climate itself. A better understanding of its
nature is essential in numerical experiments when one is interested in dis-
tinguishing between the signal given by a modification of the model and the
variability due to internal processes, also called noise. The paper by Tang et
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CHAPTER 1. INTRODUCTION

al. Atmospherically forced regional ocean simulations of the South China Sea:
scale dependency of the signal-to-noise ratio [6] is based on this reasoning and
it investigates the ratio between the two types of variability that affects ocean
models when subjected to the atmospheric forcing: a response to the external
forcing, i.e. the signal, and the unprovoked variability, called noise. The au-
thors, using an ensemble of simulations of the ocean dynamics in the South
China Sea that differ only on the initial conditions taken at different times,
but subjected to the identical atmospheric forcing, show that the signal-to-
noise ratio is large at large scales and weakens as the scale becomes smaller.
Thus, the external forcing is dominant for large scales, while the noise thrives
at small scales.
The aim of the present thesis is to picture a more detailed portrait of the in-
trinsic variability in the Mediterranean Sea, adopting an ensemble of ocean
simulations of 2021 built with the same rationale. In other words, investi-
gating the internal variability means characterizing the uncertainty in ocean
simulations and, consequently, studying ocean climate predictability. Thus,
to study climate predictability we choose to understand the sensitivity of the
ocean circulation to different initial conditions given the same atmospheric
forcing. The different initial conditions are considered to sample the ocean
internal variability due to, but not only, mesoscale eddies, which are part of
the natural variability of the oceanic fluid due to internal instabilities and
non-linearities.
After verifying the presence of the noise, the focus of the analysis would be on
its characterization in relation with depth and area, using temperature, salin-
ity and current velocity as diagnostic variables. The analysis is performed
by representing the noise as the seasonal average of the ensemble spread,
whereas the signal is taken to be the seasonal averaged variability of the
ensemble mean, and by studying both the noise itself and its relation with
the signal through the signal-to-noise ratio (S/N). In order to understand the
physical or computational reason behind the presence of the noise, its rela-
tion with the gradients of the corresponding diagnostic variable is investigated.
Finally, a preliminary analysis of the dependence of the noise on the initial
conditions of the simulations is carried out in order to provide some informa-
tion for the estimate of the characteristic time of the chaotic dynamics of the
system, i.e. the decorrelation time of the simulations.
Studying the presence and the role of the noise is fundamental to understand
the process at play in the ocean and quantify the importance of the internal
processes of the ocean itself compared to every eventual external forcing, first
of all the atmospheric one. Thus, it would allow for a better comprehension
of the activity of the Mediterranean Sea, which is a peculiar and highly di-
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CHAPTER 1. INTRODUCTION

versified basin. Finally yet importantly, it aims at identifying the sources of
uncertainty in ocean simulations and improving the representation of these
processes in ocean models, in order to produce more accurate predictions,
even as regards long-term evolution.
The present work is divided as follows: in Chapter 2 the theoretical back-
ground of stochastic climate models is given with a greater level of detail, along
with a more complete definition of the noise itself. Moreover, an overview of the
Mediterranean Sea and its main features is presented. In Chapter 3, the model
adopted for the simulations and the rationale of the experiment are described
and the methods used in the analysis are explained. Results are showed and
discussed in Chapter 4 and conclusions are summarized in Chapter 5.
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CHAPTER

TWO

STOCHASTIC CLIMATE THEORY AND THE
DEFINITION OF NOISE

In the present sections, the theory of stochastic climate models is introduced
following Hasselmann’s original formulation. Subsequently, an overview on
the concept of noise or internal variability is reported and the definition adopted
in this work is provided. Finally, an essential description of the Mediterranean
Sea is given.

2.1 Stochastic climate models
Stochastic climate theory was conceived by Hasselmann in 1976 in his sem-
inal paper Stochastic climate models [2] where he designed a reduced model
based on the concept of scale separation in space and/or time.
Let z = (z1, ...zl) be the finite set of variables that describe the instantaneous
state of the complete climate system, such as the temperature field, and let
the evolution of the system be described by the following equations:

dzi
dt

= wi(z), ∀i (2.1)

where wi are non-linear functions of z.
The model assumes that the system can be divided into 2 parts z = (x,y) =
(x1, .., xm, y1, .., yn) characterized by different response times τx ≪ τy. Therefore,
x is the fast varying component, i.e. the so called weather, whereas y is the
slowly responding part of the climate, such as the ocean and the cryosphere.
Since the time scale of the weather is of the order of a few days, while the
response scale of the y variable is of the order of at least several months or
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OF NOISE

years, the previous assumptions generally hold.
The prognostic equations are then:

dxi

dt
= ui(x,y), ∀i (2.2)

dyi
dt

= vi(x,y), ∀i (2.3)

This approach corresponds to the classical statistical treatment of the Brow-
nian motion problem, where the x and y can be interpreted as the position
and momentum coordinates of small and large particles, respectively. How-
ever, such scale separation is common to other types of climate models, both
General Circulation Models (GCM) and Statistical Dynamical Models (SDM).
The difference from these deterministic models resides in the adopted time-
scale and in the type of closure hypothesis: the former integrate the system
using a time-scale t ≪ τy and they are interested in following the evolution of
the ”weather” keeping constant all the other climatological variables, whereas
the latter look at the changes of the slow components and assume that the
statistics of x depends on y. In a stochastic model, instead, the prognostic
equations are for the slow variables only and their evolution is determined
also by the statistics of the fast components, which is evaluated by real data
or GCMs.
For a time t in the range τx ≪ t ≪ τy, it is possible to define the variations of
the slow variable as δy = ⟨δy⟩ + y′, where ⟨δy⟩ is the mean component, aver-
aged over all x values for a fixed y, and y’ is the fluctuating part, defined by
the statistics of x. In order to expand the validity of the previous expression
to time-scales greater than τy, it is necessary to consider the corresponding
stochastic differential equation (SDE):

dyi
dt

= ⟨vi⟩+ v′i, ∀i (2.4)

with ⟨v′i⟩ = 0 and ⟨δyi⟩ = ⟨vi⟩t.
Equation 2.4 is said to be stochastic since at least one of its terms is a

stochastic process and its solution is also a stochastic process, which is a
mathematical object that consists in a collection of random variables indexed
by a variable t, in this case time. Examples of stochastic processes are the
random walk or the Brownian motion, which will be treated in detail later.
Hence, the fast variable xi, and consequently the fluctuating component v′i
dependent on it, is taken to be a white noise ξ(t). The latter is a random
Gaussian process with zero mean, finite variance and no memory, i.e. ⟨ξ(τ +
t)ξ(t)⟩ = δ(τ). Furthermore, a white noise has the property of having a flat
spectral density, i.e. f(ω) = 1

2π

∫∞
−∞ dτe−iωt⟨ξ(τ + t)ξ(t)⟩ = 1

2π

∫∞
−∞ dτe−iωτδ(τ) = 1

2π
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for every ω. Its integral with respect to time Wt =
∫ t

0
dsξ(s) is also a Gaussian

process thanks to the Central Limit Theorem and it is called Wiener process. A
Wiener process Wt is a stochastic process with the following properties: W0 =
0 almost surely, its increments are independent and normally distributed,
it has zero mean and variance σ2 = t. Obviously, the time derivative of a
Wiener process is a white noise. However, this type of arguments is not to be
considered mathematically formal, but as an intuitive reasoning since dW =
ξdt ≃

√
dt is not a true differential. For a more precise dissertation, the reader

is referred to the works of Wiener, Itô and Stratonovich [11].

2.1.1 A stochastically forced model
By considering only the equations for the fluctuating part:

dy′i
dt

= v′i, ∀i (2.5)

one obtains a stochastic differential equation for the evolution of a Wiener
process, which is the limit of a one-dimensional random walk when the step
size tends to zero or, equivalently, a one-dimensional diffusion process [12].
For this reason, it is known that the variance of the fluctuating part is linearly
increasing in time, i.e. ⟨y′2⟩ = 2Dt where D is the diffusion coefficient. More-
over, it is possible to derive the spectrum G(ω) of the response y’ by expanding
the terms of equation 2.5 in the Fourier domain:

v′i(t) =

∫ ∞

−∞
Vi(ω)e

iωtdω

Its Fourier components are statistically orthogonal, being it a stationary pro-
cess:

⟨Vi(ω)V ∗j (ω′)⟩ = δ(ω − ω′)Fij(ω)

with Fij(ω) =
1
2π

∫∞
−∞⟨v′i(t+ τ)v′j(t)⟩e−iωτdτ being the cross-spectrum of the input

v′i(t), i.e. the Fourier transform of the cross-covariance. Since ⟨v′i(t+ τ)v′j(t)⟩ =
δijδ(τ), Fij(ω) is constant too. Consequently, by integrating in t, it is found for
the response y′i(t):

y′i(t) =

∫ ∞

−∞
Yi(ω)e

iωtdω −
∫ ∞

−∞
Yi(ω)dω

where Yi(ω) = Vi(ω)
iω

. Analogously, the cross spectrum Gij(ω) for y′i(t) is found
easily as:

Gij(ω) =
Fij(ω)

ω2
(2.6)
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Thus, by considering only the presence of fluctuations, the cross-covariance
of the response in the range τx ≪ t ≪ τy grows linearly in time. Similarly, the
cross spectrum of the response decreases with ω2 with a singularity in ω = 0,
meaning that the changes of the slow variable happen at low frequencies, as
expected from the white spectrum of the input for frequencies in the range
1
τy

≪ ω ≪ 1
τx

.
It is clear that such dissertation can be repeated with an input different from
a pure white noise, but that tends to it for ω ≪ 1

τx
, that is it has a zero co-

variance and constant spectral density in that time range. For instance, an
Ornstein-Uhlenbeck process [13] can be chosen, that is a stationary stochas-
tic Gaussian-Markov process, defined by the following stochastic differential
equation:

dxi = −γxidt+ σdW i
t (2.7)

where γ = 1
τx

≫ 1 and σ > 0 and dWt denotes a Wiener process. By exploiting
Itô calculus, it can be proven that the solution is xi(t) =

∫ t

0
e−γ(t−s)dW i

s and it
has the following properties:

⟨xi(t)⟩ = 0 (2.8)

⟨xi(t)xj(t+ τ)⟩ = ⟨xi(t)xj(s)⟩ = δij
e−γ|t−s| − e−γ(t+s)

2γ
→

t→∞

e−γτ

2γ
(2.9)

⟨xi(t)
2⟩ = 1− e−2γt

2γ
→

t→∞

1

2γ
(2.10)

After a sufficient time t ≫ τx, the covariance is independent of time t and if
τγ ≫ 1 it tends to a δ-function δ(τ).
Note that the two different assumptions on the type of stochastic forcing corre-
spond to the two different stochastic calculi: Itô and Stratonovich. The former
has uncorrelated noise forcing while the latter assumes a finite correlation be-
tween noise increments.
In conclusion, in order to obtain a realistic climate model for t ≫ τy, some
feedbacks need to be included, i.e. equation 2.4 is to be considered. More-
over, since y is a random variable, the evolution equation should be written
for its probability density distribution p(y, t).

2.1.2 A negative linear feedback model
First, it is assumed that y is a Markov process, that is a stochastic process
such that the conditional probability P (y1, ..., yn−1|yn) that y lies in the interval
(yn,yn + dyn) at time tn depends, apart from yn, only on the value of y at the
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previous time tn−1. Consequently, a Markov process is completely determined
by the firsts two moments of the distribution of ∆y:

A(y) = lim
∆t→0

⟨∆y⟩
∆t

, B(y) = lim
∆t→0

⟨∆y2⟩
∆t

(2.11)

From the Markovianity of the process, it is possible to deduce the Smolu-
chowski equation, which is the essential ingredient for the theory:

P (x|y, t+∆t) =

∫
dzP (x|z, t)P (z|y,∆t) (2.12)

From the integral
∫∞
−∞ dyR(y)∂P (x|y,t)

∂t
, where R(y) is an arbitrary function that

goes to zero for y → ±∞, and exploiting relation 2.12, the Fokker-Planck equa-
tion for a generic Markov process is derived [3]:

∂P

∂t
= −

∑
i

∂

∂yi
[Ai(y)P ] +

1

2

∑
k,l

∂2

∂yk∂yl
[Bk,l(y)P ] (2.13)

where Ai and Bk,l = ⟨y′ly′k⟩ = 2Dk,l are the first and second moments as defined
before.
This equation returns the evolution of the probability distribution of a Marko-
vian system starting from an arbitrary distribution and it is characterised by
a propagation and a diffusion part, with the corresponding coefficients A and
B, respectively. Furthermore, it is the diffusion component that is responsible
for the stochasticity of the system and the spreading of the probability distri-
bution at later times.
It is important to notice that the Fokker-Planck equation and the correspond-
ing SDE describes the evolution of the same system under a different light.
A solution to the FPE can be found invoking the Central Limit Theorem for
Dij = D constant and for ⟨vi⟩ = −βiyi with βi > 0 for all i, which gives:

dyi
dt

= −βiyi + v′i, ∀i (2.14)

which is the Langevin equation for the Brownian motion problem of a free par-
ticle. Note that equation 2.14 and equation 2.7 are equivalent, meaning that
y is an Ornstein-Uhlenbeck process.
The Brownian motion represents the apparently random movement of parti-
cles in a medium subjected to collisions with the molecules of the fluid. The
Langevin equation, that is a SDE, represents the time evolution of the velocity
of the particle under the effect of the viscous force (dissipation) and of colli-
sions (fluctuations). In this case, Ai = −βiyi and Bij = 2D and the solution
is:

p(y, t) =
1√

(2π)ndet(R)
exp

[
− (yi − ȳi)(yj − ȳj)

2Rij

]
(2.15)
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where ȳi = yi0e
−βt is the mean and Rij = [(yi − ȳi)(yj − ȳj)] =

2Dij

βi+βj
(1− e−(βi+βj)t) is

the covariance tensor.
As regards the cross-spectrum Gij(ω) of the response, it can be easily deduced
by substituting the Fourier expansion of both v′i and yi in 2.14 and assuming
to deal with a stationary process, i.e. to be at t ≫ τx:

Gij(ω) =
Fij(ω)

(ω − iβi)(ω + iβj)
(2.16)

Therefore, in the case of negative linear feedback the response tends to a sta-
tionary distribution at large t. Coherently, the cross-spectrum of the response
resolves its singularity and has a finite peak at ω = 0, modulated by the eigen-
values of the feedback matrix. However, in the time range τx ≪ t ≪ τy the
behaviour is the same as in the case of pure fluctuations.
In conclusion, thanks to the two-timing property of the climate system, the
response of the slow component forced by the fast variables can be modeled as
a continuous random walk or diffusion process. However, in order to obtain
physical results and avoid an indefinite growth of climate variability, negative
linear feedbacks need to be introduced. The evolution of the resulting system
follows the same stochastic differential equation as a free particle in Brownian
motion theory, i.e. it is a Ornstein-Uhlenbeck process.

2.1.3 Climate applications and subsequent developments
The canonical example of the application of the rationale of stochastic climate
models was given by Frankignoul and Hasselmann [14]. They showed that sea
surface temperature (SST) anomaly can be explained at a first-order by an el-
ementary mixed layer model where the atmosphere introduces a white-noise
forcing and the ocean acts as a Markov integrator of the stochastic input. This
led to the first types of stochastic models, i.e. Linear Inverse Models, which
use a linearized dynamics and introduce an additive white noise and a friction
term, in order to obtain only stable solutions. However, this approach can be
adopted only to a process with Gaussian statistics, limiting its range of ap-
plications. It has been proven, especially in the study of extreme events, that
the choice of a multiplicative noise allows for the emergence of non-Gaussian
statistics [4]. Moreover, all of these reasoning is based on the assumption of
a memoryless (Markovian) process due the two-timing property of the climate
system, which is true only as a first approximation since the climate spectrum
has no clear truncation. Consequently, memory effects need to be introduced,
which lead to non-Markovian processes. In fact, these are the reasons behind
the subsequent developments of stochastic climate models.
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Numerous studies have proven how stochastic models allow to successfully
reproduce physical phenomena in a more computationally efficient way, e.g.
from the spectra of the Quasi-Biennal Oscillation (QBO) and of El Niño South-
ern Oscillation (ENSO) it was shown how these modes of climate variability
are excited by fast-scales fluctuations. Moreover, it has been displayed that
an Ornstein-Uhlenbeck spectrum is reproduced only in the superficial layer
of the ocean, whereas at greater depth ocean stratification shields lower levels
from surface fluctuations, leading to a different type of variability (von Storch
et al.[1]). According to Palmer [5], stochasticity must be adopted for every
climate model, regardless of how comprehensive it is, since it leads to ”more
accuracy with less precision”, by reducing the degrees of freedom of the sys-
tem through statistical closure. Furthermore, he argues that deterministic
parametrization is suitable only when a clear scale separation between the
resolved and the unresolved scales is present, which is not the case in reality
where multiscale situations are much more frequent.
In conclusion, stochastic parameterizations have been shown to provide more
skillful forecasts than traditional ensemble prediction methods. For further
details on following developments of statistical approach to stochastic models,
which are beyond the scope of this thesis, please refer to Franzke et al. [4]
and Palmer [5].
Since the rationale behind stochastic climate models has been established, in
the following section an overview of the concept of ”noise” in climate physics
is performed and the definition adopted in the present study is given.

2.2 Noise in the climate system
From the definition reported in the Glossary of Meteorology of the Ameri-
can Meteorological Society, the so called climate noise comprehends all the
”variations in the state of the climate system that have little or no organized
structure in time and/or space”. However, it is important to notice that it is
a relative term, since some variations can be considered noise in a certain
context and not in another. In other words, every process that develops at
time-scales or spatial scales smaller than those analyzed can be treated as a
noise with respect to the signal under study. It is clear that the concepts of
signal and noise can be applied in different contexts, for instance when inves-
tigating the role of the anthropogenic forcing in climate change as compared to
natural variability [15]-[17]. The aim is to filter the signal from the noise that
is masking it. Consequently, as a diagnostic tool, the signal-to-noise ratio is
often considered. In other words, it is in these detection problems, i.e. being
able to tell if by adding a modification to the model the resulting differences
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are due to it and not to internal variations that would have been present in
any case, that the noise needs to be considered. Indeed, the meaning of the
presence of noise is that the effect of a modification in a numerical experiment
may no longer be simply described as the plain difference between a modified
simulation and a control simulation [6].
As already said and proven, in stochastic climate theory these subgrid pro-
cesses or fast components represent a fundamental energy source for the cli-
mate system, allowing for its internal variability, which is the component of
climate variability not due to the external forcing. Consequently, these modes
of internal variability are not resolved since stochastic models focus on the
accurate simulation of the large, predictable scales, while only the statistical
properties of the small, unpredictable, scales are captured. Thus, this unpro-
voked variability could come from a pletora of phenomena such as variations
in river discharge, waves or small scale eddies.
Furthermore, it is evident that for chaotic systems is extremely difficult to dis-
entangle the model error, for instance resulting from the adopted parametriza-
tion, from the initial condition error, given by the sensitivity of the system on
ICs, or from some rounding error. Consequently, the noise would generally
consists in all of them, if a distinction is not possible.
In the present study, as in the paper by Tang et al. [6], the noise is to be in-
tended as the component of the variability of the ocean that is not due to the
atmospheric forcing, which is instead identified with the signal. Consequently,
it is to be attributed to internal processes of the ocean itself, mesoscale ed-
dies in the first place, so it will be called equivalently intrinsic or internal ocean
variability. Nonetheless, even though it is neither of interest to study the exact
sources and processes behind the formation of the noise at a certain location
nor possible, a good comprehension of its properties such as time and spatial
scales, depth and area distribution is sought, along with the identification of
the types of processes that triggers it.
In the next section, an overview of the main features of the Mediterranean Sea
is given, in order to better understand the basis of the present work.

2.3 Area under study: the Mediterranean Sea
The Mediterranean Sea (please refer to Oceanography of the Mediterranean
Sea, [19] for a much wider dissertation) is a semienclosed basin located be-
tween 5°E and 36°W and between 32° and 46°N with average depth of 1500
m. It is connected to the Atlantic Ocean through the Strait of Gibraltar and to
the Marmara Sea, and consequently the Black Sea, through the Dardanelles
and the Bosphorous Strait.
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Figure 2.1: The Mediterranean Sea and its thermohaline circulation: in blue
the surface flow of the AW, in purple the deep flow of the IW. The boxes indi-
cate the regions of Deep and Intermediate Water Formation: the white ones
indicate open ocean convection areas, while the yellow ones shelf dense water
cascading areas.

The circulation in the Mediterranean basin is determined by its freshwater
deficit (E − P > 0), i.e. the evaporation is greater than the freshwater input
given by river runoff and precipitation. Thus, a two-way flow at the Strait
of Gibraltar is necessary to allow for the conservation of water and salinity:
an inflow at the surface from the Atlantic Ocean into the Mediterranean Sea
and an outflow at depth in the opposite direction compensate for freshwater
losses and act to conserve the salinity balance. In fact, the predominance of
evaporation in the Mediterranean basin causes its seawater (MW) to be saltier,
hence denser, than Atlantic waters (AW) and, consequently, the outflow is sit-
uated below the inflow. This type of circulation is called antiestuarine, since
it behaves as an inverse estuary.
At the surface, the wind stress is responsible for the permanent gyres of the
basin, whereas the heat and freshwater fluxes determine the thermohaline
circulation and the consequent deep water formation processes.
As regards the wind stress, the strongest winds are situated in the Levantine
Basin in summer and in the Gulf of Lion in winter.
The annual net heat flux implies a small loss of -4 W/m2, in order to match
the heat gain through the Strait of Gibraltar from the Atlantic Ocean. More-
over, the annual heat budget is characterized by a overall loss in the northern
part of the basin (-30 W/m2) and a gain in the southern part (50 W/m2), even
though strong seasonal variation are present: in summer the entire basin
gains heat, while in winter it experiences heat loss particularly strong in the
Aegean Sea. Overall, the heat balance is ruled mostly by the shortwave term,
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particularly influent as latitude decreases, and the latent heat loss, which is
instead stronger in the regions with intense wind forcing.
Finally, the freshwater balance is always in deficit, apart from the Adriatic
Sea and some coastal regions where the net evaporation is compensated by
precipitation.
The Mediterranean thermohaline circulation (Figure 2.1), which is overall cy-
clonic, is formed by three main water masses: the Atlantic Water (AW), which
flows in the mixed layer and in the thermocline, the Intermediate Water (IW)
and the Deep Water (DW), that instead are located below the thermocline. The
former is the lightest and less salty water mass, it enters through the Strait of
Gibraltar, follows the North-African coast and splits into two branches in the
Sardinia Channel, one that flows counterclockwise in the Tyrrhenian Sea and
then follows the northern boundaries of the Western Mediterranean (WMed),
and the other that crosses the Sicily Channel and enters the Eastern Mediter-
ranean (EMed). During its permanence in the Mediterranean basin, the AW is
modified and becomes colder (due to cold and strong winds) and less salty in
the WMed and warmer and saltier in the EMed, where the evaporation is more
intense, implying a net distinction between the two areas of the Med Sea. The
salinity field has instead a minimum in correspondence with the main regions
of freshwater inputs: the Strait of Gibraltar, the Dardanelles and the deltas
of the main rivers such as the Po, the Nile and the Rhone.
The IW forms in the Levantine and Cretan Sea, due to the high evaporation
rate of these regions, and it is found at the depths of 250-600 m. Once it is
formed, it travels towards the WMed crossing both the Adriatic, the Tyrrhe-
nian Sea and the northern WMed, helping in the formation of DWs in these
regions, and finally crosses the Strait of Gibraltar, forming the main part of
the outflow.
Deep Water forms at different locations (boxes in Figure 2.1) in the northern
part of the basin (Aegean Sea, Adriatic Sea, Gulf of Lion) due to the pres-
ence of strong, cold and dry winds such as the Bora and the Mistral, during
winter-early spring. Deep Water Formation happens following two processes,
both present in the Mediterranean: dense shelf water cascading and open
ocean convection. In both cases, strong and cold winds causes evaporation
and cooling of the surface layers, producing denser water at the surface that
eventually sinks. In the case of shelf water, it cascades out of the shelf, form-
ing deep or intermediate waters, and could contribute to the process of open
ocean convection. The latter takes place in the open sea following three steps:
first, at the horizontal scales of a cyclonic gyre (100 km), an area of dense
water is created, followed by violent mixing along the vertical column at the
scales of plumes (1 km). Once the patch of dense water is formed, it spreads

16



CHAPTER 2. STOCHASTIC CLIMATE THEORY AND THE DEFINITION
OF NOISE

away from the convection area thanks to eddies (10 km) and stratification
is re-established with the new dense water patch located at the bottom. DW
forms a significant component of the water column, but maintains itself nearly
constant, as regards temperature and salinity, at all depth levels. Moreover,
due to the presence of bathymetry, the two deep water masses of the WMed
(WMDW) and of the EMed (EMDW) remain separate, the latter being warmer
and saltier than the former.
In the next chapter, the rationale of the experiment and the adopted methods
are presented.
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THREE

OCEAN SIMULATIONS AND METHODS

In this chapter, in order to introduce the analysis and to understand the re-
sults, the technical features of the study are presented.
First, an overview of the model adopted for the analysis is reported, then an
explanation of the scheme of the performed simulations is given along with a
presentation of the type of analysis that is carried out.

3.1 EAS5 system
The model used in this study is the EAS5 system [18], a coupled hydrodynamic-
wave model implemented over the whole Mediterranean Basin and the adja-
cent area of the Atlantic Ocean (Figure 3.1) and developed by the CMCC. It
is the precursor of the current operational modeling system adopted by the
Copernicus Marine Service (EAS6 system) that was introduced in 2021 and
whose main difference from the EAS5 system is the presence of tides.
The model horizontal grid resolution is 1/24° (ca. 4 km) and has 141 un-
evenly spaced vertical levels. The hydrodynamics is supplied by the Nucleous
for European Modelling of the Ocean (NEMO v3.6) while the wave component
is provided by Wave Watch-III. NEMO model is discretized on a staggered grid
(Arakawa C grid) with masking of land areas. The model is forced by mo-
mentum, water and heat fluxes computed by bulk formulae using the 1/10°
horizontal-resolution operational analysis and forecast fields from the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF). The Mediter-
ranean modeling system is forced in the Atlantic side by the Global analysis
and forecast product, while in the Dardanelles Strait it is forced by a combi-
nation of daily climatological fields from a Marmara Sea model and the Global
analysis and forecast product. The water balance is computed as Evaporation
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Figure 3.1: Numerical domain of the EAS5 system and its bathymetry.

minus Precipitation and Runoff. The evaporation is derived from the latent
heat flux, precipitation is provided by ECMWF, while the runoff of the 39
rivers implemented is provided by monthly mean datasets except for the Po
river runoff which is provided as daily mean observations.
The 10-days daily forecast fields are produced every day.
The available variables are, for instance, temperature, salinity, horizontal and
vertical velocity, sea surface height, mixed layer depth.

3.2 Rationale of the simulations
Following the idea in Tang et al. (2019) [6], an ensemble of ten simulations of
the Mediterranean Sea is generated with the same atmospheric forcing, but
with different start dates and consequently different run times (Table 3.1). The
analyzed year is 2021, which is the only year covered by all the simulations
(Figure 3.2). Furthermore, for the purposes of the analysis, the ensemble is
halved by distinguishing between the so called multi-year ensemble (red) and
the single-year ensemble (blue), which are formed by the simulations initiated
one year after the other and by those that started all in 2020 separated only
by a month, respectively. By building the ensemble in this way, it is possible
to generate noise without perturbing the system with ad hoc perturbations.
Indeed, since the initial conditions of the simulations are taken from the avail-
able reanalyses, the difference among the simulations are caused by the data
assimilation scheme. In fact, the initial condition of a simulation with a later
start date does not coincide with the outcome of a previous simulation, but
it is the result of the analysis step of the data assimilation scheme, where
the simulation is compared with real data and readjusted. It is clear that the
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further back is the start date of the simulation, the longer has passed from
the last analysis.
The diagnostic variables used in the present work are primarily temperature
(°C), salinity (103 ppm) and horizontal velocity (m/s).

Start time End time Total run time
S1 01/01/2016 31/12/2021 72 months
S2 01/01/2017 31/12/2021 60 months
S3 01/01/2018 31/12/2021 48 months
S4 01/01/2019 31/12/2021 36 months
S5 01/01/2020 31/12/2021 24 months
S6 24/08/2020 31/12/2021 about 16 months
S7 28/09/2020 31/12/2021 about 15 months
S8 26/10/2020 31/12/2021 about 14 months
S9 23/11/2020 31/12/2021 about 13 months

S10 28/12/2020 31/12/2021 about 12 months

Table 3.1: Start dates for each of the 10 simulations: in red the multi-year
ensemble members, in blue the single-year ensemble members.

Figure 3.2: Schemes of the rationale of the simulations: in red the members
of the multi-year shifted ensemble, in blue those of the single-year shifted
ensemble and the yellow box represents the year of study, i.e. 2021.
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3.3 Methods
First, to verify the presence of differences among the simulations, i.e. noise,
the logarithm of the barotropic velocity is computed for each simulation, as in
the work by Tang et al. [6]. Since the depth levels are unevenly spaced, the
mean along the vertical direction is calculated as a weighted average with the
weights equal to the ratio of the thickness dk of each layer k over the maximum
depth Dmax

i,j at each grid point (i, j). The barotropic speed is then:

vbar
i,j =

√
(ubar

i,j )
2 + (vbari,j )

2 =

√√√√[ kmax
i,j∑
k=1

u(i, j, k)
dk

Dmax
i,j

]2
+

[ kmax
i,j∑
k=1

v(i, j, k)
dk

Dmax
i,j

]2
(3.1)

Then, to obtain a more detailed representation, the time series of the selected
variables are considered. The locations for these time series are chosen in
order to give a good coverage of the Mediterranean basin and, simultaneously,
to analyze the areas of deep/intermediate water formation [19], in order to give
a complete picture of the depth dependency of the noise. Figure 3.3 and Table
3.2 show the exact locations of these points and their maximum depth, along
with the names with whom they will be addressed in the present thesis.

Figure 3.3: Bathymetry of the Mediterranean Sea with the dots that indicate
the locations chosen for the analysis.

Subsequently, a scale separation of the time series is performed to character-
ize the time-scale of the differences among the simulations for each field. The
low frequency component of the field is obtained through a running mean over
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Location Entire name Depth
Tyrr Tyrrhenian Sea 3500 m
Adr Adriatic Sea 1095 m

EMed Eastern Mediterranean Sea 2880 m
GoL Gulf of Lion 2530 m
LIW Levantine Intermediate Water 3100 m
CIW Cretan Intermediate Water 920 m

WMed Western Mediterranean Sea 2665 m

Table 3.2: Locations chosen for the analysis of the time series.

a period T of 30 days, which essentially corresponds to a 30 days low-pass
filter, whereas the fast varying part is computed by subtracting the averaged
one from the complete field f :

f(tj) = flow(tj) + fhigh(tj) =
1

T

T/2∑
i=−T/2

f(tj+i) + fhigh(tj) (3.2)

The choice of a 30 days period is due to the fact that it seems an appropriate
time window to filter out fast disturbances and characterize the average trend
over the entire year. Note that, to avoid considering all 141 vertical levels,
often only 7 of them are reported, corresponding to the depths of 1 m, 20 m,
50 m, 100 m, 200 m, 500 m and 1000 m.
For the subsequent analysis, only the multi-year ensemble is considered,
since the two ensembles are not equivalent (see Section 4.2).
Thus, adopting the multi-year simulations, the ensemble spread relative to
the field f , which is intended to be a representation of the noise, defined as:

σ(i, j, t) =
1

Ne

√√√√ Ne∑
s=1

[fs(i, j, t)− fave(i, j, t)]2 (3.3)

is investigated, where fs is the chosen field as given by the s-th simulation
and fave is the ensemble mean. Its values over the entire basin during two dif-
ferent seasons, January-February-March (JFM) and July-Augut-September
(JAS), is computed for the depth levels previously indicated. Furthermore, its
vertical profile, as a time average of the months of August and February, at
the 7 chosen locations is considered.
Lastly, the signal-to-noise ratio is computed as the ratio of the standard de-
viation of the ensemble mean fave over the season and the average ensemble
spread σ over the same period:

S/N(i, j) =
std(fave)t
mean(σ)t

=

√∑tfin
tin [fave(i, j, t)− f̄ave(i, j)]2∑tfin

tin σ(i, j, t)
(3.4)
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Thus, it gives information about the importance of the ensemble spread (noise)
with respect to the corresponding temporal variations of the ensemble mean
(signal). Larger values of this ratio corresponds to predominance of the signal,
i.e. the atmospheric forcing is the dominant factor at play in the variations of
the ocean, whereas a S/N less than unity implies a thriving noise, i.e. some
other processes both of physical and computational origin determine the vari-
ability.
In addition, a preliminary analysis on the characteristic time scale of the
chaotic dynamics, i.e. the time necessary to pass to decorrelate the sim-
ulations so that their differences are only due to the chaotic nature of the
system itself and not to its dependence on initial conditions, is carried out by
comparing the two ensembles through the difference between their spreads.
By comparing the single-year and the multi-year ensemble spreads one could
check if the time passed for the latter from initialization to analyzing the data
is enough so that the initial state is not of importance anymore. If it holds, no
systematic differences should be present between the two ensemble spreads,
since they would be statistically equivalent. On the other hand, if a notice-
able difference is found it means that some information about the character-
istic time scale can be deduced, for instance if the assumption of one month
adopted in Tang et al. [6] is correct or not. In other words, by studying the
noise predicted by two different ensembles of simulations of the same system,
subjected to the same forcing, an estimate of the sensitivity of the system on
initial conditions can be performed. Indeed, this is useful, and needs to be
studied in detail, in the analysis of internal variability since it would allow to
understand what is the correct time scale to consider in order to have uncor-
related simulations.
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RESULTS: CHARACTERIZING THE NOISE

In this section, the results for the analysis of the noise in the Mediterranean
Sea are presented. Note that, in the present dissertation, the terms ensemble
spread and noise would be used indiscriminately, since the former is the cho-
sen numerical representation of the latter. The majority of the plots relative
to this chapter are reported in Appendix A: Figures.

4.1 Qualitatively verifying the presence of noise
First, the presence of differences among the simulations is verified by intu-
itively studying the fields obtained from each of them.
In Figure 4.1, the field of the natural logarithm of the barotropic velocity, on
the 01/08/2021, is plotted as obtained from each simulation of the multi-
year ensemble. It is clear that, even though the main features and orders
of magnitude of the circulation are reproduced in a very similar way among
the simulations, such as the stronger currents in the Sicily Channel and the
milder ones in the central part of the basin, the five simulations differ for the
representation of smaller scales structures, such as eddies. Moreover, a better
match among them is found for the strength of the circulation than for the di-
rection of the streamlines. These distinctions suggest that the noise is mostly
present at smaller scales, whereas the shared large-scale features are to be
attributed to some external forcing, such as, but not only, the atmospheric
one (in agreement with the results by Tang et al [6]).
To further show the presence of noise among the simulations, the time se-
ries at the seven chosen locations are considered and a time-scale separation
is applied using a threshold of 30 days to distinguish between high and low
frequency components (see Section 3.3), in order to characterize the noise at
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Init. 2016 Init. 2017 Init. 2018

Init. 2019 Init. 2020

Figure 4.1: Natural logarithm of the barotropic velocity on August 1st 2021
in the Tyrrhenian Sea, as obtained from the five simulations of the multi-year
ensemble. The red dot indicates the location Tyrr, one of those chosen for the
analysis.

different time frequencies (see Figure 4.2 as an example). It can be deduced
that a good agreement among the simulations is detectable for the high fre-
quency components up to 50 m, whereas the slow components are highly
correlated for the superficial layer, due to the atmospheric forcing, but signif-
icant differences start to appear already at 20 and 50 m.
By comparing the low-frequency components (the low-pass filter allows for a
clearer view) of the time-series of temperature, salinity and zonal velocity at
two very different locations, the Adriatic Sea (Adr ) and the Western Mediter-
ranean (WMed), it is possible to verify how this preliminary analysis reflects
the distinct features of these two basins. The location in the Adriatic Sea,
which is an area of Deep Water Formation (see Chapter 2), is highly depen-
dent on the atmospheric forcing, due to the influence of the wind stress on the
process. Consequently, the simulations for temperature can be superposed
one to the other at the surface, reflecting a dominant role of the atmosphere,
and maintain an high correlation all along the vertical direction, in particular
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Figure 4.2: Time-scale separation of the time series of temperature in the Gulf
of Lion (GoL), as given by the ten ocean simulations of 2021. High frequencies
(< 30 days) on top, low frequencies on the bottom (> 30 days). In red those of
the multi-year ensemble, in blue the members of the single-year ensemble.

at depth (1000 m). For salinity, the simulations show the same trend, but
they have shifted values, especially at the surface. On the other hand, the
Western Mediterranean is the region subjected to the water inflow and out-
flow processes through the Gibraltar Strait between the Mediterranean basin
and the Atlantic Ocean. Thus, it shows much more random relations among
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the simulations for both scalar quantities and a much lower correlation, in
particular at depth. Instead, as regards the zonal velocity, the profiles of the
simulations appear to be fluctuating in an independent manner one from the
other in both regions, as expected.
One important feature, shared to both location and at all depth levels, is the
tendency of the single-year ensemble to show a smaller spread compared to
the multi-year ensemble. For instance, the simulations for temperature at
1000 m depth in the Adriatic Sea clearly shows this. Moreover, the two en-
semble are often evidently distinguishable one from the other, particularly in
the case of salinity and temperature: for example, the two ensembles for the
temperature simulations at the WMed at 50 m depth clearly diverge from each
other, from July to November, leading to a sort of bifurcation.
Nevertheless, a more formal dissertation is needed, to better characterize the
properties of the noise.

4.2 Depth and area dependency of the noise
The resulting maps of the ensemble spread, computed as explained in Section
3.3, are reported in the Figures A.3 - A.7 for both seasons (JAS and JFM) and
for different depth levels: 1 m, 20 m, 50 m, 100 m and 500 m. Note that the
following results are related only to the examined year 2021.
Overall, it is evident that the ensemble spread is seasonal: it is greater in
summer for both scalar quantities (temperature and salinity) and in winter
for the current velocity.
During summer, the ensemble spread for temperature (Figure A.3) has a max-
imum at about 20 m depth with values of the order of 0.8 - 1 °C and more
around the entire basin except for the Adriatic Sea and the Gulf of Gabès,
which have the smallest values of the noise at all depth levels. At the surface,
instead, the highest values are found in the Balearic Sea, in the Alboràn Sea
and in the Strait of Messina, while below the thermocline, at depths of at least
50 m, in the Eastern Mediterranean, especially along the coast. In winter the
highest values (about 0.7 °C) are located in the Eastern Mediterranean in the
first 100 m, where the vertical profile maintains itself constant.
For salinity, the areas characterized by the greatest values of the spread (0.3×103

ppm or more) can be easily identified and are the Aegean Sea, the region south
of the Ionian Sea and the Western part of the basin from the Ebro Delta to
the Gibraltar Strait. A similar pattern is found both in summer and in winter,
even though the spread is greater in summer. Moreover, while in the other
regions the spread tends to decrease with depth and have higher values in
the first 20 m, along the coasts of Spain and Morocco and in the Alboràn Sea
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the spread has a maximum at a depth of 100 m in winter.
Finally, for current velocity, larger values of the spread (about 0.1 m/s) are vis-
ible in winter at the surface, even though its pattern is almost constant with
depth while slowly decreasing its intensity, and the regions where it thrives
are the Western Mediterranean, in particular the Alboràn Sea and the coast
of Morocco and Algeria, and in the Eastern Mediterranean along the Egyptian
coast, whereas is smaller in the Adriatic Sea and in the Gulf of Gabès.
The time series of the ensemble spread (Figure A.8) of the different variables
at the chosen locations and at different depth levels confirm these results.

4.3 Signal-to-noise ratio
In order to quantify the importance of the noise with respect to the signal,
i.e. compare the mean ensemble spread (noise) with the average time vari-
ability of the ensemble mean (signal), the signal-to-noise ratio (Figures A.9 -
A.14) needs to be considered. Note that it corresponds to the reverse of the
mean normalized ensemble spread, where the normalization is the standard
deviation of the ensemble mean (see Section 3.3).
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Figure 4.3: In red the points where the signal-to-noise ratio is smaller than
1, i.e. the noise is greater than the signal, for temperature at different depth
levels for JAS (top) and JFM (bottom).

First, from Figures 4.3 - 4.5, the net importance of the noise is shown:
red points correspond to areas where the signal-to-noise ratio is less than
unity, i.e. the noise dominates. For temperature, the signal is dominant in
approximately the first 50 m, while the noise thrives from the depth of 100
m. Moreover, for intermediate depths (50 - 100 m) the signal is stronger in
winter with respect to summer, since during JFM the noise, mostly confined
to the Western Mediterranean, maintains its pattern constant up to 50 m. For
salinity, instead, the noise tends to be dominant at all depth levels, even at
the surface, except for the Gulf of Lion, the Northern Adriatic Sea, the Sicily
Channel and the Aegean Sea in the superficial layers. In summer, the signal
is predominant also in the Levantine Sea. Lastly, a similar behaviour is found
for the current velocity: the noise thrives at all depths, apart from the Adri-
atic Sea, the Sicily Channel and the Gibraltar Strait at the surface in both
seasons.
Overall, it is evident that, by comparing the signal-to-noise ratio maps (Fig-

ures A.9 - A.14) with the corresponding ones of the ensemble spread, the noise
thrives at depths over 100 m, even though its module is greater in the super-
ficial layers (in particular in the first 20 m). The areas of larger signal-to-noise
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Figure 4.4: In red the points where the signal-to-noise ratio is smaller than
1, i.e. the noise is greater than the signal, for salinity at different depth levels
for JAS (top) and JFM (bottom).
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Figure 4.5: In red the points where the signal-to-noise ratio is smaller than 1,
i.e. the noise is greater than the signal, for current velocity at different depth
levels for JAS (top) and JFM (bottom).
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ratio (> 6) correspond to regions of smaller ensemble spread, i.e. the noise is
particularly weak in those regions where the signal is significantly stronger.
Moreover, the Adriatic Sea and the area offshore from Tunisia and Libya are
regions of higher S/N for all variables, while being the shallowest areas in the
Mediterranean basin, except for coastal areas, hence the atmospheric forcing
is particularly effective in those regions.
For temperature, since the S/N is greater than 1 almost everywhere up to the
depth of 50 - 100 m, the maximum of the ensemble spread that was found at
20 m in summer corresponds to a signal-to-noise ratio greater than 1 almost
over the entire basin. Furthermore, the S/N is greater in summer. For salinity
and current velocity, the locations of the highest S/N are the Adriatic Sea in
the proximity of the Po delta, the Aegean Sea and the Gulf of Gabès.
Furthermore, the basin average of the noise-to-signal ratio for each variable
and for both season is displayed in Figure 4.6. The choice of considering the
N/S instead of the S/N is purely motivated in this case by the need of a better
visualization. It is evident that the N/S is greater in summer than in winter,
after 10-20 m depth, and tends to increase with depth starting from about 0.3
and 1.5 for temperature and salinity respectively, whereas it reaches a maxi-
mum (about 2.5) at 200 m for current velocity and then slowly decreases.

Figure 4.6: Basin average of the N/S in for temperature (red), salinity (green)
and current velocity (blue). Up to 1000 m (left), zoom in the first 100 m in the
right. JAS (full line) and JFM (dashed line).

Moreover, for temperature the average N/S reaches unity at approximately 60
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m in JAS and at 120 m in JFM, whereas for salinity and current velocity the
average N/S is always greater than 1. However, note that these profiles have
been computed with only 7 depth levels that, even though are significantly
representative of the vertical trend, need to be integrated with all the avail-
able depth levels, in order to increase their accuracy.

4.4 Relation with the gradients of the fields
In order to investigate the physical reason behind the area and depth distri-
bution of the ensemble spread and of the S/N, a comparison with the mean
horizontal and vertical gradients of the variables under study and with the
mixed layer depth (Figure A.15) is performed. The idea is to check if a high
presence of noise is linked to large spatial variations or high intensity of the
field of interest.
As regards the temperature field in summer, the ensemble spread has its
maximum below the mixed layer, in the thermocline. This is particularly evi-
dent in the vertical profiles of the spread compared with those of the vertical
and horizontal temperature gradient in Figure 4.13, where it is clear that the
noise peaks right below the mixed layer depth (black horizontal lines). Con-
sequently, the temperature vertical gradient (that almost coincides with the
density gradient) has a similar trend and the same peak at 20 m - 30 m with
respect to the ensemble spread profile along the vertical column at the 7 cho-
sen locations, even though in the mixed layer the two curves are not always
in a good accordance. Furthermore, also the horizontal gradient, that has
its peak at the same depth, has a profile similar to the one of the noise es-
pecially in the superficial layers, thus implying a coexistence of at least two
factors influencing the spread distribution. In fact, by comparing the field of
the horizontal temperature gradient, or equivalently the horizontal advection
field (uh ·∇hT ), with the spread at the surface a very good agreement is found,
meaning that the regions with higher spread corresponds to areas of higher
horizontal gradients (or stronger horizontal advection), while the vertical tem-
perature gradient does not match the noise field there (Figure 4.7).
Instead, at 20 m depth (Figure 4.8) the ensemble spread field has a very sim-
ilar pattern to the vertical temperature gradient at the same depth. In fact,
the depth of 20 m in summer corresponds, in most part of the basin (see the
mixed layer depth field in Figure A.15), to the thermocline. The only excep-
tion is the Adriatic Sea, where the spread is small but the vertical gradient is
strong. This could be caused by the presence of a very strong signal there, as
seen in the previous section, that modulates the noise that would have been
present in the absence of the strong atmospheric forcing. At the other depth
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Figure 4.7: Seasonal average (JAS) of the noise (left) at the surface, of the
temperature horizontal gradient (right) and of the horizontal advection field
(bottom) at the same depth.

Figure 4.8: Seasonal average (JAS) of the noise (left) at 20 m and of the tem-
perature vertical gradient (right) at the same depth.

levels, the role of the two gradients is not immediately distinguishable as in
the superficial layers and the two seems to contribute similarly to the noise,
depending on which one predominates at each location. Particularly interest-
ing is the case of the WMed where the spread accurately follows the vertical
gradient, both for temperature and salinity, showing a peak at around 100 m,
apart from temperature in summer where it reaches its maximum at about
20 m, below the mixed layer. This agreement is probably due to the presence
at the depth of about 100 m of the boundary between the flow of AW entering
the basin and the opposite one of MW exiting it, which are water masses char-
acterized by very different temperature and salinity values (see Section 2.3).
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On the other hand, for the cold season, no clear relation with the gradients
was found, as can be deduced by Figure 4.13. The vertical profiles of the noise
and of the two gradients are independent one from the other right below the
mixed layer, whereas a good agreement is found only with the vertical tempera-
ture gradient at depths greater than 100 - 150 m at the locations EMed, LIW,
CIW and WMed and with the horizontal temperature gradient in the mixed
layer.

Figure 4.9: Seasonal average (JFM) of the noise (left) at 100 m and of the
vertical advection of temperature (right) at the same depth.

Figure 4.10: Seasonal average (JFM) of the noise (left) at 20 m and of the
horizontal advection of temperature (right) at the same depth.

Moreover, a correspondence between the spread field and the vertical gradient
(or vertical advection) is found only at 100 m and below (Figure 4.9), whereas
at shallower depth a better match is found with the horizontal advection, apart
from those regions such as the Gulf of Lion and the Adriatic Sea where the
signal is particularly strong. However, this reasoning is definitely not as ac-
curate as the one for summer. It could be because the vertical temperature
gradient in winter does not have a defined structure as in the case of sum-
mer and it is of one order of magnitude smaller. Thus, its contribution to the
ensemble spread is not as significant and easily identifiable as in the warmer
months. However, it is to be noted that the Eastern Mediterranean, which

35



CHAPTER 4. RESULTS: CHARACTERIZING THE NOISE

is the regions with higher spread values in winter, is also the warmer area
during the cold season.
For salinity, a good agreement is found between the vertical profile of the noise
and the horizontal salinity gradient (Figure 4.14), particularly in summer.
However, at some locations the vertical salinity gradient is more in accordance,
such as at the WMed in summer. Nevertheless, the horizontal salinity gradi-
ent accurately reproduces the field of the ensemble spread in both season and
at all depths (Figures A.4 - A.5). Consequently, high spread regions accurately
correspond to areas where salinity horizontal gradient is greater, due to the
presence of rivers that flow into the Mediterranean Sea, such as the Ebro, the
Po, the Rhone and the Nile, and of water inflow through the Gibraltar Strait
and the Dardanelles. Again, the Adriatic Sea, the Gulf of Gabès and the Gulf
of Lion, even if they are characterized by a high horizontal salinity gradient,
they show little noise, probably due to the presence of the strong signal in
those regions.
Finally, as regards the current velocity, a good match is found with the en-
semble mean (Figures A.6 - A.7), i.e. the average horizontal current velocity
field: the higher the current velocity, the greater the ensemble spread in both
season. Moreover, the ensemble mean is the only factor able to explain the
spread pattern, which maintains itself constant along the vertical column,
while decreasing its intensity. To show this, the ratio between the intensity of
the horizontal current velocity and its corresponding ensemble spread is re-
ported in Figure 4.11: their ratio is constant all over the basin except for the
Northern Adriatic Sea, the Gulf of Gabès and, especially in winter, the Gulf
of Lion, which are regions characterized by a large S/N ratio. Thus, strong
oceanic currents are linked to a large presence of noise except for those re-
gions of great influence of the atmospheric forcing.

Figure 4.11: Ratio between the average horizontal current velocity field and
the corresponding ensemble spread at the surface for JAS (left) and JFM
(right).

In order to verify if these findings are valid only for the examined year of 2021,
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Figure 4.12: Ensemble spread relative to current velocity (left) and the field of
current velocity itself (right) in JAS at the surface, relative to the year 2021(top)
and 2020 (bottom).

the same analysis is reproduced for the year 2020 with only four of the five
used simulations. Thus, the results are confirmed also for 2020 as regards
the pattern of the noise itself (and of the S/N), its seasonality and its relation
to the gradients or to the current intensity: the spread has the same distri-
bution in 2020 and in 2021, apart from some small-scale differences, and it
is in good agreement with the previously found quantities, depending on the
chosen variable. Furthermore, these differences are easily explained by the
variations in the fields of the gradients of temperature and salinity or in the
mean current field between 2020 and 2021. All the results relative to the year
2020 are not reported here since it would be redundant, but as an example
the spread for the current velocity at the surface in summer and the corre-
sponding current field are shown for both years in Figure 4.12.
In conclusion, the noise relative to temperature in summer is related to both
the horizontal temperature gradient, mainly at the surface, and the vertical
temperature gradient, predominantly at the thermocline, whereas no clear
and definite pattern is found for the winter season. For salinity, the noise
is linked to the intensity of the horizontal salinity gradient at all depths and
in both season, whereas for current velocity the same relation is deduced
between the noise and the ensemble mean. The link between the ensemble
spread (or the uncertainty) relative to a certain field and the gradient of the
same field can be easily understood: small differences among the simulations
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in those regions are amplified by the large variations of the field there, e.g.
small displacement of a water particle at the thermocline implies a greater
modification of the temperature values with respect to the same displacement
in the abyssal layer. Consequently, the noise is greater where strong gradients
are at play: for temperature is mainly at the thermocline in summer, when it
is particularly pronounced, whereas for salinity, being mostly advected in the
horizontal direction, is found in correspondence with high horizontal varia-
tions due to water inflow and outflow. These results are in accordance with
what found in previous studies (Adani et al [20] - Pinardi et al [21]): the un-
certainty in ocean simulations is greater in the presence of strong variability
probably due to the inaccurate representation of the thermocline formation
processes and of the advective processes that move the AW around the basin.
On the other hand, for current velocity the uncertainty of the field is linked to
the strength of the field itself, meaning that regions with stronger currents are
also those with greater noise. It could be due to the presence of greater en-
ergy in those regions and consequently more numerous mesoscale structures,
which are sources of noise, as seen in Tang et al [6].
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Figure 4.13: Vertical profile of the ensemble spread for temperature (red/blue)
versus the vertical (yellow/cyan) and the horizontal (grey/black dashed line)
temperature gradient at the seven chosen locations. August mean (top),
February mean (bottom). The horizontal black line indicates the mixed layer
depth. 39



CHAPTER 4. RESULTS: CHARACTERIZING THE NOISE

0.0 0.1

1 m
50 m

100 m

200 m

500 m

Tyrr

0.05 0.10

Adr

0.050.10

EMed

0.0 0.05

GoL

0.0 0.07

LIW

0.050.10

CIW

0.00 0.25

WMed

0 0.1
Spread

1 m
50 m

100 m

200 m

500 m

0.02 0.04
Spread

0.05 0.1
Spread

0.05 0.1
Spread

0 0.03
Spread

0.025 0.050
Spread

0.1 0.3
Spread

0 0.03
0 0.01

0.00.01
0.00.01

0.00.015
0.00 0.01

0.0 0.01
0.0 0.005

0.0 0.04
0.00.01

0.000.01
0.000 0.005

0.00 0.01
0.00.005

0.00.006
0.0 0.01

0.00.0002
0.00.001

0.0 0.001
0 0.01

0.0 0.003
0.0 0.02

0.0 0.002
0 0.005

0.00.001
0.0 0.007

0.00 0.01
0.00 0.05
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4.5 Preliminary analysis on the decorrelation time
scale of the simulations

Due to the differences qualitatively found in the time series (Figures A.1 - A.2)
between the multi-year ensemble spread and the single-year ensemble spread,
a preliminary study aiming at quantifying this disagreement is carried out.
First, the basin average at different depth levels of the ensemble spread and of
the N/S are computed for both season and for both ensembles (Figure 4.16).
It is clear that the multi-year ensemble determines an ensemble spread and
a noise-to-signal ratio that are always greater than the ones derived from the
single-year ensemble, apart for the current velocity for depths greater than
400 m.

Figure 4.15: Basin average of the difference between the multi-year ensemble
spread and the single-year ensemble spread for temperature (red), salinity
(green) and current velocity (blue).

The two spreads show a greater difference (Figure 4.15) in JFM and tend to
zero after about 400 m. For temperature, the spread difference has a peak at
200 m in both season (around 0.02°C) and a relative maximum at 20 m for
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JAS (0.015 °C). As regards salinity, the maximum difference (around 0.005-
0.007 103 ppm) is at 100 m in both season, whereas for current velocity the
difference has its maximum at the surface or at 20 m (around 0.0025 m/s).
The profile found before for the N/S (see Section 4.1.3) is confirmed also from
the single-year ensemble in the case of current velocity, whereas, for temper-
ature and salinity, the growth with depth seen for the multi-year ensemble
spread is much more confined in the case of the single-year ensemble spread,
stabilizing itself around the value of 4 in JAS and 2 in JFM. However, both en-
sembles, apart from the superficial layers, show greater values of the N/S in
summer with respect to winter. As regards the ensemble spread, both ensem-
bles are characterized by the same trend, showing greater values in summer
for the scalar quantities and in winter for the current velocity. Overall, the
noise tends to decrease with depth, apart from the case of temperature and
salinity in JAS where both ensembles predict a peak at 20 m depth.
As a further analysis, the ratio between the two ensemble spreads is calcu-
lated for the entire basin, showing both regions where one is greater than the
other and viceversa.
In conclusion, the systematic difference between the multi-year ensemble and
the single-year ensemble, such that the spread predicted by the first is greater
on average in both season, implies that at least until summer the two spreads
are not equivalent, even though the difference decreases in summer. Thus,
the simulations of the single-year ensemble remain correlated with each other
during the examined period and the threshold of one month assumed in [6]
as a decorrelation time scale of the simulations does not seem to be correct:
the system still remembers the initial conditions after only one month and a
longer period, probably of the order of one year and at least of six months,
is needed. However, the determination of the exact time scale is beyond the
scope of this work and further analyses are needed in order to accurately
determine the time scale of predictability of the system.

Spread and N/S - Temperature
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Spread and N/S - Salinity

Spread and N/S - Current velocity

Figure 4.16: Basin average of the ensemble spread (left) and N/S (right) rela-
tive to temperature (top), salinity and current velocity (bottom) for both season
and both ensembles: multi-year ensemble in JAS (orange) and in JFM (red),
single-year ensemble in JAS (cyan) and JFM (blue).
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FIVE

CONCLUSION AND FURTHER DEVELOPMENTS

In the present work, through an ensemble of five identical ocean model sim-
ulations that differ only in the initial conditions taken at the different start
dates, the noise in the Mediterranean Sea relative to the field of temperature,
salinity and current velocity was investigated by defining it as the seasonal
averaged spread of the ensemble. Its influence on the Mediterranean vari-
ability was deduced by comparing it to the corresponding signal, identified as
the seasonal averaged variability of the mean of the same ensemble. Thus,
its dependence on depth and area was described and a possible explanation
for its pattern was found. Overall, the noise for the scalar quantities is higher
where there is a greater spatial variability of the quantity of interest, whereas
for the current velocity where the mean current itself is stronger.
For temperature, higher values of the spread in summer are localized right be-
low the mixed layer, in the thermocline, where the vertical temperature profile
is steeper. Thus, the maximum of the noise averaged over the basin is found
at about 20 m depth. However, at the surface the pattern of the noise is in
very good agreement with the horizontal temperature gradient instead. On
the other hand, in winter the noise is mainly present in the Eastern Mediter-
ranean maintaining itself similar in the first 100 m. As regards salinity in
both season, the noise is related to the horizontal salinity gradient, or to the
horizontal salinity advection, which is particularly significant in the Alboràn
Sea and along the coast of Spain, south of the Ionian Sea and along the coast
of Libya and in the Aegean Sea. Following the horizontal salinity gradient, in
summer the spread is stronger in the superficial layers, while during winter
the maximum is found at about 100 m depth. Lastly, the noise for the cur-
rent velocity is diffused all over the basin, except for the Adriatic Sea and the
Gulf of Gabès, following exactly the distribution of the intensity of the cur-
rent. Moreover, compared to the signal, the noise for salinity and for current
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velocity thrives at all depths, even at the surface, whereas for temperature it
becomes dominant only after about 50 m (JAS) - 100 m (JFM) depth. Finally,
by comparing the ensemble (multi-year ) with the so called single-year ensem-
ble, the decorrelation time scale of the simulations was briefly considered:
averaging over the basin, the noise predicted by the multi-year ensemble is
always greater than the one from the single-year ensemble in both seasons,
meaning that a systematic difference between the two ensembles is present.
This implies that, since the simulations from 2020 were initiated between Au-
gust and December, a time scale of decorrelation of one month, assumed in
other studies, does not hold and a longer period of at least six months is nec-
essary.
The link between the noise and the gradients of the corresponding field is ex-
plained by the fact that small differences among the simulations are amplified
by the large variations that characterize the field there: small displacement of
water at the thermocline and at a region of strong horizontal salinity advection
entails a greater change in the temperature and salinity field respectively than
the modification produced by the same displacement in a more static area. On
the other hand, the relation between the noise and the mean current velocity
is thought to be caused by a greater presence of energy which implies, through
energy cascading, the formation of small scale structures, which seems to be
related to the noise (Tang et al. [6]). However, further analysis are needed to
confirm these suppositions and to explain why for temperature in winter no
clear relation with the gradients was found and the effect of multiple factors
seems to need to be considered.
Overall, these results allow for a better identification of the sources of uncer-
tainties in ocean models, which is useful in order to pinpoint those processes
and features whose representation needs to be improved in ocean simulations,
such as salinity advection processes or eddies’ variability. On a more physical
level, the present dissertation provided a four-dimensional characterization of
the intrinsic variability of the Mediterranean Sea, recognizing its seasonality,
its spatial distribution and its importance relative to the atmospheric forcing.
Finally yet importantly, the presence itself of noise was shown, meaning that
the ocean-variability in the Mediterranean Sea is indeed not only externally
determined by the atmospheric forcing, but also internally generated, as ex-
pected by stochastic climate theory (see Section 2.1).
However, this study was limited by the relative short time window of two con-
secutive years, even though the results were confirmed in both of them. One
possible improvement would be to consider a longer time period in order to
prove that the results are not narrowed down by the chosen years, but holds
regardless. Similarly, the present study is confined to the Mediterranean Sea,
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thus a comparison with the results for other seas should be considered. More-
over, further analysis are needed as regards the sensitivity of the system on
initial conditions, for instance by considering several simulations each one
initiated one month before the other, going back at least one year before 2021.
In this way, a precise calculation of the time after which the simulations loose
correlation would be possible. This would be of both operational and physi-
cal importance since it would give information on how to build ensembles to
properly study the noise and on the sensitivity of the system on initial condi-
tions. Furthermore, the S/N scale dependency analysis should be performed,
both in space and in time, in order to understand at which scales the noise
thrives. For instance, an EOF decomposition of the S/N in the Mediterranean
Sea should be carried out as done by Tang et al [6] in the South China Sea
and the results should be compared, in order to verify if the relation found
in the SCS, i.e. the noise dominates at small spatial scales (about 30 km), is
confirmed in another basin. Finally, the same analysis should be done in the
presence of tides, which were not included in these simulations, to see how
the noise behaves when subjected to the additional tidal forcing.
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Figure A.1: Low frequency component (> 30 days) of the time-series of tem-
perature (top of previous page), salinity (bottom of previous page) and zonal
velocity (here) in the Adriatic Sea Adr. In red those of the multi-year ensemble,
in blue the members of the single-year ensemble.
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Figure A.2: Low frequency component (> 30 days) of the time-series of temper-
ature (previous page), salinity (top) and zonal velocity (bottom) in the Western
Mediterranean WMed. In red those of the multi-year ensemble, in blue the
members of the single-year ensemble.
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Figure A.3: Temperature (°C) JAS (left) and JFM (right) - Ensemble spread at
the depth levels of 1 m (top), 20 m, 50 m, 100 m and 500 m (bottom).
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Figure A.4: Salinity (103 ppm) JAS - Ensemble spread (left) and horizontal
gradient (right) at the depth levels of 1 m (top), 20 m, 50 m, 100 m and 500
m (bottom).
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Figure A.5: Salinity (103 ppm) JFM - Ensemble spread (left) and horizontal
gradient (right) at the depth levels of 1 m (top), 20 m, 50 m, 100 m and 500
m (bottom).
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Figure A.6: Current velocity (m/s) JAS - Ensemble spread (left) and ensemble
mean (right) at the depth levels of 1 m (top), 20 m, 50 m, 100 m and 500 m
(bottom).
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Figure A.7: Current velocity (m/s) JFM - Ensemble spread (left) and ensemble
mean (right) at the depth levels of 1 m (top), 20 m, 50 m, 100 m and 500 m
(bottom).
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Figure A.8: Time-series of the ensemble spread at the different locations for
temperature (top), salinity and zonal velocity (bottom) for seven depth levels.
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Figure A.9: Signal-to-noise ratio for temperature at different depth levels -
JAS
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Figure A.10: Signal-to-noise ratio for temperature at different depth levels -
JFM
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Figure A.11: Signal-to-noise ratio for salinity at different depth levels - JAS
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Figure A.12: Signal-to-noise ratio for salinity at different depth levels - JFM
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Figure A.13: Signal-to-noise ratio for the current velocity at different depth
levels - JAS
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Figure A.14: Signal-to-noise ratio for the current velocity at different depth
levels - JFM
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Figure A.15: Seasonal average of the mixed layer depth (m): JAS (top) and
JFM (bottom).
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