
Alma Mater Studiorum · Università di Bologna
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Abstract

Ocean carbon uptake has an important role in the global carbon cycle, absorb-
ing one third of anthropogenic atmospheric carbon. The biological carbon pump,
powered by phytoplankton primary production, transports organic carbon from
surface waters to deeper ocean zones, effectively sequestering it. Shelf regions,
characterized by shallow waters and nutrient abundance, exhibit elevated produc-
tivity compared to the open ocean.
Submesoscale filaments, or streamers, form through the instability of coastal cur-
rents, concentrating phytoplankton and chlorophyll into elongated structures that
enhance long-distance transport. Streamers can transport cold, chlorophyll-rich
shelf waters into the open ocean, potentially enhancing carbon fluxes to deeper
layers.
This thesis presents an automated image analysis tool utilizing K-means clustering
on an 18-year dataset of chlorophyll-a and sea surface temperature anomalies
from Level 3 satellite data. Three coastal regions (California, Mauritania, and
South China Sea) are studied. The algorithm effectively identifies streamers within
a single cluster, enabling estimation of chlorophyll content, lateral export, and
carbon fluxes.
The analysis of the chlorophyll content time series reveals distinct patterns. While
the biomass export intensity in upwelling regions follows the primary production
seasonality, the South China Sea shows high-frequency variabilities due to purely
turbulent processes.
The annual lateral biomass export through streamers totals 3.5 ± 0.7 Tg yr−1.
Carbon fluxes vary between regions, with upwelling areas having larger fluxes
(approximately 150 g m−2 yr−1) compared to the South China Sea (65 g m−2 yr−1),
indicating that streamers have different areas and carbon transport capacities.
This study offers valuable insights into lateral carbon export from coastal to open
ocean regions. Extending this research to a global estimate is essential to under-
stand the role of this transport in the processes of carbon burial to depth.



Sommario

L’assorbimento di carbonio negli oceani ha un ruolo importante nel ciclo globale
del carbonio, assorbendo un terzo del carbonio atmosferico di origine antropica. La
pompa biologica del carbonio, alimentata dalla produzione primaria del fitoplanc-
ton, trasporta il carbonio organico dalle acque superficiali alle zone oceaniche più
profonde, sequestrandolo efficacemente. Le regioni della piattaforma continentale,
caratterizzate da acque poco profonde e abbondanza di nutrienti, presentano una
produttività elevata rispetto all’oceano aperto.
I filamenti di sottomesoscala, o streamers, si formano grazie all’instabilità delle
correnti costiere, concentrando il fitoplancton e la clorofilla in strutture allungate
che favoriscono il trasporto a lunga distanza. Gli streamers possono trasportare le
acque fredde della piattaforma, ricche di clorofilla, nell’oceano aperto, potenzial-
mente aumentando i flussi verticali di carbonio verso gli strati più profondi.
Questa tesi presenta uno strumento di analisi automatica delle immagini che uti-
lizza il clustering K-means su un set di dati di 18 anni di anomalie di clorofilla-a
e temperatura superficiale del mare derivate da dati satellitari di livello 3. Questo
sistema è stato applicato a tre regioni costiere specifiche (California, Maurita-
nia e Mar Cinese Meridionale). L’algoritmo identifica efficacemente gli streamers
all’interno di un singolo cluster, consentendo la stima del contenuto di clorofilla,
del trasporto laterale e dei flussi di carbonio.
L’analisi delle serie temporali del contenuto di clorofilla rileva pattern distinti.
Mentre l’intensità dell’esportazione di biomassa nelle regioni di upwelling segue
la stagionalità della produzione primaria, il Mar Cinese Meridionale mostra vari-
abilità ad alta frequenza dovute a processi puramente turbolenti.
L’esportazione laterale annuale di biomassa attraverso gli streamers è pari a 3,5
± 0,7 Tg anno−1. I flussi di carbonio variano tra le regioni, con le aree di up-
welling che presentano flussi maggiori (circa 150 g m−2 yr−1) rispetto al Mar Cinese
Meridionale (65 g m−2 yr−1), indicando che gli streamers hanno aree e capacità di
trasporto del carbonio diverse.
Questo studio offre importanti informazioni sul trasporto laterale di carbonio dalle
regioni costiere all’oceano aperto. L’estensione di questa ricerca a una stima glob-
ale è essenziale per comprendere il ruolo di questo tipo di trasporto nei processi di
seppellimento di carbonio in profondità.
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Chapter 1

Introduction

This chapter is a brief introduction to the topic of the global carbon cycle, the
effects of human activities on carbon budget, and the role of the oceans in carbon
export and burial. The role of submesoscale dynamics in carbon export and burial
to depth is investigated.
Section 1.1 provides an overview of the global carbon cycle, its main reservoirs
and fluxes, with a particular focus on air-sea fluxes and ocean carbon uptake. The
biological carbon pump, which represents the main mechanism of carbon export
and burial in the ocean, is presented. Section 1.2 presents the dynamical regimes
of the ocean, with a specific focus on mesoscale and submesoscale. An overview of
lateral export of carbon from the shelf to the open ocean is given in Section 1.3.
Finally, in Section 1.4, the structure and objectives of the thesis are presented,
providing an overview of what will be covered in the subsequent chapters.

1.1 Global carbon cycle

Carbon plays a central role in Earth’s life and climate systems. It serves as the
fundamental building block of a wide range of organic compounds, making up
about 50% of the dry weight of living organisms, and it acts as an energy driver
participating in both the process of photosynthesis and cellular respiration. Its
role in climate regulation is fundamental, as it forms two of the most important
greenhouse gases, carbon dioxide (CO2) and methane (CH4). Carbon is one of
the most plentiful elements on Earth, and it is constantly exchanged between the
different components of the Earth System in what is known as the global carbon
cycle.
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Chapter 1. Introduction

Figure 1.1: Diagram of components and interactions in the contemporary global
cycle. Figure from sixth IPCC assessment report [1].

1.1.1 Components of global carbon cycle: sources and sinks

The global carbon cycle is a complex system characterized by interconnected reser-
voirs of CO2 within the Earth system that interact exchanging fluxes of materi-
als, heat, momentum and water. The four primary reservoirs in the cycle are
solid Earth, ocean, terrestrial biosphere, and atmosphere, whose interactions are
illustrated in Figure 1.1. Over time, human activities, like fossil fuel combus-
tion, deforestation, and land use changes have emerged as an additional influential
component, directly impacting the balances and feedbacks between the natural
reservoirs.
The fluxes operating within the global carbon cycle exhibit a wide range of time
scales, spanning from short-term to extremely long-term processes. The fifth In-
tergovernmental Panel on Climate Change (IPCC) assessment report [2] identifies
two distinct modes:

1. a fast regime, characterized by significant exchange fluxes (tens of PgC yr−1,
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1.1. Global carbon cycle

Figure 1.2: Time series of anthropogenic global CO2 emissions by fossil fuels com-
bustion (gas, oil, coal) and other sources (flaring, emissions from carbonates during
cement manufacture). Figure from sixth IPCC assessment report [1].

[2]) and rapid turnover times, ranging from a few years to decades and mil-
lennia. This regime encompasses processes involving atmospheric carbon,
oceans, surface ocean sediments, land vegetation, and soil;

2. a slow regime, with weaker fluxes (< 0.3 PgC yr−1, [2]) that operate on
much longer time scales of 10,000 years or more. This mode primarily re-
volves around the interaction between the solid Earth, the largest carbon
reservoir, and the other faster components. It involves processes such as vol-
canic activity, chemical weathering of rocks, erosion, and sediment formation
on the sea floor.

The slow domain is characterized by processes that occur on such lengthy time
scales that they can be considered steady and constant. Similarly, prior to the
Industrial Era, the fast domain was also relatively stable and close to a steady
state. However, with the advent of industrial activities, particularly the extraction
and combustion of fossil fuels from geological reservoirs, a significant amount of
fossil carbon was transferred from the slow domain to the fast domain, causing
an unprecedented, major human-induced perturbation in the carbon cycle (Figure
1.2).
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Chapter 1. Introduction

Figure 1.3: Diagram of components and interactions in the contemporary global
CO2 budget. Yellow arrows represent annual carbon fluxes (in PgC yr−1) associ-
ated with the natural carbon cycle, estimated for the time prior to the industrial
era (around 1750). Pink arrows represent anthropogenic fluxes, averaged between
2010 and 2019. Figure reproduced from sixth IPCC assessment report [1].

The combustion of fossil fuels, as well as extensive deforestation and changes in
land use, impacted on the global carbon cycle resulting in the additional release of
carbon, mainly in the form of CO2, and in the perturbation of the long-estabilished
equilibrium of the natural carbon cycle.
Contemporary global CO2 budget, whose sources, sinks and fluxes are represented
in Figure 1.3, can be expressed by the following equation [1]:

EFOS + ELULUCF = Gatm + Sland + Socean +Bimb (1.1)

where:

• the left-end side represents the human-induced carbon emissions, through
fossil fuels and carbonate emissions (FOS) and land use, land use change and
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1.1. Global carbon cycle

forestry (LULUCF). It is estimated that the total average human-related
carbon emissions in the decade of 2010–2019 were 10.9 ± 0.9 PgC yr−1

(Figure 1.2, Figure 1.3) [1].

• the right-end side represents the natural response to the additional anthro-
pogenic flux: growth rate in the atmosphere (Gatm), land and ocean sinks
(Sland, Socean) and an additional imbalance term accounting for uncertainties
in the estimations (Bimb). Anthropogenic CO2 is differently redistributed in
these three Earth system components: in the 2010-2019 decade, the greater
fraction, 46%, accumulated in the atmosphere (5.4 ± 0.02 PgC yr−1), while
31% was stored by vegetation in terrestrial ecosystems (3.4 ± 0.9 PgC yr−1)
and 23% was taken up by the ocean (2.5 ± 0.6 PgC yr−1) [1].

This additional carbon uptake has significantly disrupted the delicate balance
within each environmental reservoir.
Due to human activities, the concentration of carbon dioxide (CO2) in the atmo-
sphere has risen by 47% compared to pre-industrial levels in 1750. As of April
2023, the atmospheric CO2 concentration stands at 420.54 parts per million [3].
This increase, along with the introduction of other greenhouse gases, is causing the
global average temperature to rise at an unprecedented rate. This rapid warming
is leading to extreme effects on local climates, including more frequent heatwaves,
storms, and desertification.
Starting from the 1980s, the biosphere’s absorption of this additional carbon has
been primarily driven by a fertilization effect resulting from rising atmospheric
CO2 concentrations, and a decrease in global burned areas [1].
Additionally, there is strong confidence in the scientific community that the ocean’s
capacity to absorb and store carbon has increased in response to global anthro-
pogenic CO2 emissions in the last 50 years (Figure 1.4). This absorption of CO2

by the ocean is altering seawater chemistry, resulting in a decrease in pH, a phe-
nomenon known as ocean acidification.
Given the purpose of this work, a more comprehensive overview of the processes
involved in carbon uptake, export, and burial within the ocean will be provided.
These processes are essential for understanding the role of the ocean in mitigating
the effects of rising atmospheric CO2 levels and their impact on the environment.

1.1.2 Air-sea fluxes and ocean carbon pumps

The ocean uptake of carbon involves a two-step process. Initially, carbon dioxide
is exchanged at the air-sea boundary and integrated into the surface mixed layer.
Subsequently, it undergoes vertical transportation into the ocean interior, where
it can be stored for extended periods, ranging from decades to millennia.
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Chapter 1. Introduction

Figure 1.4: Multi-decadal (1960–2019) trends for the ocean sink of CO2, recon-
structed from nine Global Ocean Biogeochemical Models forced with atmospheric
re-analysis products, and observationally based gap-filling products from sparse
observations of surface ocean partial pressure of CO2 (1987-2018). Figure repro-
duced from sixth IPCC assessment report [1].

Carbon dioxide is primarily present in water as dissolved inorganic carbon (DIC),
existing in the form of carbonate (CO3

2−) and bicarbonate (HCO−
3 ) ions, mak-

ing up approximately 37,000 PgC. This represents the largest carbon reservoir
within the ocean. Following DIC, dissolved organic carbon (DOC) and particulate
organic carbon (POC)1 contribute about 700 PgC, supporting marine food webs
and ecosystems, while biomass, which includes marine biota such as phytoplankton
and microorganisms, accounts for around 3 PgC [2].
As anticipated in the previous subsection, the net ocean uptake of anthropogenic
carbon is about 2.5 Pg yr−1 (Figure 1.3, Figure 1.4). The coastal areas occupy
about 10% of the global ocean [5], thus the associated net uptake is 0.25 Pg yr−1.
The exchange of CO2 between the atmosphere and the ocean is governed by the
difference in partial CO2 pressure between air and seawater. In a simple model
of air-sea gas exchange, where the interface is assumed to be composed by two
stagnant interfaces where no turbulent effects are considered, it can be found that
fluxes Φ are directly proportional to the difference in partial pressure between air
(pa) and sea (pw) [6]:

1Dissolved organic matter is defined as that fraction of total organic matter that passes
through a 0.45 µm pore size; conversely, particulate matter refers to the coarser fraction of total
organic matter that is retained by a pore of the same size. [4]
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1.1. Global carbon cycle

Figure 1.5: Net fluxes of CO2 derived from the ensemble of six observation-based
products. Figure reproduced from sixth IPCC assessment report [1].

Φ = −kw · SCO2(pa − pw) (1.2)

where kw is a parameter proportional to molecular diffusivity and thickness of
layers and SCO2 is the solubility of CO2 in seawater. Depending on the sign of
pa− pw, the direction of fluxes changes: if pa > pw, the overall flux is negative and
CO2 moves from the air into the seawater, and vice versa.
Solubility is directly related to the concentration of dissolved CO2 in seawater.
This parameter depends on physical variables such as temperature and salinity:
specifically, increased temperature and salinity lead to a decrease in solubility. It
is estimated that the solubility of colder, polar waters is twice as that of warmer,
equatorial waters [7].
The variability of these physical features of water masses across global regions has
an overall effect on intensity and direction of CO2 fluxes, as shown in Figure 1.5.
The majority of carbon uptake occurs at high latitudes, where the air-sea CO2

fluxes are strongly negative. On the other hand, the equatorial region is charac-
terized by positive fluxes, resulting in a release of carbon dioxide from seawater to
air.
The dissolved CO2 undergoes a series of chemical reactions with seawater, dissoci-
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Chapter 1. Introduction

ating in bicarbonate and carbonate ions, and becoming part of the DIC reservoir.
Although CO2 uptake occurs at the air-sea interface, DIC concentration increases
with depth (Figure 1.6). This gradient is maintained by the so-called ocean car-
bon pumps [8], that are responsible for carbon sequestration from surface layer to
the bottom, and whose role is fundamental in regulating the partition of carbon
between the ocean and the atmosphere. A physical and a biological pump can be
identified, based on the nature of the processes that drive them.
The physical pump (or solubility pump) refers to carbon sequestration and burial
that is driven by the enhanced solubility of deep, cold bottom waters. These waters
form in the polar regions of North Atlantic and Southern Ocean (Figure 1.6, panels
a and b), sink to depth and are meridionally transported to the Equator as part
of the thermohaline circulation, ultimately upwelling in subtropical regions and
outgassing CO2 as their temperature increases. The effectiveness of the solubility
pump relies on the contrast between the large volume of the deep ocean that is
ventilated by cold polar water masses and the relatively smaller volume of the
oceanic thermocline that is ventilated by the wind-driven subtropical circulation
[7]. Figure 1.6 (panel c) shows that the abiotic component of DIC increases from
2000 µmol kg−1 to about 2080 µmol kg−1 in the first 1000 m of depth and it is
estimated that the solubility pump accounts for only about 10% of the observed
vertical gradient of DIC [4, 6].
The remainder contribution to DIC gradient is to be attributed to biological pro-
cesses. As it can be seen from Figure 1.6 (panels d and e), the presence of the
biological pump leads to a deficit of DIC at the surface, and an excess at higher
depths, significantly increasing the vertical concentration of DIC (panel f) of al-
most 200 µmol kg−1 in the first 1000 m of depth.
The biological carbon pump is based on the net ecosystem productivity of the sur-
face ocean, exporting organic carbon into the deep ocean via various mechanisms
to be covered in the next subsection.

1.1.3 Biological carbon pump and carbon export

Marine organisms can be classified by their trophic status, that is their position
in the food chain [6]. The primary distinction in marine ecosystems is between
autothrops, that can create organic matter directly from nutrients (mainly nitro-
gen and phosphorus) using photosynthesis, and heterotrophs, that gain energy and
nutrition only from preexisting organic matter. Autotroph organisms include mi-
croscopic floating marine plants and bacteria, and they are commonly known as
phytoplankton. The heterotroph group refers to small floating animals and bacteria
known as zooplankton.
The biological activity of these organisms increases the total amount of DIC stored
in the ocean of roughly 2,800 PgC, making up about 8% of the total DIC inventory,
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1.1. Global carbon cycle

Figure 1.6: Profiles of dissolved inorganic carbon (DIC) concentrations from out-
puts of a global ocean carbon cycle model (preindustrial values). Panels a and b
show a latitude-depth profile of abiotic DIC (without biological processes taken
into account), in Pacific and Atlantic ocean respectively. Panel c is a meridionally-
averaged vertical profile of DIC, where the red curve represents the vertical profile
for full air-sea partial pressure equilibrium. Panels d, e and f represent the dis-
tribution profiles of DIC concentration derived from effect of biological processes,
obtained by subtracting the abiotic profile from observational data. Figure repro-
duced from DeVries (2022) [7].
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and it is capable to export about 10.2 PgC every year into the ocean’s interior [7].
Two types of subprocesses (or pumps) can be identified in the biological carbon
pump:

• The organic carbon pump, also referred to as the soft-tissue pump, results
from the transformation of DIC into dissolved and particulate organic carbon
through photosynthesis by phytoplankton;

• The carbonate pump (hard-tissue pump) is a process of conversion of DIC
into calcium carbonate (CaCO3) performed by certain species of phytplank-
ton.

The contributions of soft-tissue and hard-tissue pumps to the maintaining of the
vertical DIC gradient are 70% and 20%, respectively [4, 6]. This suggests that the
soft-tissue pump is the dominating factor controlling the distribution of DIC in the
water column, and it has the potential of extracting and exporting larger amounts
of CO2 from the atmosphere compared to hard-tissue and solubility pump.
Figure 1.7 shows the processes that characterize the cycle of carbon fixation and
export to depth in the organic carbon pump. The first step is primary production,
that is the fixation of CO2 and nutrients by phytoplankton in the uppermost layer,
known as euphotic depth (30-150 m), where light can support photosynthesis:

CO2 +H2O+ light −→ CH2O+O2 (1.3)

The majority of this fixation (about 80%) is carried out in the open ocean, while
the remaining amount occurs in the very productive upwelling regions in the east-
ern boundary of oceanic basins [5]. Primary production is able to synthesize both
dissolved and particulate organic carbon: DOC is mostly recycled in the surface
layer by bacteria, and remineralized into dissolved inorganic carbon; conversely,
the produced POC is further processed by microbes, zooplankton and other het-
erotrophs organisms into fecal pellets, that aggregate with dead phytoplankton
and microbes, inorganic material or sand. These aggregates, known as marine
snow, gravitationally sink to depth (process number 1 in Figure 1.7). Marine snow
is the primary fraction of organic matter that escapes remineralization in the up-
per 100 m of the water column, thus being exported [4]. Another type of export
occurs through sinking of fecal pellets produced by diurnal and seasonal vertical
migration of zooplankton (process number 2 in Figure 1.7).
The variability of the velocity field in the ocean can have a contribution in car-
bon export through the physical subduction of dissolved organic matter (process
number 3 in Figure 1.7). Physical subduction processes occur on a wide range of
space and time scales, and are strictly linked to the local dynamics.
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1.1. Global carbon cycle

Figure 1.7: Diagram of the processes of carbon export in the soft-tissue component
of biological carbon pump, with depths and expected time scales of export. Figure
reproduced from Iversen (2022) [4].
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A study in the Eastern Mediterranean basin has proved that the presence of strong
vertical, downward velocities can amplify organic matter fluxes in the water column
at 500 meters, although a direct effect in determining high sedimentation rates at
greater depths cannot be found [9]. This suggests that physical subduction could
be more relevant at climatological scales, and of secondary importance in relatively
fast carbon export.
Lateral advection of biomass from the shelf domain to the open ocean is another
physical mechanism that might be particularly relevant in the yearly budget of
carbon export. Primary production, that is more intense in shallower ocean re-
gions, produces pellets and marine snow that can sink to greater depths when
transported to the open ocean, enhancing the vertical fluxes of matter. It is es-
timated that this type of transport from the shallow shelf could contribute up to
80% of the open ocean carbon export off the coast of Cape Blanc, Mauritania [4].
Cross-shelf currents and their associated transport of tracers can develop through
many mechanisms. This work focuses on a particular type of circulation that is
generated by mesoscale and submesoscale instabilities. The physical framework of
this type of dynamics is presented in the next subsection.

1.2 Mesoscale and submesoscale dynamics

Figure 1.8 shows the complex dynamics of the ocean, characterized by structures
and currents that evolve in a very large range of spatial and temporal scales.
A mathematical description of the motion of water masses can be derived from
the principles of momentum, energy and mass conservation for a viscous, gravity-
forced fluid that flows in a rotating reference system: the result is a set non-linear
partial differential equations, whose solution cannot be analytical in most cases
and requires numerical treatment [10, 11].
These equations can be simplified through a spatial and temporal scale analysis
that allows the separation of the motion in different dynamical regimes, through
the definition of the Rossby number:

ϵ =
U

Lf0
(1.4)

where U represents the order of magnitude of horizontal velocity field, L is the
horizontal scale of the phenomenon and f0 = 2Ω cosφ is the Coriolis parameter,
dependent on Earth’s rotation velocity Ω = 7.29 · 10−5 s−1 and latitude φ. At
mid latitudes, f0 ∼ 10−4 s−1. The Rossby number expresses the ratio between
the effect of local processes and the planetary effect induced by Earth’s rotation.
A high Rossby number describes dynamical systems where planetary rotation is
not relevant and local effects are more important in the momentum balance. Con-
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1.2. Mesoscale and submesoscale dynamics

Figure 1.8: Gulf Stream sea surface currents and temperatures generated from the
output of a model. The main branch of the Gulf stream is clearly visible throughout
the whole image, and its meandering generates eddies (roughly-circular structures)
and other, lower-scale structures. Figure reproduced from [12, 13].

versely, small values of ϵ characterize scales where planetary effects drive the fluid
motion. The overall ocean dynamics results from a combination of small-scale and
large-scale processes, that can be grouped in four main regimes [11]:

1. The large-scale circulation (ϵ << 1) acts on spatial scales of the order of
thousands of kilometers, that is the extention of ocean basins, and time scales
greater than one year. Large-scale processes include the surface wind-driven
circulation, that form subtropical and subpolar gyres, and the thermohaline
circulation, that acts on climatological scales.

2. Mesoscale circulation (ϵ < 1) occurs at scales of the order of 10 to 100
kilometers and time scales of months. This type of dynamics is primarily
governed by the geostrophic balance between two fundamental forces: the
Coriolis effect and the horizontal pressure gradient. Within this category of
circulation, there are oceanic eddies that hold significant importance in the
transport of heat and various tracers within the ocean.

3. Submesoscale processes (ϵ > 1) occur at typical horizontal scales of 1 to 10
kilometers and time scales of the order of days, representing an intermediate
regime of transition from large-scale, purely horizontal processes towards
isotropic turbulence. In this regime, the effect of vertical processes assumes
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Chapter 1. Introduction

importance in the momentum equation, weakening the geostrophic balance
and introducing non-linear instabilities.

4. Microscales (ϵ >> 1) are associated with extremely small length scales, typ-
ically less than 1 kilometer down to millimeters, and very short time scales
on the order of days to seconds. In this regime, energy is dissipated through
friction, ultimately transforming into heat.

These processes effectively interact through momentum and energy exchanges,
that result in an energetic cascade from the planetary, wind-forced scale to the
microscale, where dissipation occurs through friction.
As anticipated in Subsection 1.1.2, large-scale circulation drives the solubility
pump through the sinking of cold, carbon-rich polar water masses and their trans-
port towards equatorial latitudes. Mesoscale and submesoscale processes have an
influence on local biomass transport, affecting the ecosystem productivity and the
effectiveness of the biological carbon pump.

1.2.1 Eddies and filaments

Mesoscale dynamics emerges at large scales where planetary rotation dominates
the motion of water masses. One of the most used mathematical models to study
medium to large-scale ocean dynamics is the shallow water system in small ampli-
tude approximation for a homogeneous fluid, where neither viscous nor turbulent
effects are considered [10]:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ fv = −g

∂η

∂x
; (1.5)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− fu = −g

∂η

∂y
; (1.6)

∂η

∂t
+∇ · (Hu⃗) = 0 (1.7)

where u and v represent the two components of horizontal velocity field u⃗, η is the
free-surface deviation from a flat reference surface H (η << H), f is the Coriolis
parameter and g is the gravitational acceleration (g = 9.81 m s−2). As previously
seen, large-scale motion is characterized by a small value of the Rossby number,
therefore a perturbative approach can be used to expand u, v and η in a series of
components that are multiplied by increasing powers of ϵ:

u = u0 + ϵu1 + ϵ2u2 + ...
v = v0 + ϵv1 + ϵ2v2 + ...
η = η0 + ϵη1 + ϵ2η2 + ...

(1.8)
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1.2. Mesoscale and submesoscale dynamics

Figure 1.9: Diagram of eddy sense of rotation depending on the hemisphere. Figure
reproduced from Pinardi (2022) [10].

The Coriolis parameter can be expanded by admitting small variations of latitude
y in the flow, and the result is:

f = f0 + βy (1.9)

where β = 2Ω cosφ0/R, with R as the Earth radius and φ0 as a fixed latitude.
This allows to obtain a new series of equations, each one describing a specific
dynamical mode associated to a certain power of ϵ. The zero-order equations sim-
plify to the geostrophic balance between Coriolis and horizontal pressure gradient
forces: {

f0vg = g ∂η
∂x

f0ug = −g ∂η
∂y

. (1.10)

The geostrophic velocity field (ug, vg) obtained from Equation 1.10 depends on the
gradient of sea level and its direction is perpendicular to the isolines of free surface
η. This balance is only diagnostic, as it does not have explicit time dependence.
Given a static η field, it is possible to derive the corresponding instantaneous
geostrophic currents, but not the evolution of the fields over time.
The first-order mode obtained from the expansion of shallow water equations re-
sults in the quasi-geostrophic equations:

∂u0

∂t
+ u0

∂u0

∂x
+ v0

∂u0

∂y
− βyv0 − v1 = −∂η1

∂x
(1.11)

∂v0
∂t

+ u0
∂v0
∂x

+ v0
∂v0
∂y

+ βyu0 + u1 = −∂η1
∂y

(1.12)
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These two momentum equations can be combined in a single conservation equation:[
∂

∂t
+ u⃗0 · ∇

]
(ζz − Fη0 + βy)︸ ︷︷ ︸

Π

= 0 (1.13)

where the conserved quantity, Π, is called quasi-geostrophic potential vorticity. Π
it is the sum of three terms: the vertical relative vorticity of the flow field ζz, a term
associated to water column stretching Fη0, and the planetary vorticity induced by
Earth’s rotation βy.
Equation 1.13 is a prognostic equation, as it explicitly contains the dependence
on time, and it can be used to predict mesoscale features such as Rossby waves.
Perturbations greater than first order will generate further time-dependent imbal-
ances in the geostrophic field, that can result in local minima or maxima in the
free surface field. Following the geostrophic balance described in Equation 1.10,
currents will flow in a roughly circular motion around these centers, generating
an eddy. The sense of rotation depends on the sign of f0, which changes with the
chosen Earth hemisphere (Figure 1.9).
Submesoscale currents (SMCs) are intermediate-scale flow structures in the form
of density fronts and filaments, generated from mesoscale instabilities. These pat-
terns are typically visible in satellite images of sea surface temperature or tracers
concentration and characterized by linear sharp edges or horizontally elongated
features. Being associated with strong, ageostrophic currents, their essential dy-
namics is advective, hence it includes nonlinear terms that make it difficult to
treat theoretically. However, because of their abundance in the ocean (as visible
in Figure 1.8), their role in energy transfer and transport of tracers is of great
importance.
McWilliams (2016) [14] summarizes several mechanisms of generation of SMCs:

a. Mixed-layer instability : the mixed layer is the uppermost ocean layer, charac-
terized by nearly uniform temperature and density due to turbulent mixing. Its
depth can vary from tens of meters up to 500 m, depending on geographical
position and seasonality. Baroclinic instability can generate density gradients
on spatial scales that can be estimated from the baroclinic deformation radius
ℓs:

ℓs ∼
Nshb

f
(1.14)

where Ns is the Brunt-Väisälä frequency, associated to the stability of the den-
sity stratification, hb is the surface layer thickness and f is the Coriolis param-
eter. With typical values of mixed layer, Ns ∼ 10−3 s−1, hb ∼ 102 m and f
∼ 10−4 s−1, a deformation radius of ∼ 1 km is obtained, accordingly to the
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1.2. Mesoscale and submesoscale dynamics

Figure 1.10: Schemes of surface-layer frontogenesis generated by a large-scale flow
deformation for a front (panel a) and a dense filament (b). Secondary overturning
circulations in the xz plane are highlighted. Figure reproduced from McWilliams
(2016) [14].

typical scales of SMCs. This local perturbation of density field in the mixed
layer, that can be induced by sea surface temperature gradients, generates a
secondary ageostrophic circulation whose intensity is considerably greater than
the surrounding geostrophically-balanced field.

b. Strain-induced frontogenesis : frontogenesis is a classical dynamical process in
meteorology, generating horizontal buoyancy gradients that intensify in pres-
ence of a favourable background strain mechanism. Frontogenesis occurs also
in the ocean, where the primary background strain is from mesoscale currents
and eddies. Figure 1.10 shows the processes of frontogenesis for a buoyancy
front (panel a) and a dense filament at the surface (panel b). Both these two
configurations generate an ageostrophic circulation in the cross-front and verti-
cal plane (u, w). In the case of a buoyancy front, this secondary circulation is
an overturning cell with the upwelling of light water and downwelling of dense
water. Conversely, the dense filament presents two secondary circulation cells
that converge in a central, downwelling branch. This type of dynamics con-
centrates tracers in thin, elongated structures that can propagate for several
hundreds of kilometers. Analogous frontogenesis can occur in the case of light-
water filaments: however, a crucial distinction arises due to the presence of a
surface divergence line, making this variant of filaments inherently weaker and
seemingly less prevalent in natural occurrences. The combination of mixed-
layer instability and frontogenesis explains the generation of SMCs, the former
generating the horizontal buoyancy gradient and the latter characterizing the
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advective evolution of these structures.

c. Turbulent thermal wind : both mixed-layer instability and frontogenesis require
the the assumption of a conservative flow, which is a rough approximaton for
the oceanic surface layer that is subjected to strong turbulence induced by
wind stress. The previous frameworks can be integrated with the assumption
of turbulent flow by introducing an approximate linear momentum balance
called turbulent thermal wind. This theory is a composite generalization of
geostrophic, hydrostatic, conservative balance and an Ekman boundary-layer
balance that accounts for the effect of wind stress. Its solution shows the same
overturning-cell structure described in strain-induced frontogenesis for both the
front and dense filament cases.

d. Topographic wakes : it is well known that the presence of slopes and topographic
variations of ocean bottom have an impact on the vorticity balance of the flow,
generating secondary effects such as shear instabilities and mixing.

These mechanisms of generation of SMCs rely on the deformation of a background,
mesoscale flow, that shows significant variations in size and amplitude depending
on the geographic region and seasonality. While the global variability of mesoscale
eddies has been well investigated with both models and observations, at the mo-
ment there is no comparable global measurement system for SMCs, as they arise
only from regional-scale simulations that require very fine grid resolutions.
Between the SMCs, cold-water filaments take on particular significance. Theo-
retical research has shown that these structures are linked to a more pronounced
intensification of the ageostrophic circulation when compared to their warm coun-
terparts [15]. An illustration of the process of cold filament formation is depicted
in Figure 1.11. In this example, the filament is created through the straining
of two warm-core anticyclonic eddies. These warm-core eddies generate a sec-
ondary ageostrophic circulation that results in the convergence of cold waters
from the south. This convergence occurs within an extremely narrow structure
and is accompanied by a relatively high surface velocity anomaly directed north-
ward. Consequently, this process is associated with the transport and injection
of cold waters into the warmer ocean domain. These structures, often referred
to as streamers, typically originate at the boundary between the shelf and open
ocean. They play an important role in oceanic biogeochemistry by significantly
influencing the transport of various tracers, including nutrients, phytoplankton,
and zooplankton larvae.
In the upcoming section, the biogeochemical aspect of this process of transport of
biomass from the continental shelf to the open ocean will be further investigated.
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1.2. Mesoscale and submesoscale dynamics

Figure 1.11: Generation and evolution of a cold-water filament. The figure dis-
plays the sea surface temperature (in colors), the surface relative vorticity (black
contours) and the anomaly of surface horizontal velocity field (arrows). Figure
reproduced from Gula et al. (2014) [16].
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Figure 1.12: Upwelling near the coast of California seen in satellite images of sea
surface temperature (left panel, August 14, 2000) and chlorophyll-a concentration
(right panel, August 16, 2000). Coastal waters expand towards the open ocean
through filaments and submesoscale structures. Figure reproduced from Ryan et
al (2005) [17].

1.3 Lateral export or recycling?

Although the majority of atmospheric carbon fixation by primary production oc-
curs in the open ocean, coastal regions are characterized by much higher productiv-
ity that results in enhanced chlorophyll concentrations near land, as clearly visible
in satellite images (Figure 1.12, right panel). This increased productivity is due to
a combination of several processes related to the shallowness of the water column
[18]. Upwelling is an additional mechanism that characterizes the most productive
oceanic regions, causing the cold, nutrient-rich deep waters to move towards the
surface, enhancing productivity.
Coastal waters are typically separated from the warmer, nutrient-depleted sur-
roundings by a front that exhibits baroclinic instability. This instability leads
to the formation of mesoscale and submesoscale structures, including streamers,
which propagate towards the open ocean. As discussed in earlier sections, these
cold filaments create a secondary overturning circulation that has the ability to
concentrate tracers, such as phytoplankton, within submesoscale-wide channels
and transport them laterally over distances of several hundreds of kilometers.
Streamers exhibit distinctive characteristics in satellite images, transporting cold
and chlorophyll-rich coastal waters into open ocean regions in thin, elongated
shapes, as clearly visible in Figure 1.12.
This mechanism of transport of biological material from the coastal region towards
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the open ocean could be important in the ocean carbon cycle, as the marine snow
and pellets that are ejected by primary production can sink to greater depths
in these regions. The first hypothesis that a fraction of primary production is ex-
ported from the continental shelf to the deep ocean basins was formulated by Walsh
et al. (1981) [19]. This paper estimated that the carbon sink flux due to these
advection processes could account for about 1.5 PgC yr−1 in a global, annually
balanced carbon budget for food chains in continental shelves. Several experiments
have been carried out to confirm this hypothesis. Malone et al. (1983) [20] verified
the association between an increase in biomass export and intense lateral currents
induced by wind events in the New York Bight. However, a following research by
Falkowski et al. (1988) [21] in the same region during the spring of 1984 found
that the export of shelf-derived production to the deep ocean was small.
The contribution of streamers to this lateral export has been also investigated in
the productive Eastern Boundary upwelling regions. A simulation experiment in
the Cape Blanc region has been conducted by Lovecchio et al. (2018) [22], showing
that 80% of the total flux of organic carbon at 100 km offshore is transported by
upwelling filaments, and that their contribution can extend up to 1000 km offshore.
The role of filamentary-induced biomass transport in global carbon export is still
uncertain, due to the difficulties in modelling submesoscale currents, and it has
been assessed only in regional frameworks. High-resolution satellite observations
provide global and continuous time coverage of the state of the ocean and do not
rely on mathematical approximations required by simulations. However, a system-
atic monitoring of these structures is still a challenge due to their complex features
and shapes, and many studies on submesoscale currents require first human iden-
tification.

1.4 Thesis objectives

The aim of this work is the estimation of the contribution of streamers to the lateral
transport of biomass from the shelf domain to the open ocean. Only observational
data are employed, consisting of satellite products of sea surface temperature and
ocean color.
The work is structured as follows:

1. an image analysis method has been developed for various off-shelf areas in
the world’s oceans, including Mauritania, California, and the South China
Sea. This method is based on the K-means clustering of satellite-derived
data products of chlorophyll-a concentration and sea surface temperature.
This algorithm is capable to detect and classify different dynamical regimes,
including streamers.
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2. an estimation of the chlorophyll content of these filamentary regions is pro-
vided, and its evolution over time is analysed;

3. an estimation of the lateral export of carbon from the coastal areas through
this mechanism is given.

The datasets are described in Chapter 2, where an introduction on remote sens-
ing data collection and processing is given. The employed unsupervised learning
framework and statistical methods are presented in Chapter 3. The results are
shown in Chapter 4, and conclusions are summarized in Chapter 5.
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Chapter 2

Satellite data

As anticipated in Chapter 1, the goal of this work is understanding the contribution
of streamers to lateral biomass transport from the shelf break to the open ocean, by
using only observational data from satellite remote sensing products. This chapter
gives a general overview of these datasets. Section 2.1 presents the basis of remote
sensing and its applications. The employed sea surface temperature product is
presented in Section 2.2. The processing of ocean colour satellite data, including
chlorophyll and an estimation of the euphotic depth, is described in Section 2.3.
Finally, the sea bottom topography product is described in Section 2.4.

2.1 Introduction to remote sensing

Modern Earth observing sensors are installed on satellites that are placed in several
types of orbits around the Earth, and provide a global, continuous monitoring
of the Earth system components. Remote sensing of the ocean is particularly
important in the field of climate sciences, as it can provide data for understanding
and monitoring various aspects of the marine environment and ocean circulation.
This technology allows to access and observe areas that are otherwise difficult or
impossible to reach due to their remote or hazardous nature, such as open ocean
regions and polar seas. [23]
Earth observing sensors use the electromagnetic radiation to sense the environ-
ment. Radiation propagates in the atmosphere and in the vacuum of space in the
form of waves. Each wave, identified by a certain wavelength, carries a certain
amount of energy that characterizes a spectrum. The shape of energy spectra
varies depending on many factors, such as the composition of the source of radia-
tion, and the processes that electromagnetic waves undergo when propagating in
a medium. [23]
Radiation undergoes absorption and scattering as it propagates through the atmo-
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Chapter 2. Satellite data

Figure 2.1: Diagram of atmospheric opacity as a function of wavelength. The
typical bands employed by different remote sensing instruments are highlighted.
Figure reproduced from SEA ICE Portal website [24].

sphere. It is then reflected back by the Earth’s surface and captured by sensors.
The final spectrum of this radiation is shaped by various factors, including the
concentration and type of atmospheric components and the properties of the sur-
face being sensed. Figure 2.1 shows the atmospheric opacity to electromagnetic
radiation: as it can be seen, the atmosphere is transparent to electromagnetic
radiation only in certain ranges of wavelengths, limiting the unperturbed observa-
tion of the Earth’s surface to these windows [23]. Sensors are usually designed to
detect radiation in specific ranges of wavelengths, called bands, that identify and
characterize different physical or biological properties of water masses.
Sensors can be grouped into two families [23]:

• passive sensors only gather radiation that is emitted or reflected by the cov-
ered area;

• active sensors emit a signal and measure the reflected or backscattered radi-
ation from the target.

Ocean satellite data products are derived from both passive and active sensors,
depending on the feature of interest. Raw data obtained from sensors consist of
radiance measurements Iλ(Ω, t), that is the energy carried by an electromagnetic
wave of wavelength λ in a solid angle Ω at time t, per unit of time and surface. In
order to obtain the final geographically mapped and interpretable product, these
measurements must undergo atmospheric correction and several other processing
steps. Satellite product levels span from 0 to 4 [25]:
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• Level 0 products represent the raw data at full instrument resolution, with
any and all communications artifacts or duplicate data removed;

• Level 1 data are processed to sensor units, time-referenced and annotated
with ancillary information including georeferencing parameters;

• Level 2 data are processed to derive the geophysical variable at the same
resolution and location annotated in Level 1 data;

• Level 3 data are statistically interpolated on regular space-time grids, also
combining data from different sensors, and validated for quality assurance;

• Level 4 data are similar to Level 3 data, but in this case, statistical extrap-
olation or modeling is also used to fill data gaps.

In the next sections, the characteristics of the employed remote sensing data
are explored. These datasets include sea surface temperature, ocean color, and
bathymetry.

2.2 Sea surface temperature

Sea surface temperature (SST) is the water temperature of the uppermost layer
of the ocean. It is a very important parameter for understanding and monitor-
ing various oceanic processes, including climate patterns, marine ecosystems, and
ocean circulation. On local scales, SST is used operationally to identify eddies,
fronts and upwelling regions.
This work employs the daytime sea surface skin SST Level 3 data product derived
from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument
mounted on NASA’s Aqua (EOS PM) satellite, launched in 2002. MODIS is a
passive sensor collecting data across 36 spectral bands spanning the visible and
infrared range (0.4-14.4 µm), providing information on the atmospheric column
and the surface of the ocean [26]. This product is made available by the NASA
Ocean Colour Web on a daily basis, mapped on an uniform grid with a 4 kilometers
resolution [27].
Planck’s law expresses the spectral radiance emitted by a black body as a function
of temperature and wavelength [28]:

Iλ =
2hc2

λ5

1

ehc/λkbT − 1
(2.1)

where h is Planck constant, c is the speed of light in vacuum, and kB is Boltz-
mann constant. By inverting this equation, it is possible to derive a brightness
temperature Tλ:
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Band number Band center [µm] Bandwidth [µm]

20 3.750 0.1800
22 3.959 0.0594
23 4.050 0.0608
31 11.030 0.5000
32 12.020 0.5000

Table 2.1: Bands for MODIS infrared SST determination. The bands used for the
computation of the used SST product in this work are highlighted.

Tλ =
hc

kbλ
ln−1

(
1 +

2hc2

Iλλ5

)
(2.2)

SST is derived from MODIS measurements within specific bands in the mid-far
infrared range (3-14 µm), as outlined in Table 2.1, utilizing a dual-window tech-
nique that makes the correction of atmospheric absorption and scattering straight-
forward. This method combines brightness temperatures derived from radiance
measurements within these bands, and distinct algorithms have been developed
depending on the specific combination employed. In this study, the SST product
derived from the thermal infrared window (11-12 µm) has been used [26, 27, 29]:

SST = c0 + c1 · T31 + c2 · (T32 − T31) · Tref

+ c3 sec (θ − 1)(T32 − T31) + corrections(θ)
(2.3)

where T31 and T32 represent the brightness temperatures computed from radiance
measurements in band 31 and 32, respectively. Tref denotes a reference SST, ci
are empirical coefficients derived and continuously verified based on match-ups
between the satellite brightness temperatures and field measurements, and θ is
the sensor zenith angle.

2.3 Ocean color

The color of the ocean, while typically appearing blue, can exhibit variations, rang-
ing from blue to green or even yellow in certain circumstances. These variations
are primarily influenced by factors such as dissolved organic matter, living phyto-
plankton containing chlorophyll pigments, and non-living particles like degraded
phytoplankton, other plant material, marine snow and mineral sediments.
The study of ocean color is essential for understanding the composition of sus-
pended materials in the water column. It serves various purposes, including exam-
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Figure 2.2: Visible range bands employed by different ocean color remote sensors.
Figure reproduced from Mobley (2022) [28].

ining carbon fixation and cycling, monitoring ecosystem changes resulting from cli-
mate shifts, assessing the health of coral reefs, and detecting harmful algal blooms
and pollution events [28].
Ocean color remote sensing instruments typically use bands within the visible
wavelength range, spanning from 400 to 800 nm, as shown in Figure 2.2. These
sensors passively collect sunlight reflected by water bodies and measure its energy
spectrum in this wavelength range.
Radiative transfer equations have been developed to link the collected radiances
to the biogeochemical properties of water masses. These equations include various
terms that account for different scattering and absorption processes, which are
defined by the inherent optical properties (IOPs) of the water. The types and
concentrations of substances in the water modify these IOPs, affecting the spectral
characteristics of the collected radiation.
The relationship between the measured radiances and the biogeochemical proper-
ties of seawater is based on solving an inverse problem. Given a measured spectrum
and information on the boundaries, the IOPs of the water body from which the
radiance originates can be determined, and its biogeochemical properties subse-
quently. The solution of this inverse problem is extremely complex, and it presents
several limits related to the uniqueness of the solution and its sensitivity to mea-
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surement errors, numerical modelling and approximations [28].
IOPs are generally derived from another type of optical properties known as ap-
parent optical properties (AOPs) that represent the quantities typically observed
by remote sensing instruments. AOPs are dependent on the inherent properties
of water bodies (i.e. the IOPs), but also on external agents such as the angle of
observation or sky conditions. Two important AOPs are [28]:

• the remote sensing reflectance Rrs(λ) parameter, that is the spectral radiance
upwelling from beneath the ocean surface, normalized by the downwelling
solar irradiance, and measured at each band wavelength of the sensor;

• the diffuse attenuation coefficient for downwelling irradiance Kd(λ), typically
measured at the 490 nm wavelength band, representing the rate at which the
downwelling solar irradiance decreases with depth in a water column due to
scattering and absorption processes.

The generation of a long time series of ocean color measurements for climate
studies, or simply for monitoring limited regions, is not straightforward, as the
quality of this type of data is affected by several factors. First of all, cloud cover
creates a serious limitation to the availability of ocean color data, since clouds
strongly reflect light in the visible range. Furthermore, satellite missions have
a finite duration, and the spectral characteristics of sensors evolve in successive
developments, with implications for consistency in data [30]. Multiple datasets
derived from different sensors are combined to improve the quality of ocean color
datasets, as explained below.

2.3.1 Satellite chlorophyll-a

Chlorophyll-a (Chl-a) is the primary pigment found in all plants, including phy-
toplankton. Unlike other pigments that serve either photoprotective or light-
harvesting functions, Chl-a plays a central role in the conversion of sunlight into
chemical energy through photosynthesis, ultimately leading to the production of
carbon compounds. The concentration of Chl-a in aquatic environments serves as
an indicator of primary production intensity. This molecule exhibits a distinctive
absorption spectrum with characteristic absorption lines in the violet, blue, and
red wavelengths.
The Chl-a concentration dataset used in this study is a multi-sensor Level 3 prod-
uct distributed by the Ocean Colour Climate Change Initiative (OC-CCI) project
of ESA, with daily time resolution and uniform space resolution of 4 kilometers,
made available by the Copernicus Marine Service (CMEMS) platform [30, 31].
This product is derived from measurements of Rrs(λ) of several sensors, including
MODIS, spanning different time period ranges, as shown in Figure 2.3. Differ-
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Figure 2.3: Flowchart of multi-sensor OC-CCI satellite product processing. Figure
reproduced from Sathyendranath et al. (2019) [30]

ent sensors measure radiances in different bands, which is an obstacle for inter-
comparison and merging. A band-shifting scheme is employed in order to map all
the Rrs values to the same set of wavelengths, and the datasets produced in each
mission i are corrected for a multi-annual bias of the average Rrs values, < Rrs >,
defined as:

δrefi (λ, b) =
< Ri

rs(λ, b)

< Rref
rs (λ, b) >

(2.4)

for each wavelength λ and region b. The reference spectral reflectance Rref
rs , em-

ployed also for the wavelengths mapping, is the one from the SeaWiFS mission.
The final corrected product has the form:

R
′i
rs(λ, b) =

Ri
rs(λ, b)

δrefi (λ, b)
(2.5)

The merged product is then obtained by averaging the available data for a given
pixel [30].
Chl-a concentration is then derived from a fourth-order polynomial relationship
of the ratio of Rrs measured in different bands [30, 32, 33]:
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log10(Chla) = c0 +
4∑

i=1

ci

[
log10

(
Rrs(λblue)

Rrs(λgreen)

)]i
(2.6)

where the numerator, Rrs(λblue) is the greatest remote sensing reflectance com-
puted between 443, 489 and 510 nm, and Rrs(λgreen) is computed at 555 nm [34].
The coefficients ci are empirically estimated by fitting Equation 2.6 to in-situ
measurements. The usage of different in-situ dataset impacts the value of the co-
efficients, identifying multiple algorithms. The best algorithm is chosen based on
a classification of water types through clustering and subsequent weighted error
estimation [30, 35].

2.3.2 Satellite euphotic depth

The euphotic zone refers to the uppermost layer of the water column where there is
sufficient sunlight for phytoplankton to carry out photosynthesis at a rate greater
than the rate of respiration. The depth and extent of the euphotic zone can vary
significantly and depend on factors such as the amount of light attenuation in the
water column, which is influenced by its turbidity and other optical properties.
In this study, the euphotic depth is directly derived from the diffuse attenuation
coefficient for downwelling irradiance Kd(λ) measured at 490 nm, from the multi-
sensor Level 3 CMEMS GlobColour product [36]. The main difference of this
merged product with the previously-introduced OC-CCI is that CMEMS Glob-
Colour Chl-a concentration is computed for each sensor using its specific char-
acteristics, and subsequently resampled and merged [37]. Kd(490 nm) is directly
derived from Chl-a concentration by the following relation:

Kd(490 nm) = A+B · (Chl a)C (2.7)

where the coefficients A, B, and C are obtained by regression analysis [38, 39].
An estimation of the thickness of the euphotic zone is then given by an empirical
relationship with Kd(490 nm) [40]:

∆Z =
4.6

Kd(490 nm)
(2.8)

2.4 Sea bottom topography

The average depth of the oceans is about 4 kilometers, but it is highly variable and
can range from shallow coastal areas to extreme depths in ocean trenches. This
variability is due to numerous geological processes of different time scales.

30



2.4. Sea bottom topography

Bathymetry is the science that studies underwater depths, particularly the mea-
surement and characterization of the ocean floor. A comprehensive mapping of
the global seabed is a challenge, since most of the oceanic regions, especially the
deepest ones, remain unexplored. Remote sensing emerges as a very important
tool in this field, allowing to gather data from these largely inaccessible areas.
The topography of the seabed strongly influences marine ecosystems and oceanic
circulation patterns. A comprehensive global mapping of the seafloor can help
distinguishing different oceanic domains, and understanding where the carbon can
be efficiently exported and buried to depth.
In this study, the General Bathymetric Chart of the Oceans 2022 (GEBCO)
product is employed to distinguish open ocean and continental shelf regions [41].
GEBCO is created from a combination of several data gathered through ship-based
surveying and airborn and satellite altimetry.
Ship-based surveys is the primary source of high-resolution bathymetric data: re-
search vessels equipped with specialized sonar systems and echo sounders traverse
the world’s oceans, emitting sound waves that bounce off the seafloor and return
depth measurements. This type of measurements, however, covers only specific
regions, and it is expensive and slow [42]. Satellite measurements involve the use
of on-board radar altimeters, active sensors that emit microwave pulses in the
radar frequency domain (λ ∼ 1 m) and collect the reflected radiation, measuring
the round travel time of the signal. Variations in gravity anomalies can be highly
correlated with seafloor topography. Satellite altimetry provides global coverage
at a fraction of costs and time required by ship-based surveying, but it lacks of
spatial resolution [42].
The combination of this two types of data can provide a global, high-resolution
product. GEBCO 2022 product is provided with 15 arcseconds resolution, corre-
sponding to about 450 meters at the Equator.
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Methods

Chapter 2 described the characteristics and acquisition methods of the employed
satellite products of sea surface temperature, ocean color and sea bottom topogra-
phy. This chapter presents the unsupervised learning framework with which these
images are analysed. Section 3.1 introduces the concepts of machine learning and
its applications in oceanography, with a focus on unsupervised clustering tasks
and K-means. Section 3.2 gives an overview of the literature on image analysis
techniques for the detection of upwelling regions and filaments, and it presents the
employed clustering technique. Section 3.3 presents how the biomass and carbon
contents of given clusters are computed from satellite ocean color data.

3.1 Introduction to Machine Learning

Machine learning represents a broad field of algorithms that automatically detect
patterns (thus learn) from a great number of observations, and then use these
patterns to make predictions on unseen data. Three types of machine learning can
be identified [43]:

• Supervised learning tries to approximate a complex, unknown mapping f
from inputs x to outputs y with a function f̃θ(xi), dependent on a set of pa-
rameters θ, given a previously-labelled training set D = {(xi, yi)}Ni=1. Super-
vised learning methods include classification and regression tasks, depending
on the categorical or real-valued nature of the label y.

• Unsupervised learning is used to discover patterns in unlabelled data that
contain only inputs, D = {xi}Ni=1. More specifically, the learned function
f̃θ(xi) is an approximation of the function f(xi) that generated the data.
Common unsupervised learning tasks include dimensionality reduction, gen-
erative modeling and clustering.
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• Reinforcement learning, less commonly used, is a class of algorithms that
learn how to act or behave when given occasional rewards or punishment
signals.

Every machine learning algorithm deals with an optimization problem. The set
of parameters θ that defines the approximation function f̃θ(xi) is determined by
minimizing an objective function L. The nature of this objective function varies
according to the specific task: in supervised learning, it quantifies the discrepancy
between predictions and the original labels, denoted as L(y, {x, θ}); in unsuper-
vised learning tasks, this objective function L({x, θ}) describes the similarity with
the original data (for generative modeling and dimensionality reduction) or mea-
sures the coherence of clusters (for clustering tasks). Loss functions are generally
dependent on many parameters and can have very complex shapes, making the
determination of the global minimum a significant challenge.
Due to the substantial amount of geophysical data continuously provided by model
outputs, reanalysis, and satellite products, machine learning frameworks are be-
ing investigated in Earth System science across various fields. In ocean and at-
mospheric modeling, supervised learning is employed for the parameterization of
subgrid processes. This allows for a faster and more accurate inclusion of turbu-
lent processes, often necessitating strong approximations to manage computational
intensity.
Machine learning is also widely applied in remote sensing, both in preprocessing
steps to enhance consistency with in situ data and operationally for monitoring
and analyzing the evolution of ocean regions. The training of artificial neural
networks on geometrical contour-based models for detecting and classifying eddies
from sea surface height satellite data has shown promising results, significantly
reducing computation and resource time [44].
In line with the objectives of this work, a similar approach could be considered
for the detection and classification of submesoscale filaments. However, the intri-
cate dynamics and variability in their shapes present a challenge for developing
a systematic detection framework based on traditional geometry-based methods.
Without access to ground truth labeled data, the use of supervised learning be-
comes impractical. The potential of unsupervised learning in this task hinges on
the ability to discover patterns in the data without the need for labels.

3.1.1 Unsupervised learning and K-means clustering

Unsupervised learning is broadly used in data analysis to characterize the distri-
bution of datasets and discovering structures in data without needing pre-existing
labels. This makes unsupervised learning more widely applicable than supervised
learning, since it does not require a human expert to manually label the data;
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however, this type of problem is more difficult and subtle as it is not well-defined
and there is no background truth that can be used to verify the performances of
the method [43, 45].
Clustering is a field of unsupervised learning tasks that characterizes algorithms
that group unlabeled data into clusters according to their similarity or distance
measure. Different clustering types are defined, based on the distribution of clus-
ters, the geometry of the data, the cluster size distribution, the dimensionality of
data, and their computational efficiency [46]:

• Partitional methods, such as K-means [47], relocate data points by moving
them from one cluster to another, given an initial starting point. These meth-
ods require the definition of an initial number of clusters, whose distribution
is optimized by minimizing a distance-based loss.

• Hierarchical methods [48] construct clusters by recursively partitioning data
points. Agglomerative hierarchical clustering organizes points in a bottom-up
fashion, where each object represents a cluster of its own and then clusters
are successively merged. The opposite approach is adopted by divisive hi-
erarchical clustering, where clusters are obtained by recursively splitting a
first single cluster of all objects.

• Density-based methods assume that the points that belong to each cluster
are drawn from a specific probability distribution, thus allowing to construct
clusters of arbitrary shape and dimension. Furthermore, this type of ap-
proach does not require specifying a number of clusters for partitioning.
The most famous clustering algorithm belonging to this family is DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) [49], which
finds clusters by searching the neighborhood of each data point in a pre-
specified radius and checking if it contains more than a defined number of
objects.

• Model-based methods optimize the fit between the dataset and some math-
ematical model or distribution. Gaussian Mixture models [50] belong to
this family: this type of clustering method assumes that all data points are
generated from a mixture of a finite number of Gaussian distributions with
unknown mean and variance.

• Soft clustering methods, such as the Fuzzy C-means [51], assign each data
point a membership value to all the clusters rather than assuming that every
object belongs to one and only cluster.

K-means is one of the simplest and most commonly used clustering algorithms
because of its simple interpretability, implementation, and better computational
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performances. It is a partitioning procedure that starts with an initial set of cluster
centers (centroids), the number of which must be specified in advance, that are
iteratively updated based on an optimization problem.
Given a dataset of N samples D = {xi}Ni=1 and a pre-defined positive integer K,
K-means partitions D into K disjoint clusters {Ck}Kk=1. Each cluster is defined by
a centroid µk, which is initially randomly initialized and subsequently computed
as the mean of the samples belonging to that cluster in subsequent iterations:

µk =
1

Nk

Nk∑
n=1

xn (3.1)

where Nk is the cardinality of the cluster Ck.
Each observation xi is assigned to the nearest centroid, determined by Euclidean
distance. Consequently, a cluster Ck at iteration t is defined as:

C
(t)
k = {xp : ||xp − µk||2 ≤ ||xp − µj||2 ∀j, 1 ≤ j ≤ K} (3.2)

The centroids are then recomputed by applying Equation 3.1 to the updated cluster
points. The algorithm iterates until convergence, which is achieved when either the
assignments no longer change or when the difference between centroids determined
in two consecutive iterations is smaller than a given threshold.
This procedure is equivalent to minimizing the within-cluster sum-of-squares (or
inertia):

L(x, {µk}) =
K∑
k=1

Nk∑
n=1

||xn − µk||2 (3.3)

The primary drawback of the K-means algorithm is its sensitivity to the randomly-
determined initial partition, which can lead to the algorithm converging to a local
minimum in the optimization function L. To mitigate its sensitivity to initial
conditions, K-means is typically run multiple times under the same conditions
and the solution with the smallest final inertia value is chosen.
In addition, K-means is sensitive to noisy data and outliers, and it is more suitable
for datasets having isotropic, spherical, and well-separated clusters, which are often
challenging to find in real-world problems.
The number of clusters is typically determined through a preliminary study of the
algorithm’s performances. The inertia, often displayed as a function of K, can be
visualized using the so-called elbow plot, and the optimal value of K is selected as
the point where the plot exhibits an inflection point [47].
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3.2 Coastal ocean image analysis

This work presents an image analysis algorithm based on clustering of SST and
Chl-a satellite products that is capable of identifying automatically submesoscale
filaments. These structures transport cold, highly-productive coastal waters into
the warmer and nutrient-depleted open ocean in the form of thin and elongated
structures, and are clearly visible in both SST and Chl-a satellite data products.
As mentioned earlier, submesoscale filaments emerge from the instability of coastal
currents, resulting in highly variable shapes in both time and space. Due to their
turbulent nature, modeling these structures and characterizing them using tradi-
tional equation-based frameworks is a challenging task.

3.2.1 State of the art

Several methods have been developed for the automatic detection of cold, chloro-
phyll rich upwelling waters from satellite products or model outputs, given their
importance in assessing coastal ocean productivity and their implications for the
fishing industry. Some of these methods are based on classical image segmenta-
tion tools. Cayula et al. (1992) and Nieto et al. (2012) developed a filament and
front segmentation tool that detects edges based on gradient values in sea surface
temperature satellite images [52, 53]. Artal et al. (2019) combined threshold-
ing and edge detection for the systematic identification of filaments in the Chile
upwelling system using numerical model outputs of sea surface temperature and
currents [54]. The primary aim of these methods is the automatic detection of
upwelling filaments and the study of their geographical distribution rather than
precise delimitation of the area occupied by these structures. Marcello et al. (2002)
proposed a segmentation algorithm for filament detection based on coarse segmen-
tation through histogram-based thresholding, followed by a fine-detailed growing
process in SST satellite images [55]. However, these image processing-based tech-
niques are strongly affected by data quality and cloud cover, requiring several
complex and time-consuming preprocessing steps that make them less suitable for
long time-series studies.
Clustering is widely employed in this type of image segmentation tasks for its
adaptability to every input. Clusters are generated depending only on the dis-
tribution of the input data, therefore not taking the position of the pixels into
account. This is both an advantage, as much less preprocessing of cloud-covered
points is required, but it lacks geograpical information that could be important in
localizing shelf waters.
Clustering-based image segmentation methods have been employed for the de-
tection of upwelling regions and filaments, based on the distribution of SST (or
Chl-a) satellite data. Nascimento et al. (2012) have developed an upwelling detec-
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tion method based on fuzzy clustering applied to sea surface temperature satellite
images on the Portuguese coast [56]. The same method has been applied in the
Moroccan coast region by El Abidi et al. (2021), by using information on both
SST and Chl a data [57]. Geographical information on pixel position is added in
further work by Nascimento et al. (2015) and Nascimento et al. (2020), where
clusters are created by choosing a first seed (the coldest pixel in the image) and
expanding it iteratively [58, 59]. The common feature of these algorithms is that
the clustering is performed on one image at a time, thus losing the learning fea-
ture of this type of unsupervised tasks. Furthermore, this increases significantly
the number of parameters to be tuned, having often very abstract meanings that
are difficult to interpret.
Upwelling detection through a clustering algorithm that is fitted on multiple images
at a time has been proposed by Hammond et al. (2022), in the Western Indian
Ocean [60]. K-means is fitted on a random subset of a time series of Level 4 satellite
images of SST and Chl-a between 2007 and 2020, from May to September, and it
is capable of effectively delimitate shelf waters.

3.2.2 Proposed clustering-based algorithm

The technique employed in this work was inspired by the paper by Hammond
et al. (2022) [60], presented in the previous subsection. A similar framework
based on K-means clustering is developed for the analysis of an 18-year time series
(2003-2021) of satellite images from MODIS sea surface temperature (SST) and
OC-CCI chlorophyll-a (Chl-a) for three different world coastal ocean regions. A
further description of the data products, their acquisition, and processing is given
in Chapter 2.
The aim of this work differs from the original paper, as it focuses on assessing
the lateral export from shelf regions towards the open ocean. Coastal regions
are filtered based on the associated water column depth provided by GEBCO
bathymetry, and clustering is performed on time and space anomalies rather than
the raw product. Furthermore, the employed satellite products are of the Level
3 type, as it has been observed that the interpolation of Level 4 processing can
smooth data and filter submesoscale features captured by satellite images. One
drawback of Level 3 data is that cloud cover is not corrected, significantly reducing
the availability of sea surface data, especially in the optical wavelength, which
affects the quality of satellite images. To improve the number of available pixels in
each image, 8-day time averages are computed. This reduces the number of images
in the time series but enhances their quality while still capturing the majority of
submesoscale dynamical features.
The unsupervised learning framework is applied to three different world regions
(displayed in Figure 3.1): two of them are Eastern Boundary Upwelling regions
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Figure 3.1: Position of the three selected regions for this study.

(EBUs), California and Mauritania, where productivity and carbon export are
naturally enhanced at the coast [61, 62]. The South China Sea is a semi-enclosed
sea subject to high seasonal variability, and the high occurrence of this type of
filamentary dynamics has been assessed previously [63].
The steps followed by the algorithm can be grouped into two units, as shown in
Figure 3.2:

1. The preprocessing unit is developed to mask off-shelf data and compute time
and space anomalies.

2. The clustering unit subsets and normalizes the data, fits the K-means al-
gorithm and returns a cluster partitioning which is then employed on the
remaining time series.

In the next subsections, a more specific overview of the algorithm and its steps is
presented. This algorithm has been entirely developed in the Python programming
language, utilizing the NumPy [64] and Scikit-learn libraries [65]. Data manipula-
tion and analysis are performed through Pandas [66] and xarray [67] libraries, and
visualization is done using Matplotlib [68] and Cartopy [69].

Preprocessing

This initial unit is required to preprocess the 8-day average time series of Chl-a
and SST. For mathematical purposes, from now on these two datasets will both
be referred to as ϕij(tyd), where the indices i = 1, ..., N and j = 1, ...,M identify
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Figure 3.2: Workflow of the unsupervised learning framework.

the longitude and latitude of each pixel. The three chosen regions are squares of
10° × 10°, that correspond to N = M = 240. The time coordinate tyd is indexed
by the year y = 1, ..., 18 and d = 1, ..., 46 representing the day of the year that
identifies each 8-day window.
The two time series are preprocessed as follows:

1. The first step is the selection of open ocean regions in the image. Pixels are
masked based on their associated depth retrieved from GEBCO bathymetry,
that has been interpolated to the satellite products resolution of 4 kilometers.
Bathymetry profiles are highly complex and vary depending on the region, as
shown in Figure 3.3. Different reference depths have been visually selected,
depending on the region: 2500 m for California and 2000 m for Mauritania
and the South China Sea. Every pixel associated with shallower depths is
discarded from the image.

2. After identifying the off-shelf areas in each region, the seasonal 8-days cli-
matology is removed from the images. The seasonal signal is defined as:

ϕ̄ij(td) =
1

T

T∑
y=1

ϕij(tyd) (3.4)
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(a) California (b) Mauritania

(c) South China Sea

Figure 3.3: Bathymetry profiles of the three regions included in the study. The
red line highlights the chosen reference depth to distinguish open ocean regions
from continental shelf.
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Figure 3.4: Example of time series of the spatially-averaged ∆ϕij(tyd) in Maurita-
nia region.

An anomaly ∆ϕij(tyd) is then obtained as:

∆ϕij(tyd) = ϕij(tyd)− ϕ̄ij(td) (3.5)

3. The spatially-averaged anomaly of each image in the time series is defined
as follows:

< ∆ϕ(tyd) >=
1

N

1

M

N∑
i=1

M∑
j=1

∆ϕij(tyd) (3.6)

As it can be seen from Figure 3.4, the average anomaly time series still
presents a multi-year variability that is related to climatological heating or
cooling processes that also affect productivity. Since the turbulent dynamical
features that characterize submesoscale processes are assumed to be stochas-
tic and not having any connection with the seasonal cycle, the final anomaly
is computed by also removing its spatial average [70]:

∆ϕ′
ij(tyd) = ∆ϕij(tyd)− < ∆ϕ(tyd) > (3.7)

Clustering

The preprocessing phase produces a ∆ϕ′
ij(tyd) anomaly product for SST and Chl-a

that highlights turbulent patterns. K-means clustering is applied to a subset of
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Region Chl-a [%] SST [%]

California 85 ± 22 94 ± 15
Mauritania 81 ± 23 88 ± 18

South China Sea 69 ± 29 84 ± 24

Table 3.1: Average percentage of available points of off-shelf satellite data. The
error is computed as one standard deviation over the time series.

these data, while the remaining time series is used to verify its performance and
conduct further studies. This particular decision is influenced by the fact that
it yields results nearly identical to using the entire dataset, while significantly
reducing the computational time required for the K-means fitting process.
To maintain the continuity of the time series for subsequent analyses, this subset
is chosen to be the data belonging to the year 2003 and transformed to a tabular
dataset of two features, Chl-a and SST anomalies, where each row corresponds to
the values of a specific pixel located at position (i, j) on a given day d within the
year 2003. The time and space information will be disregarded by the algorithm,
thus focusing solely on the data’s inherent characteristics.
Any pair with at least a null value, which represents cloud-covered pixels, is re-
moved. A more in-depth analysis of data availability, as presented in Table 3.1,
indicates that cloud cover has a greater impact on the chlorophyll-a product com-
pared to sea surface temperature (SST). It is noteworthy that the South China
Sea is the region most affected by cloud cover among the studied areas, with less
than 70% of data available on average. The high standard deviations observed are
primarily a result of the inherent seasonality of cloud cover in the studied regions.
Before applying the K-means algorithm, the extreme outliers outside the 0.01 and
99.9% quantiles are eliminated and the two feature columns are normalized by
standardization, centering them around zero and scaling them to have a standard
deviation of one. This standardization process is a common procedure preceding
the application of any machine learning algorithm, as it ensures uniformity and
comparability of the features.
The determination of the optimal number of clusters K is made through a visual
analysis of the elbow plot, as illustrated by an example in Figure 3.5. This type
of approach yielded an optimal K equal to 4 clusters in all the three considered
regions. K-means has been fitted to the subset with 10 random initializations in
order to reduce its sensitivity to initial conditions, a maximum number of iterations
equal to 300, and a tolerance of 10−4 as the minimum difference in the cluster
centers of two consecutive iterations to declare convergence.
K-means determines a partitioning of the Chl-a and SST space that can be used
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Figure 3.5: Example of elbow plot (Mauritania region). The red dot shows the
optimal number of clusters, equal to 4. This optimal value is found also in Cali-
fornia and South China Sea.

for the analysis of single images. Each pair of Chl-a and SST images for a given
day, year and region is fed to the algorithm, that preprocesses it computing the
time and space anomalies, reduces it into the tabular form and returns the cluster
labels for each pixel.
The analysis of the clusters and their physical interpretations are presented in the
next chapter (Section 4.1).

3.3 Biomass content calculation

Chlorophyll primarily accumulates in the uppermost layer of the ocean, where
sufficient light for photosynthesis is available. Satellite remote sensing products
provide surface Chl-a distributions as a concentration, typically measured in mg
m−3. To estimate the total mass of chlorophyll in the surface layer using satellite
data, each pixel’s chlorophyll concentration has to be multiplied by a volume.
The image analysis algorithm introduced earlier assigns each Chl-a and SST pair
to one of the four clusters Ck, each representing a different dynamical regime. At a
given time tyd, the mass content of chlorophyll in a specific cluster Ck is calculated
as:
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MChl(Ck, tyd) =
∑

i,j∈Ck

Chlij(tyd) ·∆Zij(Ck, tyd) · Spixel (3.8)

where Chlij(tyd) represent the satellite Chl-a concentration of a pixel in position
(i, j), ∆Zij(tyd) is the associated euphotic depth (derived from the diffuse atten-
uation coefficient with Equation 2.8), and Spixel is the area corresponding to the
grid resolution, in this case 16 km2.
The carbon content of each cluster Ck can be estimated from the Chl-a mass
content by using a carbon-to-chlorophyll ratio R:

MC(Ck, tyd) = R ·MChl(Ck, tyd) (3.9)

It is important to note that the value of R may vary based on factors such as light
and nutrient availability and phytoplankton composition, and it can be specific to
different regions [71]. For this initial estimation, a conservative constant value of
R = 50 has been chosen.
A carbon content of per unit of area can also be computed. The area occupied by
the cluster Ck at each time tyd is determined as:

Ak(tyd) =
∑

i,j∈Ck

Spixel = Nk(tyd) · Spixel (3.10)

where Nk(tyd) is the cardinality of the cluster. Finally, the carbon mass content
per unit of area for each image is computed as:

MAC(Ck, tyd) =
MC(Ck, tyd)

Ak(tyd)
. (3.11)

The results of these estimations are presented in the next chapter, more specifically
in Section 4.2.
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Results and discussion

The previous chapter presented the K-means clustering-based partitioning of off-
shelf SST and Chl-a images. This chapter shows the results of the application of
these methods to the three considered regions. Section 4.1 presents the clustering
analysis on the fitting subset, and its overall performance in the remaining time
series. One of the clusters identifies the shelf-water streamers presented in previous
chapters. Section 4.2 analyses the obtained estimations of the lateral export of
biomass and carbon by streamers in the three regions.

4.1 K-means fitting

K-means is fitted on the subset of data belonging to the year 2003, in order to
guarantee continuity of the time series for further studies, and its performances are
evaluated on the remaining time series for the estimation of biomass and carbon
content.

4.1.1 Results on 2003 subset

The representation of the 2003 fitting dataset within the SST and Chl-a anomalies
space and its segmentation into clusters for the three distinct regions is shown in
Figure 4.1, along with the proportion of each cluster’s population that denotes the
percentage of data points assigned to each region.
The shape of all three distributions does not lead to the straightforward identifica-
tion of clearly separated clusters. It is important to note that K-means is designed
for the identification of isotropic, spherical, and equivalently sized clusters: in this
context, it is rather used to partition such distributions through automatically-
determined and more intricate linear thresholds that would be challenging to dis-
cern manually. These threshold values differ by region, yet they exhibit common

45



Chapter 4. Results and discussion

(a) California

(b) Mauritania

(c) South China Sea

Figure 4.1: Clustering results on the 2003 subset for California (top panel), Mau-
ritania (middle panel) and South China Sea (bottom panel). The left panels show
the distribution of points in Chl-a and SST anomaly space in the x and y axes re-
spectively, and the cluster partitioning found by K-means. The right panels show
the percentage population of each cluster, accordingly to their color.
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features that warrant further analysis.
California and Mauritania point distributions are remarkably similar, as shown in
Figure 4.1a and 4.1b: they share a lengthy and broad tail in the positive Chl-a
space (greater than about 0.5 mg m−3 for California and 1 mg m−3 for Mauritania),
all assigned to the same cluster (indicated in green). The majority of points within
this space are characterized by negative SST anomalies. Therefore, this green
cluster, that is also the least populated (1-2 % of points), comprises pixels that
are particularly colder and richer in chlorophyll than their surroundings. The
attributes of data points belonging to this cluster, combined with the fact that
this study exclusively considers open ocean data, suggest a potential association
between this cluster and the presence of an intrusion of cold, highly-productive
shelf waters in the respective region.
The remaining clusters segment the space into regions with weakly positive or
negative Chl-a anomalies. Red and blue regions separate warm and cold anomalies,
and have a similar population between 20 and 30%. However, in both California
and Mauritania, the red cluster also occupies a portion of space that contains
negative SST anomaly regions, making this distinction less clear. The final cluster,
in yellow, is the most populous despite its smaller size and characterizes pixels
belonging to an intermediate regime, encompassing about 50% of all the data
points.
The partitioning of the South China Sea subset mirrors the pattern observed in
the other two regions regarding the green, red, and blue clusters (as seen in Figure
4.1c). The separation of the warm and cold anomalies in the red and blue cluster is
more distinct than California and Mauritania. The overall chlorophyll anomalies
are considerably smaller in this region, as it is not a productive upwelling area,
thus the threshold defining the green cluster is much closer to zero than the other
two counterparts. The green cluster, encompassing cold, high-chlorophyll pixels,
exhibits a higher population compared to California and Mauritania regions, com-
prising nearly 5% of the data points. The yellow cluster in this context has a
different meaning, as it is one of the least populated clusters, accounting for ap-
proximately 8% of the data points. This cluster identifies a region that opposes
the dynamical regime identified by the green cluster, as the distribution exhibits a
symmetrical tail towards warm and low-chlorophyll anomalies that is not present
in the two other upwelling regions.
Examples of the clustering performances on singles images are proposed in the
next subsection.

4.1.2 Application on 2004-2021 time series

The fitted K-means clustering method has been applied to the subsequent time
series starting from 2004. In Figure 4.2, examples of the clustering results on
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individual images for each respective region are presented.
Examining the Chl-a and SST anomalies in the California example, presented in
Figure 4.2a, reveals the presence of multiple cold, high-chlorophyll filamentary
structures that extend from the reference line towards deeper regions. Three of
these structures are visible in both Chl-a and SST images, roughly located at
34°N, 35°N, and 37.5°N, with two more visible only in SST above 39°N and 30°N.
These regions are separated by warm, low-chlorophyll areas, which likely corre-
spond to anticyclonic mesoscale eddies around which submesoscale filaments form.
As anticipated from the previous subsection’s cluster analysis, the green cluster
groups the three prominent high-chlorophyll filamentary structures, which are ei-
ther extended or surrounded by the blue cluster, representing cold, low-chlorophyll
regions. Warm anomalies are consistently grouped within the red cluster, as ex-
pected, and yellow regions are predominantly distributed between cold and warm
anomalies, representing an intermediate dynamical regime.
A comparable structure is observable in the Chl-a anomaly image of Mauritania
(Figure 4.2b), featuring a single broader area characterized by very high anomalies
extending between 18 and 21°W.While it is less distinct in the SST anomaly space,
this region is mostly associated with colder water. Analogous to the California
case, the green cluster groups the extensive high-chlorophyll filament, terminating
with a brief extension between 22 and 24°W and 21 and 22.5°N, which is labeled
as blue. The yellow cluster labels the majority of points in the image, consistently
with the population distribution shown in Figure 4.1, and surrounding the filament
region. The red cluster groups warm anomalies.
Similarly to the prior two regions, the South China Sea example (Figure 4.2c) re-
veals a shorter yet still thin structure of positive Chl-a and negative SST anomalies
near 12°N and 109.5°E, once again grouped in the green cluster and surrounded
by cold water. However, in contrast to California and Mauritania, an interest-
ing feature emerges from the yellow-labelled region between 14 and 19°N, that
presents a similar elongated structure propagating from the shelf to deeper re-
gions. As mentioned in the previous subsection, this region groups warm and
negative-chlorophyll regions in space, indicating that the yellow cluster possesses
a distinct physical interpretation from its other two counterparts, suggesting the
presence of warm, low-chlorophyll filaments in the South China Sea.
In all the three examples, the green cluster predominantly contains data points
with the highest chlorophyll anomalies. The majority of these pixels are situated
in areas characterized by negative temperature anomalies, implying higher pro-
ductivity and lower temperatures than the surrounding areas. When displayed in
individual images, these pixels define regions with an elongated shape, extending
from the shelf reference line towards the open ocean. This characteristic recurs
consistently throughout the entire time series, illustrating the formation, evolution
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(a) California, 24 - 31 October 2019

(b) Mauritania, 26 June - 3 July 2018

(c) South China Sea, 17 - 25 May 2005

Figure 4.2: Examples of clustering results on 8-day average images in the time
series for California (panel a), Mauritania (panel b) and South China Sea (panel
c). The left panel shows the computed Chl-a anomalies, the middle panel the SST
anomalies and the right panel shows the clusters derived from K-means. The red
line delimits the slope reference depth.
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and dissipation of these structures over subsequent time steps as shown Figure 4.3.
Figure 4.4 presents the frequency of occurrence of green-labelled pixels relative to
the total available data. In all three regions, the highest occurrence is observed
along the reference depth line. Mauritania exhibits an overall lower frequency,
consistently smaller than 15%. California displays a slightly higher percentage,
reaching 15% particularly north of 33°N, where the shelf region is narrower. The
South China Sea exhibits the highest frequencies (greater than 15%), with non-
negligible values even in open ocean regions, reflecting also the greater cluster
population described in Figure 4.1c.
Given all these features, it can be inferred that the green cluster systematically rep-
resents waters originating from the relatively cold, highly productive shelf regions
and transported by submesoscale filaments in the open ocean region. Therefore,
from now the green cluster will be referred to as the filament (or streamer) cluster
Cfil.

4.2 Lateral transport estimation

The previous section described the cluster partitioning performed using K-means
and highlighted a particular cluster associated with streamers responsible for trans-
porting shelf water into open ocean regions. This section is dedicated to estimating
the content of biomass and carbon within these structures and the associated lat-
eral export.

4.2.1 Chlorophyll content time series

The lateral transport of biomass by streamers can be estimated by quantifying the
mass content of chlorophyll within the points marked in their associated cluster.
This is calculated using Equation 3.8. For each pixel classified as belonging to the
filament cluster (Cfil), the Chl-a concentration from the original 8-day product
has been extracted and then multiplied by the pixel’s surface resolution and the
estimated euphotic depth in that pixel. Figure 4.5 displays the resulting time series
of chlorophyll content for each region covering the years from 2004 to 2021. To
enhance clarity and remove noise, a Gaussian filter has been applied to the data.
In all three regions, the time series exhibit irregularities, featuring the superpo-
sition of multiple signals with distinct characteristic periods. These variations
include seasonal fluctuations in productivity within the respective oceanic regions
and multi-year variabilities linked to factors such as temperature, river discharge,
and light availability. Seasonal cloud cover patterns may also influence the data
by reducing the number of available pixels in the images, potentially leading to an
underestimation of biomass content in each image.
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(a) California

(b) Mauritania

(c) South China Sea

Figure 4.3: Example of the evolution of the green cluster segmentation over subse-
quent steps for the three regions. The red line delimits the slope reference depth.
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(a) California (b) Mauritania

(c) South China Sea

Figure 4.4: Percentage occupation of the green cluster over the available (non-
NaN) pixels for the three regions. The red line delimits the slope reference depth.
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(a) California

(b) Mauritania

(c) South China Sea

Figure 4.5: Time series (2004-2021) of Chl-a filament cluster mass content. A
Gaussian filter with standard deviation equal to 2 has been applied to the original
time series (in lighter color) to remove noise. Filtered data are colored with a
darker shade of green. One teragram (Tg) corresponds to 1012 g.
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Region
Total MC

[Tg]
Carbon off-shelf
export [Tg yr−1]

Carbon off-shelf
flux [g m−2 yr−1]

California 16.0 ± 1.8 0.94 ± 0.11 150 ± 16
Mauritania 16.7 ± 0.5 0.98 ± 0.04 149 ± 5

South China Sea 24.6 ± 1.5 1.45 ± 0.09 65 ± 4

Table 4.1: Carbon content in filaments, export per year and associated flux for
the three regions of the study. One teragram (Tg) corresponds to 1012 g.

California (Figure 4.5a) shows the lowest amplitudes in the time series, with os-
cillations that mostly have a peak placed between spring and autumn, when the
upwelling conditions are favourable [61]. A weakening of filamentary chlorophyll
content is evident between late 2014 and late 2016, coinciding with an anomalous
warming of the region and a decrease in productivity documented in 2014 and
2015 [72], which could have extended its impact into the following year.
A similar pattern is observed in the Mauritania region, as depicted in Figure
4.5b. A weakening trend is present between 2010 and 2013, also associated with
an anomalous warming and a substantial decrease in primary production that
affected the entire Canary Current upwelling system during those years [73].
Conversely, the chlorophyll content variability in the South China Sea, shown in
Figure 4.5c, lacks a specific seasonal signal, with peaks occurring throughout the
year over the 17-year period. The time series is characterized by high-frequency
variability, suggesting that the overall signal may be associated with purely tur-
bulent dynamics. This differs from the two upwelling regions, where the biomass
content time series is primarily modulated by the seasonality of primary produc-
tion.

4.2.2 Estimation of carbon export and fluxes

The total carbon content within the streamers cluster, MC(Cfil, tyd), has been
determined using Equation 3.9. Table 4.1 presents the total carbon content for
the years 2004-2021 in each region, and the carbon content per year calculated as
the totalMC divided by the number of years in the time series (17). Since streamers
transport shelf water into the open ocean, the carbon within these structures can
also be interpreted as a laterally exported mass from the shallower regions.
To estimate the error in these calculations, a detailed analysis of the distribution
of MC(Cfil, tyd) over the same time span (2004-2021) has been conducted. Figure
4.6 illustrates this distribution using the Mauritania case as an example. This
distribution can be fitted with a Weibull distribution, known for its fat-tailed and
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Figure 4.6: Distribution of carbon content over the time series (Mauritania exam-
ple). One teragram (Tg) corresponds to 1012 g.

positively-defined shape. The Weibull distribution is commonly used to describe
various variables in atmospheric and oceanic flow fields, such as wind speed and
currents, which, in turn, influence the distribution of tracers [74, 75]. The relative
error for each region has been estimated as one minus the value of the cumulative
Weibull probability distribution calculated at the 95% quantile of the original data.
Both California and Mauritania display comparable values in terms of lateral ex-
port, approximately 1 Tg yr−1. Surprisingly, the South China Sea exhibits a value
more than 50% higher than these two highly productive upwelling regions. Several
factors could account for this unexpected difference.
The analysis conducted in 2003 (Section 4.1) revealed that the filament cluster in
the South China Sea comprises a significantly higher population of points. This
phenomenon might be linked to the region’s semi-enclosed basin nature, featuring
more extensive shelf areas, including the southern part of the square and the
majority of the western portion. Consequently, streamers can form in a larger
region. In contrast, the two upwelling regions only have the eastern portion of the
image as shelf areas.
These export values are comparable to the net ocean uptake of atmospheric car-
bon occurring in global coastal regions, as discussed in Subection 1.1.2, which is
estimated to be approximately 0.25 Pg yr−1. Given that this study was conducted
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Figure 4.7: Carbon content per area inside and outside the filament cluster for the
three regions.

on three 10° × 10° squares, the potential to extend this estimate to the global
coastal ocean is significant.
Given that the streamers’ cluster has a smaller population compared to the other
clusters, it is insightful to compare the carbon content per unit area occupied,
MAC , as reported in Equation 3.11. Figure 4.7 shows the distributions of carbon
content per unit area inside and outside the filaments. In the cases of California and
Mauritania, the streamers exhibit higher values (median of approximately 3 g m−2)
compared to their surroundings (less than 2 g m−2). Conversely, the South China
Sea streamers are characterized by even lower values than the background. This
reaffirms that the previously discussed observed increase in chlorophyll transport in
this region may primarily generate from the distinct partitioning of the clustering
algorithm, which tends to group a higher average number of pixels as streamers.
The carbon flux, quantified as mass per unit area and unit time, as reported
in Table 4.1, is computed by summing the carbon content per unit area across
the entire time series and then dividing by the 17-year duration. Once again, it
highlights a remarkable similarity between the two upwelling regions, amounting
to 150 g m−2 yr−1, and a significantly lower flux (less than 50%) for the South
China Sea. These fluxes are comparable to the net air-sea fluxes of CO2 depicted
in Figure 1.5, which can reach absolute values of approximately 30 g m−2 yr−1.
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Conclusions and future work

This study has introduced an automated image analysis tool based on K-means
clustering, applied to an 18-year time series of spatial and temporal anomalies
of chlorophyll-a concentration and sea surface temperature Level 3 satellite data.
The algorithm is capable of detecting and classifying various dynamical regimes, in-
cluding shelf-water streamers. These streamers are submesoscale structures formed
through stirring and straining by mesoscale eddies, capable of transporting cold,
chlorophyll-rich water from the shelf region, where productivity is enhanced, to
the open ocean. This type of transport is particularly important because it could
increase the vertical fluxes of carbon in deeper regions, efficiently sequestering
atmospheric carbon in the ocean depths.
This methodology was tested in three distinct coastal ocean regions worldwide:
California and Mauritania, which are productive Eastern boundary upwelling re-
gions, and the South China Sea. The algorithm consistently produced similar
results for California and Mauritania, demonstrating its ability to effectively han-
dle analogous dynamical regions. In contrast, the results for the South China Sea
displayed notable differences, reflecting the region’s unique dynamical character-
istics, while still maintaining internal consistency.
The development of an unsupervised learning framework for detecting and clas-
sifying off-shelf areas in coastal ocean regions represents pioneering work, with
substantial room for improvement. For instance, now that a label map has been
generated, opportunities for supervised learning have opened up. Advanced meth-
ods can enhance the identification and segmentation of streamers by considering
factors such as the aspect ratio of identified regions or pixel positions in the image.
Supplying the algorithm with additional information, such as high-resolution sea
level anomaly data, could improve the partitioning of the image.
After detecting and classifying areas occupied by streamers, a following study has
been conducted to assess their contribution in the lateral transport of biomass
from the shelf region to the open ocean.
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The examination of chlorophyll content time series for streamers revealed the di-
verse dynamical regimes in the regions of study. While biomass export in upwelling
regions follows the seasonality of primary production, the South China Sea exhibits
high-frequency variability attributed to turbulent processes.
The study estimated that the combined yearly lateral export of biomass through
streamers in these three regions totals approximately 3.5 ± 0.7 Pg yr−1. The
comparison of carbon mass fluxes between the three region shows a remarkable
difference: the upwelling regions are characterized by higher fluxes (150 g m−2

yr−1) than the South China Sea (65 g m−2 yr−1), suggesting that streamers have
different areas and carbon content in these regions.
These initial estimates involve certain assumptions, such as a constant carbon-to-
chlorophyll ratio, which may not hold universally. A region-specific ratio should
be determined through phytoplankton composition analysis, as different species
contribute differently to primary production and carbon synthesis. Cloud cover
could potentially reduce the number of classified streamer pixels, leading to un-
derestimations.
These results provide significant insights into this type of lateral transport of or-
ganic carbon in different dynamical regimes, and the next step in this research is to
estimate the global contribution of coastal ocean regions worldwide. The extent
to which this mechanism contributes to actual carbon export to depth remains
uncertain, as the majority of surface ocean carbon typically undergoes remineral-
ization or is released back into the atmosphere. To comprehensively investigate
the correlations between lateral transport and carbon burial to depth, an inte-
grated approach that incorporates data from in situ campaigns to capture vertical
fluxes is necessary. This integration would contribute to a deeper understanding
of the natural atmospheric carbon removal process and how this mechanism can
be preserved, with important implications for climate change mitigation.
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