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... These turbulent fluctuations, embedded in a larger flow, tend to drain the large-scale
flow of energy by a variety of mechanical processes and in turn pass the energy to finer scale of
motions where viscosity can act directly. This notion of the cascade of energy from the largest
to the smallest scale of motion is far from clear and rigorous. [Pedlosky]
But It is the most challenging and appealing phenomenon
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Introduction

The Mediterranean ocean Forecasting System

The Mediterranean ocean Forecasting System (MFS) is working operationally since
2000 and is beeing continuolsy improved througth the framework of international
projects. The system is part of the Mediterranean Operational Oceanography Net-
work -MOON- and MFS is coordinated and operated by the Italian Group of Oper-
ational Oceanography (GNOO) (Tonani et al., 2008). Since year 2009 it is part of
the MyOcean system (www.myocean.eu) becoming Med-Monitoring and Forecasting
System (Med-MFC) (M.Tonani et al., in press).
The numerical model component of Med-currents is composed by two elements: an
Ocean General Circulation Model (OGCM) and a Wave Model. The OGCM code
is NEMO-OPA (Nucleus for European Modelling of the Ocean-Ocean PArallelise)
version 3.2 (Madec, 2008). The code is developed and maintained by the NEMO-
consortium. The model is a primitive equation in spherical coordinates. The Wave
Model is based on the WAM (Wave Analysis Model) code. NEMO-OPA has been
implemented in the Mediterranean at 1/16 deg. x 1/16 deg. horizontal resolution
and 72 unevenly spaced vertical levels (Oddo et al., 2009). Since September 2005
the system produces short-term ocean forecasts for the next ten days and the pro-
duction is on a daily basis, while before it was weekely and it is coupled off-line
with a biogeochemical forecasting system and a wave model. Every day (J) the
system produces 10 days forecast from J to J+9, as shown in Figure 1. On Tues-
days, 15 days of analysis are produced, from J-15 to J-1, with the assimilation of
all the available satellite and in situ data. Med-biogeochemistry 10-day forecast
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Figure 1: MFS production cycle. Every Tuesday (J) a ten-day forecast (d1, d2, d3, d4, d5, d6,
d7, d8, d9, d10) is produced. It is initialised by an analysis generated by the past sequence of 15
intermittent daily data assimilation cycles.

is produced bi-weekly on Tuesday and on Friday (see Figure 1). All days, except
Tuesday, a 24-hour simulation is performed (from J-1 to J) in order to get the best
initial condition for the forecast. The simulation will be different from the forecast
produced the previous day (J-1) for the atmospheric forcing, which is an analysis
field instead of a forecast. All the products are validated and assessed in near real
time via comparison with dependent and semi-independent observations (Tonani et
al 2009). A real time network has been developed for this purpose in collaboration
with the MOON community (Mediterranean Operational Oceanography Network)
in order to collect all the available moored observations for temperature, salinity,
currents and sea level. All the information collected via this network are elaborated
by and ad hoc-software in order to evaluate the quality of the Med-MFC products
(http://gnoo.bo.ingv.it/myocean/calval).
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The problem of uncertainty in ocean modelling

The first successful numerical weather prediction occurred in the 1950s, and since
that date many important improvements have been made in the accuracy of numer-
ical weather prediction models.
Some advances depend on the steady developments in high-performance computing
resources which has permitted the increase in the spatial resolution of numerical
prediction models permitting to resolve different scales of motion. The accuracy of
the numerical prediction models has also benefited from improvements in the way
physical processes and motions on the subgrid-scale are represented as well as im-
provements in the representation of the interaction with the ocean and the land
surface. Nevertheless, some elements, such as initial condition uncertainties, atmo-
spheric forcing inaccuracy and model errors, being intrinsically related to truth state
of the fluid and the way that we use to describe it, cannot be easily removed, giving
an important contribution to errors growth.

State of art of multi model SuperEnsemble

Taking into account the previous statements about the impossibility of eliminate
forecast errors, many techniques, such as ensemble forecasting, have been developed
recently. The goal of ensemble forecasting is to predict the probability of future
weather events as much precisely as possible (Epstein 1969; Leith 1974; Mullen and
Baum- hefner 1994). Forecasts are sensitive to both small uncertainties in the initial
condition (Lorenz 1963) and model error (Harrison et al. 1999), so a deterministic
prediction may not be reasonable and then fail. An ensemble forecast system starts
by the creation of equally likely analyses of an initial state in which the ensemble
mean is the best estimate of the true state of the fluid we want to describe (both at-
mosphere and ocean). As the forecast time runs the trajectory of ensemble member
continue to diverge. For long enough time (depending on the system) they will differ
so much that they will be impossible to be distinguished from another randomly
chosen states.
Operationally, ensemble prediction systems have been made changing the initial con-
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ditions, adding the perturbation field to the analyses. In this way, we assume that
forecast errors arise from analysis errors while the model is considered perfect. The
National Centers for Environmental Prediction (NCEP) define these perturbations
through bred modes (Toth & Kalnay, 1993) which represent the fastest growing
perturbations and simulate the development of growing errors in the analysis cycle.
The European Center for Medium-Range Weather Forecasts (ECMWF), instead,
uses singular vectors (Buizza & Palmer, 1995) which maximize the linear growth
of energy over a specified domain. moreover, The Canadian Meteorological Center
(CMC) applies the ensemble Kalman filter (EnKF; Evensen, 2003; Houtekamer et al.,
1996) which provides an ensemble of initial conditions thanks to the assimilation of
an ensemble of perturbed observations.
in order to consider both initial conditions and model errors, multimodel approach,
statistical techniques involving the use of different forecast models (e.g. Evans et al.,
2000; Krishnamurti et al., 2000; Stensrud, 2001), different physical parameterization
schemes (e.g. Houtekamer et al., 1996; Stensrud et al., 1999) or stochastic physical
parameterization (e.g. Palmer, 2001; Grell and Devenyi, 2002) have been developed.
others use a multimodel formed by a combination of several operational products
plus perturbations of these runs, like Fujita et al. (2007) in their exploration of
various ensembles dealing with the influence of initial conditions and multiphysics
or Meng and Zhang (2007) in their test of an EnKF for data assimilation. In spite
of the wide range of existing building techniques it is still unclear which one is the
best. Numerous studies compare not only different sources of error (model or anal-
yses) but different techniques to deal with each source. For example, Stensrud et
al. (2000) and Fujita et al. (2007) compare initial conditions and model physics
uncertainties in an ensemble, Clark et al. (2008) compares the contributions of ini-
tial/lateral boundary conditions and mixed physics to the spread and skill of 120-h
precipitation ensemble forecasts while Meng and Zhang (2007) tested the sensitiv-
ity of an EnKF to model error induced by different cumulus parameterizations. in
Krishnamurti’s approach (Krishnamurti et al., 1999) he used an unbiased linear com-
bination of the available models, optimal (in the least-squares sense) with respect to
observations during a training period of a priori chosen length; all observations have



v

equal importance. Lenartz et al. (2010) introduced dynamically evolving weights in
a linear combination of models, using data assimilation techniques (Kalman filter
and particle filter) adapted to the super-ensemble paradigm. These techniques are
able to train the weights on a time-scale corresponding to their natural characteris-
tic time, discarding older information automatically. The weights rate of change is
determined by the respective (and evolving) uncertainties of the weights themselves,
of individual models and of observations.

Study of multi model Superensemble

Because uncertainties arise from the initial conditions, improper model physics pa-
rametrization schemes, and atmospheric forcing inaccuracy, a good ensemble may
need to contain all these aspects. The intent of this thesis was to evaluate the im-
pact of model error, initial condition and atmospheric forcing throughout several
experiments. The first was addressed to model parametrizations scheme,since pres-
ence of model error can often produce both a large bias of the ensemble mean and
too little spread, bringing the ensemble algorithm to fail (Meng & Zhang (2011));
in the second experiment, uncertainties have been sampled both in initial conditions
and atmospheric forcing by a MFS-BHM winds. Finally, in the third experiment, we
used a wider approach addressed to remove the systematic error by using different
research institute estimates (analysis and forecast). SuperEnsemble performances
have been evaluated in every experiment on the base of every dataset created.

High resolution model

All numerical simulations of atmospheric and oceanic phenomena are limited by the
finite spatial resolution, generally requiring a parametrization of effects of motions
on unresolved scales on those explicitly resolved. A goal of numerical modellers
has been to resolve as many scales of the actual circulation as practically possible.
With the recent advent of a new generation of high-performance computing resources
some notable thresholds in terms of model resolution have been approached or, in
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some cases, surpassed. In this thesis starting from the default version of the Ocean
General Circulation employed in MFS, we implemented a higher resolution model in
the Mediterranean sea.

Thesis Objectives

This research activity studied how the uncertainties are concerned and interrelated
through the multi-model approach, since it seems to be the bigger challenge of ocean
and weather forecasting. Moreover, we tried to reduce model error throughout the
superensemble approach. In order to provide this aim, we created different dataset
and by means of proper algorithms we obtained the superensamble estimate. We
studied the sensitivity of this algorithm in function of its characteristics parameters.
Clearly, it is not possible to evaluate a reasonable estimation of the error neglecting
the importance of the grid size of ocean model, for the large amount of all the
sub grid-phenomena embedded in space discretizations that can be only roughly
parametrized instead of an explicit evaluation. For this reason we also developed
a high resolution model, in order to calculate for the first time the impact of grid
resolution on model error.

Structure of the thesis

This thesis is organized as follows:
In chapter 1 we will describe the wide range of uncertainties affecting the numerical
simulations and the differences between "intrinsic" and "structural" uncertainties.
Furthermore, since perfect model assumption must be dropped in real world studies
where computational constraints, allow us to parametrize some phenomena instead
of an explicitly evaluation. We will explain the differences between the Navier-Sokes
Equations and Primitive equations. Finally we will give a practical example of the
error propagation. A large part of the effort of this thesis was dedicated to the cre-
ation of suitable ensemble members which are presented in chapter 2. Furthermore,
we will comment the goodness of our ensemble on the basis of ad hoc indexes. In
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chapter 3 we will show the methodology employed, the Krishnamurti Superensemble
Concept, and the results due to the employment of this technique in ocean ensemble
datasets. In chapter 4 we will present a way to improve to the classical superensem-
ble approach, considering the EOFs/PC Analysis. After an overview of how these
statistical techniques can decompose a space and time dependent field into a set of
spatial patterns and associated time indices, we will give the linking between their
formulation and the application in our case.
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Chapter 1

Uncertainties and model errors

Background

Uncertainties in numerical modelling arise both from Intrinsic Uncertainties such
as in the initial conditions and boundary (surface and lateral) conditions, and from
Structural Uncertainties resulting from the fact that some processes are not fully
understood.
Furthermore, the perfect model assumption must be dropped in real world studies
where the computational constraints allow us to parametrize some phenomena in-
stead of evaluating explicitly (hydrostatic approximation and rigid lid/free surface
assumption) bringing model error growth. Inadequate representation of physical
processes, parametrizations of the sub grid scale physical phenomena, numerical in-
accuracies,end truncation errors arrange that numerical output simulations will be
different from the true state of the fluid we want to describe.
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1.1 Errors in initial conditions and atmospheric forc-

ing

Ocean observations are required for the model initialization, but the platforms and
sensors providing a wide range of physical and biological measurements are sparse in
both space and time.The sampling error is one of the most relevant error in oceans
sciences. In an ideal world, observation should sample all the physical processes,
when limited area model are used, observations are needend to prescribe at the lat-
eral open boundary processes not occuring locally but affecting and influencing the
local dynamics. Ideally we should have one observation in each point of our domain,
so assimilation techniques have been developed in order to meld these data with the
dynamical models variables and produce the best estimate of the current oceanic
state. Beyond this native lack of knowledge of the system we want to describe,
ocean-earth’s system interactions are approximate and ocean boundary conditions
are inexact. These sources of uncertainties together with model error (approxima-
tions to equations and computational errors) lead to our estimate will be different
from the truth, and we will say that our estimate is affected by an error, Lermusiaux
(2006). All these sources of error are not really separable since the estimation of the
initial conditions involves a numerical model as merger so initial condition error will
be affected by model error and grown up in time.
The first theoretical studies on error growth in atmospheric prediction and on the
implied limits of a prediction and probabilistic prediction appeared in the late 1950s
to early 1970s. This area of meteorological research is defined predictability. Let us
focus on initial condition uncertainties first: as we have already said they can be
estimated within a certain accuracy. Lorenz (1963) studied the growth of forecast
errors due to initial condition uncertainties by looking at the rate at which solu-
tions of the ECMWF numerical weather prediction model diverged, and realized
that forced dissipative systems of ordinary differential equations that originate from
highly truncated models of fluid flows, "systematically exhibit sensitive dependence
to initial conditions".
In a deterministic system the state is uniquely determined by initial condition (no
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stochastic variables). Both atmosphere and ocean are deterministic systems, and
they are also perpetually forced by dissipative terms (there are sinks/sources). Sen-
sitivity to initial conditions means that two nearby trajectories separate exponen-
tially fast.This implies that, even if we have a deterministic system two solutions
starting from two almost equal states will separate and loose the similarities. It is
the non-linearity of the system that gives raise to the irregular behaviour.

The ocean exchanges mass and energy with the atmosphere through its surface.
The surface boundary condition for momentum is:

Avm
∂uh

∂z
|z=η=

τ

ρ0

(1.1)

where Avm is the vertical eddy viscosity, τ = (τu, τv) represents the zonal and merid-
ional wind stress components and uh = (u, v).
The water flux boundary condition states that a particle of water can enter or escape
the sea surface only through precipitation or evaporation:

w =
Dη

Dt
− (E − P ) (1.2)

E and P are evaporation and precipitation, D
Dt

= ∂
∂t

+ uh |z=η ·∇ is the total deriva-
tive.
The water flux is coupled to the salinity boundary condition by the (E − P ) term
with runoff(R) by:

Avs
∂S

∂z
|z=η= (E − P −R)Sz=η (1.3)

Finally, the boundary condition for heat flux is:

AvT
∂T

∂z
|z=0=

Q

ρ0Cp
(1.4)

where Cp is the ocean heat capacity constant and Q is the heat budget and consists
of the solar radiation flux Qs minus the net long-wave radiation flux QB, the latent
heat flux QE and the sensible heat flux QH . Knowledge of all the components of the
heat and water budgets at the air-sea interface are key points in ocean modelling.
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Unfortunately, given the complexity of the processes involved, they necessarily must
be parametrized. Several techniques have been historically applied and are widely
described in the literature, providing different results depending on their approx-
imations and accuracy. In the nineties and during the last ten years, heat fluxes
started to be parametrized with empirical (bulk) formulae forced by atmospheric
data sets rather than the true measures of fluxes (due to their cost are too sparse
both in space and time). The seminal work of Rosati & Miyakoda (1988) described
the first OGCM application of this methodology. At present, this approach is the
most used, since it represents the best compromise. Atmospheric forcing data (wind,
temperature, humidity, precipitation and cloud cover) are originated from a variety
of sources with different accuracy, so it arises the question about how accurate the
atmospheric data has to be in order to be useful for a realistic simulation of atmo-
sphere state. Recent works have demonstrated a Kinetic Energy (KE) deficiency in
global ocean surface winds provided by Numerical Weather Prediction (NWP) sys-
tem with respect to coincident surface winds retrieved by scatterometer data(Chin
et al. (1998) and Milliff et al. (2004)). A similar behaviour (ECMWF winds usually
underestimates wind speed) has been recognized comparing ECMWF analyses and
QuickScat data over Mediterranean basin(Milliff (2004)). For all that reasons air-sea
interactions constitute a primary source of model error growth (Gould et al. (2001)).

1.2 From the closure problem to the sub-grid scale

parametrizations

The numerical ocean modelling involves the seeking of solutions of a coupled set
of non-linear partial differential equations (PDEs), called Navier-Stokes equations,
able to describe the time-dependent behaviour of properties of a fluid flowing in
three-dimensional space and acted upon by various forces, under the constraint of
conservation equations for some scalar properties such as sea temperature and salin-
ity with appropriate source and sink terms. Each numerical model solves the basic
conservation equation for mass (eq.(1.5)) and momentum (eq.(1.6)) suitably modified
in order to describe the rotation of the reference system and the thermodynamic(1.8)
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or other dissipative processes which can take place in the ocean1.

dρ

dt
+ ρ∇ · ~v = 0 (1.5)

where ~v = (u, v, w) and ρ is the density;

ρ
d~v

dt
= −∇p− ρ∇φ+ F (~v) (1.6)

or that mass per unit volume times the accelaration is equal to the sum of the pressure
gradient force, the body ρ∇φ where φ is the potential by which conservative body
forces can be represented, and the force F is in principle the frictional force in the
fluid. For Newtonian fluid like air or water

F (~v) = µ∇2~v +
µ

3
∇ (∇ · ~v) (1.7)

where µ is the molecular viscosity. This is an exact representation for F when µ, in
principle a thermodynamic variable is taken as constant over the field of motion.

cp
dT

dt
+
T

ρ
α
dp

dt
=
k

ρ
∇2T +Q (1.8)

where α is the coefficient of thermal expansion defined by the following relation
α = −1

ρ

(
∂ρ
∂T

)
p
, k is the thermal conductivity, cp = T

(
∂S
∂T

)
p
is the specific heat at

constant pressure, Q is the rate of heat addition per unit mass by internal sources.
Moreover since ρ = ρ(T, ρ, p) we need an additional constraint on salinity taking into
account of the related source/sink terms and diffusivity redistribution of salinity.

dS

dt
= F (S) (1.9)

In order to include some effects of the small-scale processes, which are not the
focus of our interest but still they may influence large scale-flow motions, we can de-
compose the state variables (scalars or vectorial) in large-scale (and/or long-period)
and smaller-scale (and/or shorter-period) components.

1see Pedlosky (1979)
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B(t) = B̄(t) + B̂(t)

By convention the over bar (̄.) represents the chosen averaging operator and the
caret (̂.) denotes the deviation from that average, and B is a generic variable. Under
the basic assumption that:

¯̂
B = 0

B = B̄

B̄1B̂2 = 0

and
B1B2 = B1B2

Here B1 and B2 are other different generic variable. So starting from the inviscid
momentum equation written in tensioral form (1.10):

∂ui
∂t

+ uj
∂ui
∂xi
− fεijkuj =

∂p

∂xi
− g

ρ0

ρδi3 (1.10)

We can rewrite each state variable as the sum of mean field and a perturbation:
ui = ūi + ûi ρ = ρ̄+ ρ̂ p = p̄+ p̂

This kind of averaging procedure dates back to the last century and it is referred as
Reynolds decomposition(Reynolds (1895)).

Substituting in each term of 1.10 its mean field and perturbations, and then
averaging we obtain:

∂ūi
∂t

+ ūj
∂ūi
∂xj
− fεijkūj = − ∂p̄

∂xi
− g

ρ0

ρ̄δi3 −
∂ûiûj
∂xj

(1.11)

The last term is called Reynolds stress tensor, its diagonals elements: ûiûi stand
for the mean turbulent momentum fluxes, while the symmetric off-diagonal (i 6= j)

elements ûiûj are the shearing stresses. These new variables, for which there are
no prognostic equations, arise in the Reynolds averaging procedure, so we cannot
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resolve the equations unless we specify the stress (ûiûj) tensor directly or writing
some kind of relationship of the fluctuating components to the mean field, this is the
so called closure problem. Experimental evidences support the hypothesis that small
scale processes act on large scale flow in a manner that mimics the way in which
molecular motions affect macroscopic flow, and so Reynolds stresses are parametrized
directly assuming a linear dependence (see eq. 1.12)with large scale flow gradient:

∂(ûiûj)

∂xi
=

∂

∂xi
(Axixj

∂ui
∂xj

) (1.12)

In a general approach the tensor A in a 3x3 matrix if space an time varying coeffi-
cients,

A =

 Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

 (1.13)

In wide use is the much simpler diagonal form:

A =

 Ah 0 0

0 Ah 0

0 0 Av

 (1.14)

This approximation follows from the small aspect ratio (δ = H
L
) in the ocean, which

suggests a separate treatment of lateral and vertical sub grid scale parametrizations.
If the tensor A is assumed to be a constant, the new equation form for large scale flow
is identical to ordinary Navier-Stokes equations with an effective viscosity (µ

ρ
+ A).

1.2.1 Lateral parametrization

Lateral mixing schemes in ocean models usually use a first order closure method.
The lateral mixing includes all quasi-diffusive and viscous processes that occur along
geopotential surfaces, along surfaces of constant potential or in situ density and
along the bottom boundary. In an inhomogeneous flow field, turbulent viscosity
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may clearly depends on the local position, so it is plausible that the rate of SGS
mixing should vary with location and resolution. A realistic approach relates the
coefficients to the ambient conditions in the large scale flow field, so an extension of
the constant coefficient concept is used, involving spatially varying mixing coefficients
A(xi, xj). Usually there are two classes of these realistic schemes: upstream (Lin &
Walker, 1994) and the Smagorinsky(Smagorinsky, 1993) In the first class, the eddy
coefficient is proportional to the local flow speed and the grid spacing, while the latter
combines a grid size dependence with the deformation of velocity field. Moreover in
high resolution simulation, since part of the spectrum of mesoscale eddies is explicitly
incorporated, the harmonic approach seems to be too dissipative on the eddy scales,
especially where the cut-off wave number on the numerical grid is close to the Rossby
deformation radius. So it is used higher order diffusive or viscous operator2 e.g.

∂(ûiûj)

∂xi
= (−1)n+1 ∂

∂xi
(A

xixj
bi

∂∇2nui
∂xj

) (n = 0, 1, ...) (1.15)

For n=0 we have the basic harmonic operator. If n=1 we have the bi-harmonic
viscosity/diffusivity term, which can offer a compromise between increased scale se-
lectivity and computational requirement. Since small-scale noise often accumulates
at the highest wave-number, and since these flow components are unlikely to be
accurately computed in any case, scale selective filtering techniques (like Shapiro
filter, see Shapiro, 1970) have been developed. However we have to consider that
the principle direction of mixing is therefore neither strictly vertical nor purely hor-
izontal, but a spatial mixture of the two. A rotation of the mixing tensor from
the standard horizontal/vertical orientation can be performed (Solomon, 1971 and
Redi, 1982)and available in ocean models. Often viscous and diffusive operators have
the same forms, but different dissipative coefficients. Nevertheless monotonicity and
positive definiteness are usually considered important proprieties of the numerical
solution for the tracer equation, while they are less stringent for the momentum
equations. Therefore, the choice of diffusive closure is closely related to the form
of the horizontal advection operator. A priori choice is not always obvious. Some

2see Haidvogel & Beckmann (1999)
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closures are rather ad hoc, and the preservation of smooth numerical results is the
only available justification for their use. Furthermore, the SGS schemes can be used
as filter, in order to remove the small scale numerical noise.

1.2.2 Parametrization in the vertical direction

As reviewed in detail by Large (1998) parametrization can be classified into local and
non-local closure schemes. The formers assume that the eddy fluxes depend on the
local properties of the large scale flow, while the latter recognize that the turbulent
transports at a given level may not depend exclusively on the local properties at
that level, but rather on the overall state of the boundary layer. Both these closure
schemes are derived by time evolution on the Turbulent Kinetic Energy (TKE), as:

∂TKE

∂t
= AMv

[(
∂u

∂z

)2

+

(
∂v

∂z

)2
]
− ATvN2 +

∂

∂z

(
Ak
∂TKE

∂z

)
− ε (1.16)

N2 = − g

ρ0

∂ρ

∂z
(1.17)

N2 is the Brunt− V äisälä frequency and Ak is the vertical diffusivity of the TKE.
This two terms are related to the production of the vertical shear and buoyancy. This
equation is the basis for a large number of higher-order turbulent closure schemes.
Two frequent approaches are the so called k − l and k − ε schemes. The first ap-
proach uses a length scale l to close the system, the second gives a definition for l,
as l = cε

√
TKE3

ε
, and it uses an additional equation for the rate ε. In the absence

of high frequency forcing, night-time convection, and with low vertical resolutions,
turbulent closures cannot produce high enough mixing at the top layer interface.
This explains the reason why non-local parametrisation has been developed, like the
KPP scheme (Large et al. (1994) see appendixA.1.1 for a brief description) where
the vertical gradients are explicitly retained rather then the assumption of having a
well mixed boundary layer.

A different approach, called Pacanowski and Philander(P.P.) (Pacanowski & Phi-
lander, 1981), reckons the vertical diffusion coefficients as a function of the local
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Richardson number(Ri). In this scheme, turbulent mixing is treated by a first-order
local diffusion approach. Measurements of ν (vertical eddy viscosity) and κ (vertical
eddy diffusivity), show that these parameters vary considerabily in the ocean,and
usually they have a large values in the mixed surface layer, but they have very small
values below the termocline. Empirical studies (Robinson, 1966) indicates that the
shear dependence of ν (vertical eddy viscosity) and κ (vertical eddy diffusivity)
should be of the following form:

• ν = ν0
(1+αRi)n

+ νb

• κ = ν
(1+αRi)

+ κb

where νb and κb are the background dissipation parameters and ν0, α and n

are adjustable parameters derived after appropriate measurements and laboratory
studies. The local Richardson number(Ri) is evaluated as follows:

Ri =
N2

U2
z + V 2

z

(1.18)

Here N represents Brunt-Väisälä frequency and Uz and Vz are the vertical shear.

1.3 The Primitive Equation

The task of solving the resulting PDEs in the most efficient manner possible requires
careful attention to the nature of the flow, the available computer resources, and the
simplifications that can be made without adversely affecting the solutions sought. To
conduct analytical studies about Navier-stokes equations, they are subjected to some
approximations, furthermore other kinds of simplification are due to computational
constraint. Those simplifications are derived by the scaling analysis, and the task of
this process is to eliminate certain terms that will be unlikely to be important.

• The Boussinesq approximation: density variations may be neglected ex-
cept when they are coupled to the gravitational accelation in the buoyancy
force, the variations in volume expansion due to temperature gradients will
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also be small. Density field can be expressed as a sum of a constant reference
value ρ0 and a smaller, space and time varying perturbation, ρ̂:

ρ(x, y, z, t) = ρ0 + ρ̂(x, y, z, t) ρ0 � ρ̂ (1.19)

As conseguence in the momentum equation and the mass conservation, we may
sustitute the inertial term and the consituity equation with a constant.

• Incompressibility:The specification of incompressibility and constant density
immediately decouples the dynamic from the thermodynimics and reduce the
equation of mass conservation to the condiction incompressibility or non diver-
gence field. the three dimensional divergence of the velocity vector is assumed
to be zero ; Let’s take the conservation equation for mass eq.(1.5 that together
with the approximation 1.19, it became:

ρ0 (∇ · ~v) + ρ̂ (∇ · ~v) +
dρ̂

dt
= 0 (1.20)

The second term is smaller in comparison to the former, so it can be ignored,
furthermore if the characteristic length and time scales of perturbation density
are comparable to those of the velocity components, then the third term is also
smaller then the first by a factor. So a suitable approximation can be:

∇ · ~v = 0 (1.21)

for a quantitative and more accurate demonstration refers to Batchelor (1967).

• The Hydrostatic approximation: considering the oceanic circulation and
taking the appropriate typical magnitudes for the variables involved in Navier-
Stokes equation, the vertical momentum equation is reduced to a balance be-
tween the vertical pressure gradient and the gravitational force.

−1

ρ

∂p

∂z
− g ' 0 (1.22)
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For a complete justification of this approximation (completed by demonstration
that perturbations to the mean hydrostatic state are themselves hydrostatic,
and that scales of motion typical of mesoscale circulation are also hydrostatic)
see Holton (1992)).

• Spherical earth approximation: The geopotential surfaces are assumed
to be spheres so gravity field lines are parallel to the earthś radius, and the
equations are written in spherical coordinates (λ, φ, z) where λ is longitude, φ
is latitude and z is depth.

The vector invariant form of the primitive equations as solved by the OceanGeneral
Circulation Model employed in our institute became:

∂Uh

∂t
= −

[
(∇×U)×U +

1

2
∇
(
U2
)]

h

−fk×Uh −
1

ρ0

∇hp+ Du

∂p

∂z
= −ρg

∇ ·U = 0

∂T

∂t
= −∇ · (TU) +DT

∂S

∂t
= −∇ · (SU) +DS

ρ = ρ (T, S, p)

Here we defined U = Uh+wk (the subscript h denotes the local horizontal vector
i.e. over the (i,j) plan), T is the potential temperature, S the salinity ρ is the in-situ
density. Futhermore ∇ is the generalised derivative vector operator in the (i, j,k)

directions,t is the time, z is the vertical coordinate f the coriolis acceleration (f =

2ωkwhere ω is the earth angular velocity vector ) g is rge gravitational acceleration,
Du, DT and DS are the parametrizations of small scale physics for momentum,
temperature and salinity, including surface forcing terms.
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1.4 Errors of numerical approximations

There are several potential sources of errors in a numerical calculation. Two sources
are universal in the sense that they occur in any numerical computation. They are
round-off and truncation errors. Inaccuracies of numerical computations due to the
errors result in a deviation of a numerical solution from the exact solution, no matter
whether the latter is explicitly known or not.

1.4.1 Round-off errors

Numbers are represented in a computer by a finite number of digits of precision.
The simplest variant for hardware implementation is to keep the first n digits and to
chop off all remaining digits. A more accurate scheme is to examine the (n+ 1)− st
digit and to round the n − th digit to the nearest integer. This procedure leads to
round-off errors. We studied this kind of error with a simple example: the Leibniz
formula for π.

∞∑
n=0

(−1)n

2n+ 1
= 1− 1

3
+

1

5
− 1

7
+

1

9
− ... =

π

4
(1.23)

We truncated the sum for n = 100, in the first case we did the integration 100 times
on the same processor, in the other cases we did the integration 100/Nprcs for processor,
sending the information from one processor to the other and printing the results in
double precision.

• RUN on 1 processor:π is approximately: 3.1416009869231254

• RUN on 2 processors: π is approximately: 3.1416009869231241

• RUN on 10 processors: π is approximately: 3.1416009869231249

• RUN on 20 processors: π is approximately: 3.1416009869231245

• RUN on 40 processors: π is approximately: 3.1416009869231258

• RUN on 50 processors: π is approximately: 3.1416009869231254
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1.4.2 Truncation errors

Several kind of truncation errors occur in representing a continuous function in term
of a discrete set of variables. A first possibility is to obtain a power series for
the function u(x) by truncating the Taylor series expansion about some point x0

under the hypothesis that continuous function u(x) possesses an (n + 1) derivative
everywhere on the interval [x0, x]. Taylor series expansion is used in order to evaluate
the derivative of a function.
Another example of truncation error is the numerical integration of a function where
the exact calculations would require us to calculate the area under the curve by the
infinite summation of the subtended rectangles. Since we cannot choose an infinite
number of rectangles, we will have truncation error.
Error can come by piecewise interpolation due to the representation of a function
defined on a grid in a grid with different grid spacing. it has been shown that
maximum error goes like grid spacing squared, Haidvogel & Beckmann (1999). Other
times, it is necessary to replace the series by the n− th order polynomial, this leads
the grows of a truncation error of the n− th order.

1.5 Error Propagation

Since different sources of error can affect a simulation we trained a simple twin exper-
iment to test error propagation due to inaccuracy in atmospheric forcing uncertanies
and model approximations. European Centre for Medium-Range Weather Forecasts
(ECMWF) provides to MFS Wind velocity(10 m), cloud cover, humidity, temper-
ature and pressure(at 2 m) with a time interval of 6 hours once per day. For our
purposes, since all those fields come from a global model 1/4 °(from 2009, before 1/2

) they have to be interpolated by an apposite algorithm (bi-linear or bi-cubic ac-
cording to the field) to the operational set up regular grid 1/16 °resolution. ( 1/24 °in
the high resolution model (see appendix B)). As long as the NEMO model code ran
on a vector machine, a bicubic spline interpolation had been used for the interpola-
tion procedure. During our work thesis, we had the porting on a scalar machine,of
the old code in order to ran with domain decomposition technique. The old spline
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method was no more a suitable option, hence a simpler bicubic interpolation has
been implemented. We studied how a new interpolation method can impact the
forecast simulation by setting up the following twin experiment. Two simulations
started from the same initial conditions and were forced for 10 days with the same
ECMWF files, but they have been interpolated with the two different interpola-
tion algorithms. Uncertainties in atmospheric forcing and computational error were
propagated by the model. The results are depicted in fig.1.1. Even though the

Figure 1.1: Differences °C the twin experiment simulations

interpolation methods ensure the same accuracy of evaluation, and the simulations
have been carried with same computational design(same machine and domain split-
ting), we were able to reach significant differences between the simulation only by
the choice of an interpolation procedure.
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Chapter 2

The SuperEnsemble dataset:
preparation and analysis

Introduction

For weather and ocean prediction systems, the uncertainties and model errors can be
investigated by applying the ensemble techniques designed to sample the error under
investigation. If we are interested in model initialization uncertainties, the ensemble
members will be obtained by the repeated integrations of the model forward in time
from slightly-perturbed initial conditions, with perturbations designed to capture as
much as possible the underlying uncertainty (Kalnay, 2003). Similarly, model errors
due to physical parametrizations can be addressed by the "multi-physics" approach,
i.e. running the same simulation several times with different settings of the physi-
cal parametrization schemes(Pellerin et al., 2003) or with different parametrization
schemes. If the uncertanties assosiaciated with model numerics and implementation
choices are to be studied, then a multi-model approach can be considered where dif-
ferent numerical models and discretization choices (bottom topography, horizontal
resolution and vertical levels) can be addressed.
As far as uncertainties are concerned and interrelated, no one of the previous ap-
proach (multi-model or multi-physiscs superensemble ) is clearly better than another,
and in this work, we will build superensemble datasets derived from both.
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Since simulations are representation of reality as observations with different er-
ror characteristics, we can use the same terminology used in experimental physics.
Hence, the accuracy of a measurement system is the level of closeness of measure-
ments of a quantity to that quantity’s actual (true) value, while the precision is the
extent to which repeated measurements under unchanged conditions give the same
results. A measurement system can be accurate but not precise, precise but not ac-
curate, neither, or both. For example, if the experiment contains a systematic error,
then increasing the sample size increases precision but does not improve accuracy.
Eliminating the systematic error improves accuracy but does not change precision.
For our purposes, the standard deviation around the ensemble mean, also referred as
spread, mimics the accuracy, while the difference in the variability from the ensemble
members and the observed state, estimates the precision.
A justification of the last statement can be given by analysing figure 2.1. As evi-

Figure 2.1: Practical example corresponding to the idealized "good ensemble" (from Kalnay et al.,
2006)

denced by (Kalnay et al., 2006), we have built a "good ensemble" for prediction when
the "truth" looks like a member of the ensemble. This situation is achieved when
the spread around the ensemble mean, is bigger than the mean differences between
model simulations and observations. As evidenced by Hagedorn et al. (2005), Weigel
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et al. (2008) and Knutti (2010) later, the feedback spread-bias reduction is challeng-
ing since it is difficult to remove a correct bias from simulations, when the standard
deviation around the ensemble mean is less than the mean error between simulations
and true state of the field. Let’s consider the situation depicted in fig.2.1, the mean
difference of the ensemble mean and true state is the area between those (blue and
red) lines. Increasing the spread corresponds to enlarge the area between the black
border lines. Therefore, the best representation of truth is more likely predicted by
a single member of the ensemble when ensemble dataset has a wide spread. On the
other hand, when the spread is low, all the members converge in the description of
an expected state. As stated by Feddersen et al. (1999), the low ensemble spread
is likely to be produced by correlated models. In this configuration, all models are
affected by similar systematic errors, and possibly no one of them is better than
the other to give a reasonable representation of the true state. Hence, multi-model
approach seeks a gain in accuracy despite to the low precision of the measurement
system.
Furthermore, for a reliable system, we require that an ensemble member should have
the same statistical properties as the truth. Within this assumption, the true state
can be considered as a member of the ensemble. Let’s assume we have a time series
of observations, indicated by Ot, and numerical simulations or forecasts for the i− th
model at t − th time indicated by Fi,t, hence, the variance of the observations σ2

O,
can be easily decomposed in a sum of the variance around the ensemble mean and
the squared bias between ensemble mean and observations:

σ2
O = Et

[(
Oi −O

)2
]

= Et
[
(Oi −Mi)

2]+ Et

[(
O −M

)2
]

(2.1)

where the operator E[ ] denotes the expectation, or average, over time and

Mi = E [Fi]t =

M∑
i=1

Fi,t

M
(2.2)
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is the ensemble mean for the i− th day. While

M = Et
[
M̄i

]
=

T∑
i=1

Mi

T
(2.3)

is the time mean of the ensemble mean. Hence the first term, in the right hand side
of eq.2.1 is the variance between the ensemble mean and the observations, while the
second stands for the square difference between the means, or the difference in bias.
We can decompose in a similar manner the variance of each simulation member:

σ2
F = Et

[(
Fi − F

)2
]

= Et
[
(Fi −Mi)

2]+ Et

[(
F −M

)2
]

(2.4)

Since members, observations and simulations are assumed to belong to the same
probability density function, we assume the following condition:

Et
[
(Oi −Mi)

2] = Et
[
(Fi −Mi)

2] (2.5)

Hence, as evidenced by Johnson & Bowler (2009), in a perfect ensemble, the Mean
Squared error (MSE) of the ensemble mean must be equal to the average ensemble
variance, so that the spread is representative of the uncertainty in the ensemble
mean. The variability for the simulation ensemble members will be evaluated as:

VE =
1

M

M∑
i

T∑
t=1

(
Fi,t − F i

)2

T
Fi = E [Ft]i =

T∑
t=1

Fi,t

T
(2.6)

while for the observed state it will be evaluated as:

VO =

T∑
t=1

(
Ot −O

)2

T
O = E [Ot] =

T∑
t=1

Ot

T
(2.7)
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Here T is the length of the time period, in our case ten days, M is the number of
ensemble members, The spread of the ensemble is defined as:

STDE =
1

T

T∑
t

√√√√√ M∑
i=1

(
Fi,t −M t

)2

M
(2.8)

The mean absolute difference (MAD)

MAD =
1

T

T∑
t

|Mt −Ot | (2.9)

Here, Mt is the ensemble mean for the t− th time.
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2.1 Ensemble member datasets

2.1.1 Members with different numerical schemes and para-

metrizations

So far, operational ensemble predictions have been based on the assumption that the
numerical models involved are perfect ( Toth & Kalnay, 1993 and Palmer & Ander-
son, 1994). Hence model numerical schemes and parametrizations are not considered
to be a source of errors, while, normally, the ensemble predictions focus on initial
condition uncertainties, coming from observational sampling errors or imperfect data
assimilation schemes (Houtekamer et al., 1996).

In the ocean, where observations are scarcer than the atmosphere, different meth-
ods have been used to test initial condition uncertainties (Evensen, 2003 and Dobricic
et al., 2007) and multi-model and multi-physics superensemble techniques have not
been as widely studied yet. Here, firstly, we will describe a multi-physics ensemble
approach done to to sample the uncertainties related to the choice of a particular
physical parametrization scheme or the effect of a numerical scheme selection. These
sources of uncertainties are sampled building the multi-physics ensemble as a collec-
tion of simulations with the corresponding schemes modified. The model used in this
thesis is based on NEMO-OPA code (Nucleus for European Modelling of the Ocean-
Ocean PArallelise, Madec, 2008), version 2.3, which is developed and maintained by
the NEMO-consortium, adequately modified for the Mediterranean domain (Oddo
et al., 2009).

In the standard model formulation, the Mediterranean domain is composed by 72
vertical levels and has a horizontal resolution of 1/16× 1/16 °(approximately 6.5Km at
our latitude). Momentum, water and heat fluxes are interactively computed by bulk
formulae using the 6-h, 1/2 °horizontal-resolution operational analyses fields from the
European Centre for Medium-Range Weather Forecasts (ECMWF). The horizontal
viscosity and diffusion operators are assumed to be bi-laplacian with coefficients of
5×109m4/s and 3×109m4/s, respectively. The vertical diffusion and viscosity terms are
dependent upon the Richardson number, while the vertical convective processes are
parametrized using the enhanced vertical diffusivity parametrization. The advection
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n° V ertical
scheme

Tracer
advection

Bottom
friction

Lateral
momentumviscosity

k − ε P.P. UBS TVD MUSCL Laplacian Bilaplacian
1 × × non linear slip ×
2 × × non linear slip ×
3 × × non linear slip ×
4 × × free slip ×
5 × × no slip ×
6 × × non linear slip ×
7 × × non linear slip ×
8 × × non linear slip ×
9 × × non linear slip ×
10 × × no slip ×

Table 2.1: MPE 1 ensemble model configuration: Member number 1 is the model standard
configuration. All the other members are obtained changing the specific numerical scheme or para-
metrization.

scheme for active tracers, temperature and salinity, is a mixed up-stream/MUSCL
(Monotonic Upwind Scheme for Conservation Laws, Estubier & Lévy, 2000) scheme.
This hybrid scheme has the capability to switch to a simple up-stream scheme in
areas where numerical instabilities might occur, such as in proximity of the river
mouths, close to the Atlantic boundaries or near the Strait of Gibraltar.

In the multi-physics ensemble dataset we modified some of the assumptions in
this standard model. Specifically, (see table 2.1) the multi-physics dataset is the com-
bination of models with two different viscosity operators (laplacian and bilaplacian)
for the momentum, two vertical diffusion schemes (k − ε and P.P.), three different
advection schemes (upstream, Total Variance Dissipation -TVD - and MUSCL) and
three kinds of bottom friction parametrisations (all those numerical schemes and
parametrizations are briefly described in appendix A). All the simulations started
from the same initial conditions (climatology), the 7th of January 2004, at the 00
UTC and lasted 30 days. We will refer to this dataset as MPE 1 (Multi-Physics
Ensemble number 1).
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Resulting simulations have been analysed in terms of variance and ensemble spread
for the last ten days of the experiment period, and compared to SST derived by
satellite. Comparisons are depicted in figures 2.2 and 2.3. Probably the big differ-
ences in the variability maps are initial conditions effects: since we were starting
from climatology, a motionless steady field, all the ensemble members will reproduce
this variance-lapse. Regarding the spread, it is almost zero in the considered domain,
except in some regions (Gibraltar Strait, river mouths and open boundaries). Here,
we have large instability areas, so small differences can grow and propagate during
the investigation time. Despite the low VE results, this study was helpful in order to
evaluate the capability of the model to generate spatial variability as a function of
the numerical schemes and parametrization.

Var [°C] Var [°C]2 

Figure 2.2: Mean Variability VE in SST generated Multi-Physics ensemble, MPE-1 (left) versus
the natural variability in the observations, the SST from satellite, from the 27th January to 5
February 2004

As we have already noted the main limit of this MPE dataset is the system-
atic error. Since the ensemble will have the structure of the underlying standard
model, if the standard member is not able to reproduce a specific process, then no
one of the perturbed ensemble member will be able to do it. For instance, if the
ensemble is a collection of hydrostatic models, the vertical flow is determined only
by the incompressibility condition without direct energy source. The total kinetic
energy in the hydrostatic case remains bounded, as the horizontal velocity is limited
by the available potential energy and the vertical velocity is limited through the
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 [°C] 

Figure 2.3: Standard Deviation, STDE, of Multi-physics ensemble members MPE-1 (left) and
the Mean Absolute Difference (MAD) between Ensemble Mean and the SST from satellite (right)
from the 27th January to 5 February 2004

incompressibility condition (eq.1.21). Since all convective processes aren’t explicitly
resolved, neither they can be eliminated, they will be parametrized, in different way,
in each member.

2.1.2 Members with different atmospheric forcing

Atmospheric forcing uncertainties in ocean model simulations and analyses are an
important source of errors and thus we choose here to use a wind perturbation tech-
nique that in turn modifies air-sea interaction fluxes that force the model simulation.
Bayesian Hierarchical Model for surface winds (Milliff et al., 2011 and Pinardi et al.,
2011) is a statistical technique able to produce different estimates of winds as a
combination of ECMWF products with QuickScat Data, sampling the uncertainties
affecting the atmospheric forcing field.

The basic idea behind this approach lies in the usage of atmospheric variable
uncertainties to produce changes in air-sea physics parametrization. As said before,
the heat fluxes in the standard model are computed with bulk formulas (Pettenuzzo
et al., 2010) that contains the winds. Thus different winds will produce different
heat fluxes that in turn will produce different model simulations. The major effect
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of wind uncertainty will propagate into the momentum flux too, that is the major
forcing of the ocean circulation. Hence, in this case, we assume a model error in air-
sea physics parametrizations due to the wind forcing. We will refer to this dataset
as Multi-Physics Ensemble 2 (MPE-2) since different winds distribution generates
different physical exchanges in air-sea interactions.

Target
field

Ensemble
members

Product
Measurements by

satellite infrared sensors
Output

simulation

Time
Mid night

"Instantaneous" field
Daily mean centred at

mid night

Diagnostic

All data available in 10
days, using a

symmetrical time
window for the

statistical interpolation

Daily mean time step
600 sec

Table 2.2: Set up of Multi-Physics Ensemble MPE 2 Experiment, first row describes the target
field and the second the 11 ensemble members.

In order to compare the spread and variability growth rate, we carried out an
experiment with a similar set up to the previous.Table 2.2 lists the main differences
between the ensemble members, a total amount of11 output simulations obtained
with the BHM scheme -the standard, plus 10 different wind realisations- starting from
the same initial conditions, and the target field, satellite SSTs measurements. Again,
we compared the ensemble behaviour in term of variance, shows in figure 2.4,and we
can note that we get bigger variability that the previous MPE-1, but we were not
able to reproduce as much variability as the observations. Furthermore concerning
the observed field, we can note that in this period, from 20 of February to the first of
March year 2008, the observations present less variability than in the end of January
of 2004, the time period of the previous experiment. Concerning the ensemble spread,
depicted in figure 2.5, we were able to reach a larger spread than before. Despite
this good result, ensemble spread is still minor than the mean observation STD,
indicating that our standard simulation is affected by a considerable bias. We can
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conclude that BHM for surface winds is a suitable method for generating spread, but
in order to be reliable we need to choose a different standard model.

 Var[°C]  Var [°C]2 

Figure 2.4: Mean Ensemble Variability VE for MPE-2 ensemble (left) and the observation vari-
ability, VO, in the observations from the 20th of February to the 1st march 2008.

 [°C] 

Figure 2.5: SST Standard Deviation, STDE, of MPE-2 ensemble (left) and the Mean Absolute
Difference between Ensemble Mean and the Satellite SST (right), from the 20th of February to the
1st march 2008
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2.1.3 Multi-Model Ensemble members

A third ensemble dataset that considers different models and implementations has
been created basing on the extensive data set of analyses produced in the MyOcean
project (www.myocean.eu). The members of the dataset, briefly listed in Table 2.3,
come from: Istituto Nazionale di Geofisica e Vulcanologia (INGV), Hellenic Centre
for Marine Research (HCMR) and MERCATOR Ocean. The data set build here is
called Multi-Model Ensemble 1 dataset, MME1, and a description of the different
models available in the consortia follows below. All those numerical models are solv-
ing the primitive equations with assimilation of real observations but with different
choice of codes, vertical and horizontal discretization and bathymetry. Specifically:

• INGV SYS3a2 & SYS4a3 Daily mean Output; Both the system use the same
data assimilation technique, 3DVAR (Dobricic & Pinardi, 2008). The major
differences between these kinds of products regard the numerical code used,
OPA 8.2 in the first, while NEMO 9.0 in used in the latter. Furthermore, the
advection scheme for active tracer has been upgraded from the 2nd order cen-
tered used in SYS3a2 to a mixed up-stream/MUSCL in SYS4a3. Concerning
the parametrization in the Atlantic part of the model, SYS4a3 is nested (Oddo
et al. (2009)) within the monthly mean climatological fields computed from the
daily output of the MERCATOR 1/4 °resolution global model Drevillon et al.
(2008).

• HCMR : This model is based on the Princeton Ocean model (POM), which is a
primitive equations free surface ocean model, operating under the hydrostatic
and Boussinesq approximations. Details on the implementation and data as-
similation scheme can be found in Korres et al. (2009).

• MERCATOR: Prototype SYstem 2 Version 3 (PSY2V3) and Prototype SYstem
2 Version 4 (PSY2V4) daily mean output have been provided by Mercator
Ocean Team (Toulouse, France). The main differences between the members
concern the version of the numerical code and the boundary conditions (closed
and relaxed to climatology in PSY2V3, while PSY2V4 is nested in the global
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MMSE
Member

V ertical
scheme

Diffusion V iscosity Assimilation

SYS3a2 P.P. Bilap. Bilap.
3DVAR +

SST nudging

SYS4a3 P.P. Bilap. Bilap.
3DVAR +

SST nudging

Mercator V0 k − ε Laplacian. Bilap. SAM

Mercator V1 k − ε Laplacian Bilap. SAMv2

HCMR(POM) k − l Laplacian Laplacian SEEK filter

Table 2.3: Set up of MultiModel Ensemble MME1 obtained by MyOcean database

model). Details on the operational systems set up can be found in Tranchant
et al. (2011).

All members have been interpolated on the same reference grid (1/16 resolution). All
the simulations have been forced by ECMWF analysis fields except HCMR which
was forced with hourly momentum, heat and freshwater fluxes derived from the
POSEIDON weather prediction system based on a 1/20 °resolution, ETA regional
non-hydrostatic atmospheric model.

In figure 2.6 are presented the variance for the 5-members ensemble and the
observations. The main differences are related to the amplitude; In some area, like
as Gibraltar Strait and the Dardanelles, the variability is underestimates by the
Multi-model. Reversing, we can note the strong ensemble variability near Gulf of
gulf of Gabès and in proximity of Po mouth advected and spreaded by the Western
Adriatic Current.

Generally, the spread (see fig.2.7) over the considered domain is larger than the
Mean Differences, confirming that we need to use the multi-model ensemble in order
to reduce the systematic error.
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Var [°C]2 

Figure 2.6: Mean Variability VE in the Multi-model ensemble MME1 (left) compared with the
natural variability VO in the observations (right) for the SST field, from the 20th of February to
the 1st march 2008.

[°C] 

Figure 2.7: Standard Deviation STDE of Multi-model members MME1 (left) and the Mean
Absolute Difference between Ensemble Mean and the observation, SST from satellite, (right) from
the 20th of February to the 1st march 2008.
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2.2 Multi-Model Multi-Physics Superensemble

A mixture of the previous datasets has been done to improve the reliability of the
ensemble datasets beforehand described, and to increase the ensemble spread.

2.2.1 Multi-Model Multi-Physics Superensemble Data Set 1

The dataset is created using two different models together with the multi-physics
ensemble produced by the BHM method described in section 2.1.2. Concerning the
standard ensemble member, one is the previous operational numerical model imple-
mented at INGV, OPA 8.2, in simulation mode (without assimilation of true obser-
vation) and forced by analysis of ECMWF forcing (Tonani et al., 2008). The latter
member is the actual operational model in simulation mode, NEMO 2.3 (Oddo et al.,
2009). Starting from the analysis of ECMWF we produced 10 different realizations
of wind using the MFS-BHM winds. The table 2.4 shows the major differences be-
tween the ensemble members, hereafter called MPMM-1(Multi-Physics Multi-Model
number 1).

Target Ensemble Members
Product SYS3a2 OPA 8.2 OPA 9.0
Atlantic

Boundaries Close Close Open

Topography Z-levels Z-levels Z-levels &
Partial Step

Water
Flux WF=E-P-R

relaxation to
climatology WF=E-P-R

Assimilation
Scheme 3Dvar

no assimila-
tion

no assimila-
tion

Atmospheric
Forcing ECMWF

ECMWF +
10 BHM

ECMWF +
10 BHM

Table 2.4: Set up of Multi-Physics Multi-Model Ensemble MPMM1 Experiment, the columns are
the members, while the rows are the difference between each member.
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Var [°C]2 

Figure 2.8: Mean Ensemble Variability VE in MPMM1 dataset (left) versus the variability in
SYS3a2 (right) from the 20th of February to the 1st march 2008

[°C] 

Figure 2.9: Standard Deviation STDE of MPMM1 ensemble (left) and the Mean Absolute Differ-
ence between Ensemble Mean and SYS3a2 SST (right) from the 20th of February to the 1st march
2008.
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The map of ensemble variability shows in figure 2.8 is pretty similar to the vari-
ability of the target field, which in this case is the operational SST produced by
SYS3a2. We can note that for this experiment, the strong variability areas are cor-
rectly reproduced on the ensemble variability map, and in some isolated cases, for
example near Gulf of gulf of Gabès, ensemble variability is bigger than the SYS3a2
variability. The map of spread (fig. 2.9) has the right magnitude (bigger than the
previous experiments) but shows low pattern correlations with Mean Absolute differ-
ences, for example over Mersa-Matruh or near Rhode area, there are big differences
between the ensemble mean and the observations and over the same regions, the
ensemble could not generate enough spread.

2.2.2 Multi-Physics Multi-Model Superensemble Data Set 2

The dataset is the merging of the extensive dataset provide by MyOcean project
and some ad hoc members expressly created with the Multi-Physics approach. The
atmospheric forcing were taken from the ECMWF analysis dataset (again, excluding
HCRM which used its own atmospheric field). The ocean initial condition were
different for each model except for the multi-physics members that started form the
same conditions given by the default model run used in the multi-physics ensemble.

Ocean observations have been assimilated in each member with its own assimi-
lation scheme. The main differences in the dataset are shown in table 2.5, hereafter
called MMMP-2 (Multi-Physics Multi-Model number 2). However in order to have
an homogeneous comparison we evaluate variability and spread in the same period
of the previous cases.

The comparisons of the results are appealing. Multi-model Multi-Physics En-
semble 2 is able to reproduce the variance of the observations in the last ten days
of February 2008, see fig.2.10. The maps are very similar with a very good pattern
correlation. Very good correlation can be found even (fig.2.11) between the spread
and the Mean Absolute Differences, and in some region, for example in the Levantine
basin, the spread in the ensemble is bigger the difference between observation and
ensemble mean, in this way we should supply the lack in variability observed in the
same area. This is a practical example in which the multi-model and multi-physics
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MMSE
Member

V ertical
scheme

Diffusion V iscosity Assimilation

SYS3a2 P.P. Bilap. Bilap. 3DVAR +
SST nudging

SYS4a3 P.P. Bilap. Bilap. 3DVAR +
SST nudging

Mercator V0 k − ε Laplacian Bilap. SAM

Mercator V1 k − ε Laplacian Bilap. SAMv2

HCMR(POM) k − l Laplacian Laplacian SEEK filter
P.P. Bilap. Bilap. no

NEMO k − ε Bilap. Bilap. no
multiphysics P.P. Bilap. Laplacian no

P.P. Laplacian Laplacian no

Table 2.5: Set up of Multi-Physics Multi-Model Experiment MPMM 2 obtained by MyOcean
database (on the top) and the multi-physics members (on the bottom of the table) from 20th of
February to the 1st march 2008

Var [°C]2 

Figure 2.10: MPMM 2 Mean Ensemble Variability VE (left) and the natural variability VO in
the observations (right) from the 20th of February to the 1st march 2008
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Figure 2.11: Standard Deviation of MPMM 2 ensemble members(left) and the Mean Absolute
Difference between Ensemble Mean and the observation(right), from the 20th of February to the 1st
march 2008 .

members can be combined in order to reduce their relative error. In this condition
we should be able to proceed with a reliable bias reduction operation.

2.3 Discussion

We have presented a scheme for the generation of ensemble of analysis that could be
used to develop a superensemble estimate. Usually SE performances are evaluated in
a test configuration, hence this the first time that an assessment on the potential skill
of the dataset is being proposed, studying the dataset behaviour during the training
phase. We have described the ensemble components and examined how errors from
different sources get mixed in a non linear fashion. To obtain an estimate of datasets
strengths and imperfections, we studied how well the ensemble variability and spread
corresponded to the observed values, evaluating the correlation between the maps.
Since good correlation does not guarantee accurate prediction, we also calculated
the difference between the mean values, which is a sort of bias measure. In a perfect
ensemble, we should have correlations one for both, zero difference in the mean
difference for the variability and the discrepancy in spread and mean error bigger
than zero but only with the MPMM ensembles we were able to satisfy this option.

In general we observed an underestimation of the variance during the period



36 The SuperEnsemble dataset: preparation and analysis

of interest, this situation is also confirmed from the analysis of figure 2.12, where
differences between the mean variability, VE−VO, are always negative, meaning that
all the ensembles are underestimating its real magnitude, supporting the low-pass
filter behaviour in numerical models. As expected the MPMM 2 dataset is the best
ensemble since it has the biggest correlation coefficients and the smaller bias for
variability and bigger value for the difference with spread and mean ensemble error.
Quite surprising , we can note that the best performance in variability correlation is
reached in the MPE 1, even if it shows the bigger bias between them. Furthermore
we can note the impact for the ensemble built with different atmospheric forcing,
adding other 11 realizations with a different model, we get an increase in pattern
correlation between the spread and mean error abut we penalize the correlation in
variability and the true values of the scores since we get bigger mean values difference
between ensemble and observations.

a b c d e
0.2

0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

 
corr variability corr spread diff mean variability diff mean spread

Figure 2.12: Correlation coefficients between the enseble variability and observations variabil-
ity(black bars), correlation coefficients between the enseble spread and MAD(red bars) difference in
the domain avarage ensemble variability and observations variability (orange bars) and difference
in the domain avarage spread and MAD(yellow bars).
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Chapter 3

Classical SuperEnsemble method

3.1 The Krishnamurti method

Upon the availability of ocean predictions produced by several numerical models,
multi-model ensemble forecasting has attracted a lot of attention recently (Krishna-
murti et al. 2000 , Yun et al. 2003, Berliner & Kim 2008 and Lenartz et al. 2010).
Several methods combining different model forecasts were developed to produce a
forecast ensemble estimate, but in this section we will describe in details the Su-
perEnsemble (SE) method proposed by Krishnamurti et al. (1999) hereafter called
Krishnamurti method.

Let’s call St the SE estimate of a model state variable, Fi,t and let’s define two
different periods, the training and the test periods. The former is a time period pre-
ceding in time the target period of estimation, while the second is the period where
the SE estimate is needed. Krishnamurti method is then defined as:

St = Ō +
N∑
i=1

ai
(
Fi,t − F̄i

)
(3.1)

O =
1

M

M∑
t=0

Ot (3.2)
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where Fi,t is the i− th model forecast available both for the training and test period,
t, F̄i is the mean of the i− th model over the training period, Ō is the mean of the
observations Ot over the training period, ai are regression coefficients obtained by
an appropriate minimization procedure during the training period, N is the number
of models and M is the number of training period units. The systematic errors
of ensemble members in equation (3.1) are removed because anomalies

(
Fi,t − F̄i

)
are used for each model. The regression coefficients (weights) are computed by
minimizing the following cost function:

G =
M∑
t=1

(St −Ot)
2 (3.3)

Substituting (3.1) we obtain:

G =
M∑
t=1

(
Ō +

N∑
i=1

ai
(
Fi,t − F̄i

)
−Ot

)2

(3.4)

The minimization of eq.3.4 with respect to the unknowns values ai is found by setting
∂G
∂ai

= 0. Since equation (3.4) contains N parameters, there will be a system of N
equations.

∂G

∂aj
= 2

M∑
t=0

(
Ō +

N∑
i=1

ai
(
Fi,t − F̄i

)
−Ot

) N∑
i=1

(
Fj,t − F̄j

) = 0; (3.5)

Let’s define the covariances of the ensemble members as:

M∑
t=1

(
Fi,t − Fi

) (
Fj,t − Fj

)
≡ Γi,j (3.6)

and the vector containing the projection of anomaly observations with the individual
models anomalies as:

M∑
t=1

(
Fj,t − Fj

) (
Ot −O

)
≡ φj (3.7)
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Thus (3.5) reduces to a linear system:

~a · Γ = ~φ (3.8)

where ~a is the vector of regression coefficients (the unknowns). In the conventional
superensemble approach, the regression coefficients are obtained using Gauss-Jordan
elimination with pivoting:

~a = ~φΓ−1 (3.9)

The covariance matrix Γ and ~φ are rearranged into a diagonal matrix, and the so-
lution vector is obtained as in eq.(3.9) The Gauss-Jordan elimination method for
obtaining the regression coefficients is not numerically robust (Yun et al., 2003).
Problems arise if a zero pivot element is encountered on the diagonal of the matrix
or in other words the determinant of the matrix is close to zero. This happens when
highly correlated observations are used. We noted that enlarging the training period
we could reduce the degeneracy of the covariance matrix since this is equivalent to
introduce some noise in the input data.

We note that, if there are fewer equations than unknowns, the regression coef-
ficients are under-determined. A simple "toy experiment" has been done using the
truth as one of the ensemble members. This test, can be considered as the maximum
skill that could be achieved with a multi-model, and it is also the only way to control
the perfect multi-linear combination coefficients estimates. As expected, all the re-
gression coefficients are zero, except the weight related to "truth" member, which is
set to 1. Trimming the dataset (removing members) we noticed that when the train-
ing period units (M) are less than the number of multi-model members involved(N),
the algorithm fails, giving incorrect values for the coefficients. So, we can conclude
that the regression procedure is not able to identify the "best" member when it is
trained for a short time period. Hence a minimum constraint for the training period
units must be:

M ≥ N (3.10)

Some studies, (Krishnamurti et al., 2000), have interpreted the regression coeffi-
cients as indicators of the relative model "reliability". However, this interpretation
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needs some clarifications as Kharin & Zwiers (2002) enunciated. For instance, con-
sider a simple ensemble dataset of two members, the first M1 that overestimates,
and the latter M2, which underestimates the true state of the field we want to re-
produce, O. In this specific case we set O as 30 days of SST from satellite over the
Mediterranean Sea, from the 1st March 2008 to 30th march 2008. We built M1 and
M2 as M1 = 1.5 ·O + ε1 and M2 = 0.5 ·O + ε2. In this situation,ε1 and ε2 represent
the unpredictable internal variability that is present in the corresponding model es-
timates. Without any loss of generality, we can assume that these are independent
random variables with 0 time mean and the variance equal to σ2

O. The members will
have the same RMSE during the training period, equal to: 0.25 · σ2

O. If we solve the
system 3.9 we can find that a2 = 1/4 · σ2

O while a1 = 3/4 · σ2
O = 3a2 Thus we infer

that "equally reliable model outputs may not necessarily be weighted equally when
combined optimally".

3.2 Verification scores

A wide range of possible scores are available in order to asses the quality of a Su-
perEnsemble estimate, and for each method we can find the "best" and "worst"
model, according to a chosen score. Following Murphy (1993), a good forecast should
satisfy the three "desirable" properties and for each one we can set an appropriate
score (in brackets):

• Quality(Root Mean Squared Error, RMSE)

• Value(Mean Square Error Skill Score, MSESS).

• Consistency( Anomaly Correlation Coefficient, ACC)

Root Mean Squared Error (RMSE) is defined as:

RMSE =

√√√√ N∑
i

(Fi −Oi)
2

N
(3.11)



3.2 Verification scores 41

Since RMSE contains the square quantities it is more sensitive to large forecast errors
than other scores. For this reason it is possible to subtract the estimated model bias
centering the error of the ensemble mean, i.e.:

RMSEc =

√√√√ N∑
i

(
Fi − F

)2 −
(
Oi −O

)2

N
(3.12)

The generalization of the Mean Square Error:

MSE =
N∑
i

(Fi −Oi)
2

N
(3.13)

is also (see Murphy & Epstein, 1989) the Mean Square Error Skill Score,

MSESS = 1− MSESE
MSER

(3.14)

MSESS equal to 1 indicates the perfect forecast, and it is zero as the forecast skill
is equal to the climatology. A negative value implies that the SE forecast is worst
than the other ensemble members. It is dimensionless and increase with the forecast
skill. Another score is the Anomaly Correlation Coefficient, which is the correlation
between the forecast and the observed anomaly. We used the centered version of it
(3.15) in order to take in account the bias:

ACCc =

[(
Fi −O

)
−
(
Fi −O

)] [(
O −O

)
−
(
O −O

)]√((
Fi −O

)
−
(
Fi −O

))2 ((
O −O

)
−
(
O −O

))2
(3.15)

3.2.1 Multi-Physics SuperEnsemble retrieved from MPE 1

Here we will apply the Krishnamurti method to the multi-physics ensemble members
generated using a variety of physical parametrizations as described in section 2.1.1.
Here we will show the results after the verification procedure. We decided to use the
SST satellite-derived measurements (Marullo et al., 2007) as the target field. In this
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way we set the unbiased estimator as the time mean of those SSTs during a training
period chosen to be from the 7 January to 31 January 2004. During this period,

Figure 3.1: Schematic representation of the MPE 1 experiment set up.

we estimated regression coefficients according to eq.(3.9). For all the days during
the test period,1-5 February 2004 (see fig.3.1), SE estimates were very noisy and
unrealistic (not shown). We assessed the performance of the SE using the RMSE
according to the formula (3.12). For each day in the test period, every multi-physics
member is better than the SE prediction (not shown).
The bad performance of SE predictor is due to the rank-deficiency of the covariance
matrix Γ. The determinant is approximately zero, since the members differ only by
small amplitude anomalies. Thus we conclude that the MPE1 dataset has not enough
spread to recover estimates of the regression weights in Krishanmurti algorithm.

3.2.2 Multi-Physics Multi-Model SuperEnsemble MPMM 1

Experiment

The dataset used in this experiment was generated by 22 runs with MFS BHM-winds
over the Mediterranean area as described in section 2.1.2.
The experiment set up is the following:

1. The target field is chosen to be:

• Horizontal maps of temperature, the SSTs from operational model out-
put SYS3a2 (Tonani et al., 2008), which are the temperature of the first
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layer as evaluated by the model, corrected throughout satellite based SST
values.

2. The training period is chosen to be:

• 1 February-31 March for years 2005 2006 2007 and 1-29 February 2008;

3. The test period is chosen to be:

• 1-31 March 2008;
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Figure 3.2: Domain average RMSE (top panel) RMSEc (lower panel) values for the SE experi-
ment done with MPMM1 dataset.

First we checked that the algorithm work well during the training period. The results
(fig.3.2) confirm that the SE weights were calculated well for most of the training
period both in terms of Root Mean Squared Error and RMSEc. The domain used
to calculate the average is the Rhode Gyre region in the Levantine Basin, between
26-32 °E and 30.25-38 °N.



44 Classical SuperEnsemble method

During the test period the RMSEc and BIAS are shown in figure 3.3 and 3.4 respec-
tively. These results indicate that the SE estimates is comparable to each member
RMSEc and BIAS.
The solid bars depicted in fig.3.6 correspond to the MSESS between the SE and
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Figure 3.3: Domain averaged RMSEc during the test period, 1-31 March 2008, for the MPMM1
ensemble.
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Figure 3.4: BIAS during the test period,1-31 March 2008, for MPMM1 ensemble.

each MM members, this comparison displays that for the test period under study,
1-31 March 2008, SE performs better, in term of SST prediction, than all the other
ensemble members, since the MSESS is always positive. Usually only one particular
diagnostic, the RMSE has been used to demonstrate the good performance of SE,
but as shown in fig.3.5 we don’t reach the same result changing the diagnostic met-
ric. Hence, a crucial consideration to assess the impact of the multi-model approach,
concerns the choice of the diagnostic metric during training period. We can argue
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that SE prediction in which the coefficients are retained by least squares method
during a training period, can not skilful in diagnostic by ACC metrics.

An examination of the fifth day of the prediction over the Rhode Gyre region
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Figure 3.5: ACC during the test period,1-31 March 2008, for MPMM1 ensemble.
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Figure 3.6: MSESS for MPMM1 ensemble for the SST estimates over Rhode Gyre region during
the test period( 1-31 March 2008). Black bars represent gain respect OPA predictions, and blue
bars the gain respect NEMO. Each bar is the MSESS as evaluated by3.14 with reference the MSE
of each member.

(fig. 3.7) shows some unrealistic features of the SE estimate. The map seems to be
affected by overfitting of the ensemble members against the observations. Overfit-
ting (Tetko et al., 1995) occurs when a regression model begins to memorize training
data rather than learning to generalize from trend. In our case, since the number
of parameters is less than the number of observations, the regression model learnt
to perfectly predict the training data simply by memorizing them. In this way it
fails drastically on unseen data, as it has not learned to generalize at all. In our
experiment we can note that in the unbiased estimator map some sub-basin scale
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features, for example the Mersa-Matruh anticyclonic gyre, (Robinson et al., 2001)
"disappeared". When the training period covers different years, is common to ob-
serve a shifting (and consequently a compensation if we evaluate a mean of cyclonic
and anti-cyclonic gyres) in circulation patterns, which can not be any more repro-
duced in the unbiased estimator map. Additional filtering techniques are needed
(and described in the following chapter 4) to avoid this problem.

Figure 3.7: An example of a SE SST estimate on the fifth day of the test period, over Rhode Gyre
region:Observational Mean (top center), analysis (middle left), lowest skill model (bottom left),
SuperEnsemble (middle right) and best ensemble member (bottom right).
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3.2.3 Multi-Physics Multi-Model SuperEnsemble MPMM2 Ex-

periment

This experiment had been set up to investigate the sensitivity of the algorithm to the
training period length and the ensemble member dataset quality. In this experiment,
we have used the MPMM2 ensemble dataset described in section 2.2.2.

1. The target field :

• Horizontal maps of temperature, the Sea Surface Temperature from Satel-
lite.

We fix the test period as ten days, we call the first day of the target period
TP1(Test period 1) and so on to TP10=TP+1. Furthermore, we call the
number of days in the training period TR. With this nomenclature we set:

2. The training period:

• TP1-TR to TP1-1;

3. The test period:

• TP1 to TP10 ;

In order to assess the seasonal dependence of the technique, the dataset time period
covered a whole year, from the 1st of January to the 31 December 2008. For example,
when we want to predict the SST the 1st of June 2008, the exercise was performed
using maximum n cases, with training period set as TR days before the first day,
TP1. As we had shown at the end of section 3.1, the training period length can
not be reduced beyond a threshold that can ensure robust, optimal weights from the
regression algorithm, which in our case has been set as 14 days. So for each day TP1

we could have 46 (60 has been set as the maximum training period length, minus the
threshold value, 14) SE realizations trained by the corresponding training period(see
3.8).

The SST SE estimate, figure 3.9, show that, a range of 30-40 training days gives the
SE is best results, at least for the first 2-3 days of the test period. The SE performance
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Figure 3.8: Schematic representation of the experiment carried with the MPMM2 ensemble to
find the optimal training period length.

Figure 3.9: A typical example of prediction for the first day of test period over the Mediterranean
area, valid on the 1st of June 2008 reached with 41 days of training period, SE prediction (top
left), best participating model (bottom left), SST Satellite derived (top right) and lowest skill model
(bottom right)
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Figure 3.10: A typical example of prediction for the last day of test period over the Mediterranean
area, valid on the 10th of June 2008, reached with 41 days of training period, SE prediction (top
left), best participating model (bottom left), SST Satellite derived (top right) and lowest skill model
(bottom right)
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deteriorates in time; for example, depicts the resulting map of SST for the first day
of the test period, 1 June 2008, obtained with 41 days of training period, while figure
3.10 depicts the resulting maps for the 10 June 2008. We can observe that, in the
latter figure, the noise increased in SE realization and the SE is not any more the
best estimate. This is reflected in the domain average centered RMSE, which shows
a higher skill for the SE estimate up to the day 3 with respect tp the RMSE of the
ensemble members (fig.3.11). The ACC score (fig.3.12), show again that up to the
second day of the test period, SE can be better than all the ensemble members. In
fig.3.13 we can see the better performances of SE prediction in terms of bias until the
fourth day. The best model in centred RMSE term is almost the best also in ACC
and BIAS ranking. We can conclude that, for MPMM2 ensemble, the features of
the ranking are almost consistent across the whole range of used skill measures. The
previous results were reached for an experiment obtained with 41 training days. We
studied the average behaviour of SE predictions analysing all the experiments carried
out during the whole year 2008. The first thing to know is that as expected, for all
the participating ensemble members, their performances are constant during the test
period (see figure3.14). Average of SE predictions can reproduce the performances of
the best participating models, but the associated standard deviation, let us infer that
the performances are highly variable according the training period. For example, the
average SE predictions when obtained with 60 days of the period (fig.3.15) shows
that SE can outperform all the participating models for the first two days of the test
period. Conversely, for shorter training period, 14 days (fig3.16), the SE is the worst
predictor during the whole test period. As for RMSE, we evaluated the average of
ACC (fig.3.17) the averages obtained with 60 or 14 days of training period (fig.3.18
and fig.3.19) and the and BIAS time series during year 2008(fig.3.20). In order to
study the variability, we also evaluated the average of the experiments obtained with
the maximum and minimum training period (fig.3.21 and fig.3.22). ACC show a
similar behaviour to the RMSE performances. While for bias no particular inference
can be drawn from the analyses of SE performances for year 2008. We can only
confirm the unbiased behaviour of SE prediction. We can argue that, the best
performances (as shown in Krishnamurti et al., 2000) of SE predictions were due
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to the unbiased nature of SE prediction. Since Mean Squared Error takes in to
account of the standard deviation of the errors and the bias, SE can outperform all
the ensemble members if the latter term is approximately zero.
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Figure 3.11: Domain average (over the Mediterranean)Time serie of RMSEc, from the 1st to
the 10th June 2008
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Figure 3.12: Anomaly Correlation Coefficient time series, from the 1st to the 10th June 2008



52 Classical SuperEnsemble method

1 2 3 4 5 6 7 8 9 10
1.5

1

0.5

0

0.5

Day Test Period

BI
AS

 [°
 C

]

 

 
SYS3a2 SYS4a3 Merc V0 Merc V1 HCMR SE NEMO

Figure 3.13: Bias (Model - Observation) Time serie over the Mediterranean sea, from the 1st
to the 10th June 2008)
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Figure 3.14: Domain average (over the Mediterranean) time serie of RMSEc (whole 2008, all
the experiments)
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Figure 3.15: Domain average (over the Mediterranean) time serie of mean RMSEc all experimets
trained with 60 days (whole 2008,all the experiments)
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Figure 3.16: Domain average (over the Mediterranean) time serie of mean RMSEcall experiments
trained with 14 days (whole 2008)



54 Classical SuperEnsemble method

0 1 2 3 4 5 6 7 8 9 10 11
0.5

0.6

0.7

0.8

0.9

1

Day Test Period

m
ea

n 
AC

C 

 

 
SYS3a2 SYS4a3 Merc V0 Merc V1 HCMR SE NEMO

1 2 3 4 5 6 7 8 9 10
0

2

4

6
x 10 3

Day Test Period

ST
D 

m
ea

n 
AC

C 
[° 

C]

 

 
SYS3a2 SYS4a3 Merc V0 Merc V1 HCMR SE NEMO

Figure 3.17: Domain average (over the Mediterranean) time serie mean ACC (whole 2008, all
the experiments)
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Figure 3.18: Domain average (over the Mediterranean) time serie mean ACC, all experiments
trained for 60 days (whole 2008)
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Figure 3.19: Domain average (over the Mediterranean) time serie mean ACC, all experiments
trained for 14 days (whole 2008)
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Figure 3.20: Domain average (over the Mediterranean) time serie mean BIAS (whole 2008, all
the experiments)
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Figure 3.21: Domain average (over the Mediterranean) time serie mean BIAS, all experiments
trained for 60 days (whole 2008)
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Figure 3.22: Domain average (over the Mediterranean) time serie mean BIAS, all experiments
trained for 14 days (whole 2008)
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3.3 Sensitivity Studies

3.3.1 Sensitivity on the training period length

During year 2008, we carried out 2532 experiments, and in each, we changed the
starting day of the training period and its length. Hence, for each test period, we
could have several predictions. For example, in the previous plots (for example
figure ??) which show the results for several test periods covering the whole 2008,
the SE predictions have been trained for 45 days. During the same test period, we
have also other realizations, obtained training the algorithm for a different sample.
All those realizations have been over-imposed on the same graph (figures: 3.23,
3.24 and 3.25) in order to assess the dependence with training period. The first
important consideration when assessing the prediction scores, is the dependence
with the training period length.

As expected the most sensitive score is the RMSE, which curves arise more slowly
(becoming almost flat) for a training period longer than 40 days (see fig. 3.23). A
key feature displayed in figure 3.24 and figure3.25 is the relative improvement of the
multi-model performance defined by other skill scores (ACC and Bias), enlarging the
training period.

Furthermore, all the experiments show that there is a critical day in the test
period, in which the SE performance matches the performance of an other ensemble
member, and for all the following days, the superensemble will not be the best
predictor (check fig.3.11). In the remaining last days of the test period, the best
performance are obtained by the single-model member. We indicate that day as
"skill" of the SE prediction, with this definition, using only one index, we could
study more easily the evolution of the skill with the training period when compared
with other ensemble members. All the skills, for RMSE (fig. 3.26), ACC (fig.3.27)
and BIAS(fig. 3.28) used to assess the prediction, show a weak dependence with the
training period. As expected only the bias is almost constant according the training
period length. We over imposed all the curves of skill (depicted in figure 3.29), in
order to determine the different growth rates. As we can see depicted in figure 3.29,
the ACC curve grows faster and reaches a plateau around 40 days of training period.
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Figure 3.23: Domain average RMSE comparisons during the whole year 2008, with different
training period. Dark Blue lines represent shorter training period, red line displays the longest
training period; the associated standard deviation on the bottom panel
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Figure 3.24: ACC comparisons during the whole year 2008, with different training period. Dark
Blue lines represent shorter training period, red line displays the longest training period; the asso-
ciated standard deviation on the bottom panel
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Figure 3.25: BIAS comparisons during the whole year 2008, with different training period. Dark
Blue lines represent shorter training period, red line displays the longest training period; the asso-
ciated standard deviation on the bottom panel
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On the other hand, RMS is almost constant until 35 days of the training period and
then it seems to growth. As we already shown in MPMM 1 experiment, this due to
the overfitting of the regression procedure, which perfectly predict the training data
by memorizing them leading to have unlikely results in the SST maps.
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Figure 3.26: Bias Removed RMSE mean Skill of the Multi Model superenseble with 9 members
against the trainin period legths (green spots) the error bar is the standard deviation
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Figure 3.27: ACC mean Skill of the Multi Model superensemble with 9 members against the
trainin period legths(red spots) the error bar is the standard deviation
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Figure 3.28: Bias Skill of the Multi Model superenseble with 9 members against the trainin period
legths(black spots) the error bar is the standard deviation
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Figure 3.29: Comparison of the mean skills for BIAS(black spots), ACC (red spots) and Centred
RMSE(green spots)
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3.3.2 Sensitivity on the dataset

The aim of this study is to examine the effect on SE performance adding or removing
a "bad" or a "good" model (respectively, a model that consistently performs worse
than average of the ensemble, and complementary the best model) in order to identify
the circumstances under which the MPMM ensemble system really enhances the
prediction skill. Taylor diagrams (Taylor, 2001) have been introduced for model inter-
comparison, providing a method of graphically summarizing how closely a pattern
matches observations. The similarity between two patterns is quantified in terms
of their correlation, their centred root-mean-square difference and the amplitude
of their variations (represented by their standard deviations). The analysis of
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Figure 3.30: Taylor diagram of the ensemble members employed in MPMM 2 experiment vs. SST
satellite-derived.

the Taylor diagram (fig. 3.30) let us create three different sub-samples from the
complete dataset, in order to assess the sensitivity to ensemble goodness and to
study the impact of overconfident (Weigel et al., 2008) dataset or too correlated
ensemble members. The drawn sub-samples are:
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MMSE
Member

V ertical
scheme

Diffusion V iscosity Assimilation

SYS3a2 P.P. Bilap. Bilap. 3DVAR

SYS4a3 P.P. Bilap. Bilap. 3DVAR

Mercator V0 k − ε Laplacian. Bilap. SAM

Mercator V1 k − ε Laplacian Bilap. SAMv2

HCMR(POM) k − l Laplacian Laplacian SEEK filter

NEMO P.P. Bilap. Bilap. no

Table 3.1: Overconfident Dataset Set up, obtained by MyOcean database

MMSE
Member

V ertical
scheme

Diffusion V iscosity Assimilation

SYS3a2 P.P. Bilap. Bilap. 3DVAR

HCMR(POM) k − l Laplacian Laplacian SEEK filter

P.P. Bilap. Bilap. no
NEMO k − ε Bilap. Bilap. no

multiphysics P.P. Bilap. Laplacian no
P.P. Laplacian Laplacian no

Table 3.2: Well-dispersed Dataset Set up, obtained by MyOcean database

• Multimodel constructed from overconfident models ensemble: Sub-
sample A, the members are the operational product, SYS3a2, SYS4a3, Merca-
tor V0, Mercator V1, HCMR and NEMO operational in simulation.(see table
3.1)

• Multimodel constructed from well dispersed models ensemble:Sub-
sample B, the members are SYS3a2, HCMR and the four simulations with
multi-physics members NEMO (see table 3.2).

• Multimodel constructed from bad dispersed models ensemble:Sub-
sample C, Mercator V1; HCMR and four simulations with multi-physics mem-
bers NEMO (see table 3.3).



3.3 Sensitivity Studies 65

MMSE
Member

V ertical
scheme

Diffusion V iscosity Assimilation

Mercator V1 k − ε Laplacian Bilap. SAMv2

HCMR(POM) k − l Laplacian Laplacian SEEK filter

P.P. Bilap. Bilap. no
NEMO k − ε Bilap. Bilap. no

multiphysics P.P. Bilap. Laplacian no
P.P. Laplacian Laplacian no

Table 3.3: Bad-dispersed Dataset Set up, obtained by MyOcean database

For each dataset, we carried out again all the experiments done with the original,
complete, dataset and compared the results using the previous diagnostic metrics.

The reconstructed maps of SST from the sub-samples for the first day of the
test period (see fig.3.31 ), are pretty similar to the complete dataset prediction.
Differences arise during the lead time of the test phase. For the last day of the test
period (see fig.3.32), the maps show bigger differences originated by the increase of
the noise due to overfitting. To avoid misleading, we compared the time-series of
skills only between the overconfident dataset and the original, because with the other
sub-samples, the possible greater skills would be a paradox due to the deteriorating
dataset performances.

Different growth rates can be distinguished for RMSE and ACC, respectively by
analysing figures 3.33 and 3.34. While, there is no growth rate for the bias with the
over-confident dataset (see fig. 3.35). We can infer that the overconfident dataset has
better skill scores and faster skill growth versus the training period length respect
the original nine members ensemble, but for longer training period, the plateau
in ACC curve means that, we incur again in overfitting. A careful analysis of the
performances diagnostic metrics curves show that, the original dataset is not the best
predictor for short training period (figures 3.36, 3.37 and 3.38 ), but the differences
decrease enlarging the training period, letting the bad dispersed dataset, sub-sample
C, be the worst of the available predictions. This latter sub-sample, is the best in
terms of bias for longer training period (see fig. 3.38). These figures also shows that
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the sub-sample A, the overconfident dataset, is the best in term of RMSE and ACC
for longer training period (as we have already seen before), and it also the worst
in terms of bias reduction for shorter training period. We can conclude that, the
algorithm needs time to evaluate the the rights coefficient values.
Since all predictions, derived by the different sub-samples, give similar results for
longer training period, we can argue that, the regression procedure can choose the
best models, neglecting the informations coming from "poor" members, only for
shorter training period, while for longer training period is common the overfitting.
The regression procedure ignore the informations coming from the predictors, and
the SE learns only from the past observations.

Figure 3.31: A typical example of prediction for the first day of test period over the Mediterranean
area, valid on the 1st of June 2008 reached with 41 days of training period, SE prediction from the
original dataset (top left), SE prediction from the well dispersed dataset (bottom left), SE prediction
from the overconfident dataset (top right) SE prediction from the well dispersed dataset (bottom
right)
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Figure 3.32: A typical example of prediction for the last day of test period over the Mediterranean
area, valid on the 10th of June 2008, reached with 41 days of training period, SE prediction from the
original dataset (top left), SE prediction from the well dispersed dataset (bottom left), SE prediction
from the overconfident dataset (top right) SE prediction from the well dispersed dataset (bottom
right)
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Figure 3.33: Bias Removed RMSE mean Skill of the Multi Model superenseble with 9 members
against the training period legths (black spots) the black error bar is the standard deviation, green
spots are Bias Removed RMSE mean Skill for the subsample A ,the green bars are the standard
deviations.
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Figure 3.34: ACC mean Skill of the Multi Model superenseble with 9 members against the training
period legths (black spots) the black error bar is the standard deviation, green spots are ACC mean
Skill for the subsample A the green bars are the standard deviations.
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Figure 3.35: BIAS Skill of the Multi Model superenseble with 9 members against the training
period legths (black spots) the black error bar is the standard deviation, green spots are ACC mean
Skill for the subsample A the green bars are the standard deviations.
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Figure 3.36: Domain average RMSE comparisons for the same test period(1-10 June 2008), with
different training period(indicated over each subplot). Black line is the SE from the original dataset,
green line for the subsample A, blue line subsample B and red line subsample C
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Figure 3.37: ACC comparisons for the same test period(1-10 June 2008), with different training
period(indicated over each subplot). Black line is the SE from the original dataset, green line for
the subsample A, blue line subsample B and red line subsample C
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Figure 3.38: BIAS comparisons for the same test period(1-10 June 2008), with different training
period(indicated over each subplot). Black line is the SE from the original dataset, green line for
the subsample A, blue line subsample B and red line subsample C
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3.4 Summary

In this chapter, we have shown the results obtained with the SuperEnsemble tech-
niques. In the first place, we noted that if the length of the training period (in time
units) is less than the ensemble size, the algorithm fails since it is not able to identify
best/worst participating models.

In the first experiment, we have seen that the lack of spread in Multi-Physics
Ensemble (MPE1) leads the algorithm fail. In the second experiment, we showed
that Multi-Model forced with different atmospheric forcing, MPMM1 experiment,
can outperform all the participating model, but some unreliable features, due to
overfitting problems, are reproduced in the SE SST horizontal maps. In the third
experiment, the Multi-Model Multi-Physics approach, MPMM2 experiment, we have
studied the sensitivity and limits of this procedure. A careful examination of the
results showed that robust optimal weights are difficult to calculate giving short
training period samples, while too long training period achieved overfitted predic-
tions. An other key point is the choice of the dataset components: as long as the
individual components are able to make a positive contribution to a relevant aspect
of the prediction, the multi-model will benefit from this additional information. We
have shown that better performances are reached reducing the ensemble size, leaving
out the worst participating models. In this scenario, one model is superior to all the
other component, so poorer model could not add information (well dispersed dataset
and overconfident dataset). Hence, the key of the success of multi-model concept lies
in combining independent and skilful models. Furthermore, if the quality assessment
detects a single model that is always worst than the others, it should be excluded. For
long training period, all the sub-samples achieve very similar performances, meaning
that there is an upper limit for the predictability, over that overfitting problems arise.
An other consideration when assessing the training period size, is related to the field
variance. The time mean during the training period of the truth estimator would be
no more "unbiased" for longer training period, being affected by the seasonal cycle
effects.

An area of future work should explore the usefulness of EOFs (Empirical Or-
thogonal Functions) to remove the degeneracy of ill-conditioning matrix when short
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training period are used (Krishnamurti et al., 2003).
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Chapter 4

Improving the classical MMSE
approach

4.1 Background

We have shown that the results of the superensemble technique proposed by Krishna-
murti et al. (1999), can outperfom the individual ensemble members involved, when
suitable conditions on free parameters are chosen. However some problems, due to
the overfitting of observations during the regression procedure and ill-conditioning
on the covariance matrix, arise. The SE maps have shown some unreliable features:
they are very noisy fields, which neglect the spatial correlation of the variable un-
der study, and where some sub-basin scale structures, depicted in the observations,
disappeared. Kharin & Zwiers (2002) suggest that poorer performance of combined
multi-model predictions through multiple linear regression is due to overfitting or,
in other words, biased estimates of the coefficients. Either co-linearity of predic-
tors may explain part of the failure, principal component regression (von Storch H.,
1995.) offers an alternative way of performing the regression with linearly uncorre-
lated variables.

Hence, our actual study is focused on the improvement of the superensemble es-
timate using appropriate filtering techniques: the Empirical Orthogonal Functions
(EOFs). EOFs were first used in meteorology in the late 1940s (Obukhov, 1947).
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This powerful method, consisting in a space time-field decomposition into spatial
patterns ans associated time indices, contributed much in advancing our knowledge
of the atmosphere and oceans. The EOFs method is in essence an exploratory (I.E.
non model orientated) tool, able to find the spatial patterns of variability, their time
variations and gives a measure of the importance of each pattern.

4.2 Formulation and computation of EOFs

Given any space and time dependent field, EOF analysis finds a set of orthogonal
spatial patterns along with a set of associated uncorrelated time series or principal
components(PCs). The geometrical constraint characterizing EOFs and PCs can
be very useful since the covariance matrix of any subset of retained PCs is always
diagonal. Here, will be presented a brief description of how to obtain EOFs, giving
the linking between their development and application in our case. Once the anomaly
data matrix (bij see ) is determined : The EOFs are obained as the solution of the
classical eigenvalues problem

Γ~x = λ2~x; (4.1)

The projection of the anomaly field b onto the k− th EOF(~xk) is the k− th Principal
Component, whose elements ak = b~xk are given by: Throughout EOFs/PCs analysis,
the initial field b becomes:

b =

p∑
j=1

λkaku
′
k (4.2)

The dimensionality of the initial data can be reduced by truncating the sum at an
index M which is less than the rank of the matrix b. However, there is no univer-
sal rule for truncation, and the choice of the degree of EOF is somehow arbitrary.
Usually, the truncation order is obtained by fixing the amount of the represented
variance (a typical value is 90% of variance). Hence, we chose a set of n leading
EOFs that can explain at least that desired amount of variance (in our cases the
number could span from 7 to 9).
The orthogonality property provides a complete basis where the time-varying field
can be separated into spatial patterns and associated time indices. This completely
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characterises conventional EOFs. Orthogonality constitutes, however, a strong con-
straint that puts limits to the physical interpretability of individual EOFs, since in
general, physical patterns tend to be non-orthogonal (Simmons et al., 1983) . Fur-
thermore, when the eigenvalues are not distinct (some may have multiplicity greater
than one) the eigenspectrum degenerates. The numerical techniques employed can-
not distinguish them and the choice of the right truncation order can be problematic.
The most common situation in which malfunctioning can occur, is when the data
represent the local variances (A Navarra, 2010). In these cases, EOFs will try to fit
globally the domain under consideration, with as few modes as possible, generating
first EOFs (low order modes) with very large structures. Here, the typical patterns
in the analysed field may appear in secondary (higher order) EOFs. If their real rela-
tion is localized, the EOF, due to new reference system, spreads it creating artificial
non-local relations and the eigenspectrum degeneration. Thus, the choice of a wrong
truncation order, due to the reached amount of the desired explained variance, may
cut off some important phenomena.
As first guess we applied the EOF analysis only to the weights mask, in order
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Figure 4.1: Eigenvalues spectrum for the weights mask in the BHM dataset

to filter the noise due to the overfitting procedure involved in the regression of the
anomalies during the long training period. The analysis of the eigenvalues power
spectrum yields to a very smooth spectrum (depicted in figure 4.1). In this situa-
tion, we need to choose a high truncation order, 15 upon a rank matrix of 22, to
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explain at least the 85% of variance. In this example 15 EOFs were not sufficient to
correctly identify noise from signal, since the 16-17th eigenvalues were pretty close
to the chosen threshold. Even if several "rule of thumbs" are available, it is better
to realize that the choice on the truncation strategy, must be driven by ad hoc con-
siderations.

In order to remove the degeneracy of the power spectrum we decided to apply
the EOFs analysis to the multi-model anomaly field and project the observation
anomaly field on the EOF too. Step back to equation 3.8, we can substitute in Γ its
eigenvalues and solve the following system

~xλ~a = ~x~φ (4.3)

In this way the regression coefficients vector can be evaluated as:

~a = (~xλ)−1~x~φ (4.4)

which is the product of the inverse of the filtered (projected on the EOFs) covari-
ance matrix and the Principal Components of the observations anomaly field. The
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Figure 4.2: Eigenvalues spectrum for the weights mask in the BHM dataset

principal component analysis was performed in order to reduce the spatial dimension
to a number smaller than the original number of grid points. The results for this
example suggest that, with a very small number of EOFs we can explain most of the
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principal modes of variability of our system.In fact, the first EOF can explain alone
more than the 30% of variance. Since we decided to retain only the components
that can explain the 85% of the variance, in our case it corresponds to take only the
first seven-nine EOFs (according to training period length involved) of the anomaly
fields, see figure 4.2 and we considered the remaining part of the spectrum a noise.

4.3 MPE1 EOFs-based SuperEnsemble

We performed the EOFs analysis on the first dataset, the perturbed physics en-
semble experiment MPE 1. EOFs Analysis was able to reduce the degeneracy of
the covariance matrix due to the high correlation of the member collected. The
new computation of superensemble shows better performance and physical reliabil-
ity compared to the classical approach (not shown). Nevertheless, SE is not the
best performer of the ensemble. The diagram bars (not shown) indicates that SE
estimates are not the best performer for the test period under study.

4.4 MPMM1 EOFs-based SuperEnsemble

The dataset has been described in section 2.2.1. Weights have been obtained by
the regression of the projections of true estimator (SST from SYS3a2) and MPMM1
ensemble members, retaining the first nine EOFs, able to explain 87% of the system
variance. We were able to reduce the noise in the SST maps (fig.4.3), and until the
20th day of test period, the EOFs-based SE gives the best results in terms of RMSEc

(fig.4.4). At the end of test period, SE estimates are affected by a large bias (depicted
in fig. 4.5) and it becomes the worst ensemble member both in RMSEc. Figure 4.6
shows the performance of EOFs-based SE estimates in term of MSESS. Again the SE
better performs better than all the other ensemble members. However, it must be
enhanced that in this way we have lost again some sub-basin scale features. Further
investigations are needed on the balance between filtering magnitude and the time
scales of the dynamical processes involved.
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Temperatue (°C) 

Figure 4.3: An example of a SE estimate of SST, on day three over Rhode Gyre region: Observa-
tion mean (top left), projection of ,SYS3a2 analysis on EOFs (top right), SYS3a2 analysis (center
left), Krishnamurti SE estimate(center right), EOFs-based SE (bottom left), and best ensemble
member(bottom right).
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Figure 4.4: Domain averaged RMSE between the OPA members(black), NEMO members (blue),
SuperEnsemble prediction(red) and SE prediction EOFs-based(green) during the test period
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Figure 4.5: BIAS, OPA members(black), NEMO members (blue), SuperEnsemble prediction(red)
and SE prediction EOFs-based(green) during the test period
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Figure 4.6: MSESS for MPMM1 ensemble for the SST estimates over Rhode Gyre region during
the test period( 1-31 March 2008). Black bars represent gain respect OPA predictions, and blue
bars the gain respect NEMO. Each bar is the MSESS as evaluated by3.14 with reference the MSE
of each member.
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4.5 MPMM2 EOFs-based SuperEnsemble

In this section, we present the results of the multimodel Multi-physics experiment
MPMM2, a collection of analyses from different research institutes and four perturbed-
physics members, covering the whole year 2008 and described in 2.2.2. We performed
again all the 2532 experiments with the same set up of the classical Krishnamurti
approach, but in this case, we reached different conclusions.

EOFs-based SE estimates do not depict noisy SST distribution, see fig.4.7, but
their performances got worst increasing the lead time of the test period (fig.4.8).
These new maps seem to be affected by a bias. In fact the projection of the satellite
SST on the EOFs are affected by the same bias of the time mean of the observations.
A comprehensive comparison of the two methodologies employed is shown in figure
4.9. Right panels show (respectively from top to bottom) RMSEc, BIAS and ACC
for the experiments trained with the Krishnamurti method. The abscissae axes is
the time, the ticks stand for the month of year 2008. Each bar is result for the
fifth day of the test period, and obtained with the minimum training period,14 days.
While on the left side are depicted, from top to bottom, RMSEc, BIAS and ACC
for the EOFs-based SE experiments. We can note the high correlation between BIAS
and RMSEc for the EOFs-based SE estimates. This means that the EOFs-based SE
estimate are highly influenced by the choice of the unbiased estimator. For example
during August time, when the bias reach is minimum, RMSEc is smaller for EOFs-
based SE estimate than the classical SE estimate. This inference is supported by
ACC plots. This coefficient considered a measure of potential performance, ignores
the bias by construnction. Figure 4.10 shows the same scores depicted in fig 4.9,
but obtained with a training period of 30 days. In this latter case, we have a bigger
bias, and we have a bigger RMSEc. Another aspect of the quality of SE in term
of RMSE is its bias. ACC plots(bottom panels in figures 4.9 4.10) clearly show a
worsening of performance of EOFs-based SE estimates in terms of ACC. It is clear
from those results that the new method does not bring the desired improvements.

A careful analysis of the weights mask shows smaller values for the coefficients
than in the classical approach(see fig.4.11). Referring to Krishnamurti et al. (2003)
we try to reproduce a similar set up, using seven members (the subsample A, over-
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Figure 4.7: First day of test period over the Mediterranean area, valid on the 1st of July 2008,
trained for 55 days: SE prediction (top right), EOFs-based SE estimates (top left), SST Satellite
derived (bottom right) and projection of satellite SST on the EOFs (bottom right)
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Figure 4.8: 10th day of test period over the Mediterranean area, valid on the 10th of July 2008
and trained for 55 days: SE prediction (top right), EOFs-based SE estimates (top left), SST Satellite
derived (bottom right) and projection of satellite SST on the EOFs (bottom right)
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Figure 4.9: Performances of SE obtained by 10 days of training period, during year 2008, left
panels the classical approach, right side the EOFs-based SE approach. Blue bars stand for RMSE,
red bars for BIAS and green bars for the ACC.
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Figure 4.10: Performances of SE obtained by 30 days of training period during year 2008, left
panels the classical approach, right side the EOFs-based SE approach. Blue bars stand for RMSE,
red bars for BIAS and green bars for the ACC.
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confident dataset) and trained them for 100 days. Krishnamurti in his experiment
used a laplacian based superensemble assessing that in that way he could extract
some extra skill from gradients and laplacian, avoiding the degeneracy of covariance
matrix. As we can see with the classical approach ( top of 4.11 ) we got larger value
(the magnitude order of unit and more), while in the filtered approach the weights
exhibit a distribution of positive and negative fractional values. So we can states
that:

|wmeof
(
Fmn − Fm

)
| < |wm

(
Fmn − Fm

)
| (4.5)

It is clear from that inequality (4.5) that the bias taken in to account in the term(
Fmn − Fm

)
is under estimated with fractional weights. EOFs analysis let us obtain

weight values closer to that papers (see fig.4.12), but in our experiments, especially
when trained for long period, the time mean of observations,Ō in no more unbiased
since it takes in account of the seasonal cycle signal, and it influenced by compensa-
tion effects of small scale circulations. Hence SE fails due to a wrong BIAS reduction
since it will be affected by cold bias during spring-summer time and warm bias dur-
ing fall-winter time (well depicted in figures 4.9 and 4.10). The key point is the kind
of field we want to reproduce, since we are considering a faster varying field than Kr-
ishnamurti case (geopotential height 850hPa), EOFs-based SE evaluated with this
kind of "unbiased estimator" was not a good way to perform the regression. An
other consideration is related to the truncation order, probably we choose a wrong
one. In the new reference system defined by EOFs, the remaining part of the power
spectrum can describe some small scale features, but these structures being of the
same order of the noise, are filtered. We should choose a new truth estimator, which
can take in to account of seasonal cycle effects and that can be considered unbiased
or we have to enlarge the desired explained variance, in this way small scale features
are treated as signal and can be reproduced in the EOFs-based SE estimates.



88 Improving the classical MMSE approach

Figure 4.11: Geographical distribution of the regression coefficients for the first model member, as
the simple anomaly field (top) and for the filtered anomaly field (bottom) after 100 days of training
period, note the different colorbars
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FIG. 5. Geographical distribution of statistical weights for different member models: (a) Northern
Hemisphere and (b) Southern Hemisphere. Color scale of the fractional weights is shown at the bottom.

least squares minimization of errors is different from
the simple bias correction in the following manner.
The simple classical bias is given by
CB (classical bias) � {Z (�, �) � Z (�, �)}/N.Fn on

(4)
Here the nth-day forecast bias for a total number of N
days is considered; Fn is the average forecasted geo-Z
potential height value at 500 hPa for a period of N days

while On is the averaged of the observed (analyzed)Z
geopotential height for that period.
The superensemble-based bias, following Eq. (1), is

given by

SB (superensemble bias) � Z � Zsn on

t�N P�Q

� a (Z � Z ). (5)� � i Fi FMi
t�1 1

Figure 4.12: Statistical coefficient fromKrishnamurti et al. (2003)
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Conclusions

Weather , ocean and climate prediction are subjected to many sources of error:

• Uncertainties in model initialization, due, for example due to incomplete data
coverage, measurement error and boundary conditions.

• Uncertainties and error in the model itself, because of some physical processed
are not fully understood, or also due to the parametrization of physical pro-
cesses computational limitations.

Multi-model is pragmatic a approach pursued to obtain a a first crude estimate
of the range of uncertainties induced by model error, while superenseble (SE) is a
weighted mean of different model outputs in which the weights are evaluated by
multiple linear regression between the "truth observator" and model outputs , which
seems to be affected by a reduced model error. Previous employments of this tech-
nique (Krishnamurti et al., 2000 and Kharin & Zwiers, 2002) have shown slightly
contradictory results.

In this thesis we examined the different conditions under which SE seems to
outperforms the generating ensemble. First we noted that for a very short training
period, the algorithm fails a priori. Hence a first condition concerns the length of
the training period which must exceeds the generating ensemble size. As we have
pointed out, our ensemble perturbed physics approach (MPE1) is not a good method
to generate the dataset, since lack of spread causes a degeneracy in covariance ma-
trix, which can not be easily inverted. MPMM1 ensemble, generated by MFS BHM
winds acting on the vertical stratification of the fluid, was able to generate a large
ensemble variability. In this latter contest the SE approach could give good results.
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A careful comparison of the centred RMSE, reduced the outperformances of SE,
enhancing the critical point played by the unbiased estimator. A third ensemble,
MPMM2 ensemble, has been used to study the sensitivity on the free parameters
that determine the SE: training period length and ensemble dataset quality. Sensi-
tivity studies show that longer training period let the unbiased estimator be a bad
estimate of the field we want to reproduce (seasonal cycle effects). Furthermore, due
to overfitting of multilinear regression (common problem when the number of ob-
servations is bigger than the parameters) the resulting maps show very noisy fields,
which neglect the spatial correlations of the field.
We found a weak dependence of the performances of SE versus the length of the
training period, and equally Anomaly Correlation Coefficient, ACC, showed a simi-
lar dependence but with a different rate, that is faster for short training period and
than reaches a plateau. Instead, no important correlation have been noticed for the
BIAS. We can infer that as soon as the ACC curve reaches the plateau and corre-
spondly the RMS starts to diminish, we are in a overfitting regime, anomalies are
perfectly "predicted" with any physical meaning but only due a statistical regression.
This idea is confirmed even by the sensitivity of the algorithm with the ensemble
composition. Following Weigel et al. (2008) we built three different sub-samples,
an overconfident dataset, a well dispersed dataset and a bad dispersed dataset. For
short training period, the tree sub-sample outperform the results of the original
dataset, while for longer training period (almost 4 times the ensemble size) there are
no particular differences between them, meaning that, again, we incur in overfitting.
It must be pointed out that, as expected, better performances are reached with the
overconfident dataset, confirming Weigel’s suggestion that the dataset quality is a
main impacting factor to the out-performance of SE.
As Krishanumrti and Kharin pointed out, the employment of EOFs/PC analysis
could be a good method to remove the ill - conditioning of covariance matrix and
the overfitting. The employment of EOFs didn’t give the desired improvements. The
retrieved coefficients were very small, and bias reduction problem arose. Histogram
of the bias in time clearly show seasonal cycle effects (negative temperature bias in
temperature rising period and conversely positive bias in fall-winter time). The key
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point is the kind of field we want to reproduce, since we are considering a faster
varying field, EOFs-based SE evaluated with this kind of "unbiased estimator" was
not a good way to perform the regression. We should choose a new truth estima-
tor, which can take in to account of seasonal cycle effects. Another consideration
is related to the truncation order. In the new reference system defined by EOFs,
the remaining part of the power spectrum can describe some small scale features,
but these structures being of the same order of the noise, are filtered. Probably
increasing the desired explained variance, small scale features are treated as signal
and can be reproduced in the EOFs-based SE estimates.
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Appendix A

Numerical schemes available in
NEMO

A.1 Vertical Physics

A.1.1 KPP turbulent closure scheme

The KPP turbulent closure assumption for tracer is:

ŵb̂ = −k
(
∂b

∂z
− γ
)

(A.1)

where k is the vertical mixing coefficient and b is any prognostic quantity. The
non-local transport term is non zero only under convective forcing condition; while
γ is proportional to the surface flux and inversely proportional to vertical friction
velocity and mixing layer depth.

A.1.2 TKE scheme

The vertical mixing coefficients are computed from a 1.5 turbulent closure model
based on a prognostic equation for e , the turbulent kinetic energy,and a closure
assumption for the turbulent length scales.
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∂ē

∂t
=
Aνm

e3

[
(∂u/∂k)2 + (∂v/∂k)2

]
− AνmN2 + 1

e3
∂
∂k

[
Aνm

e3
∂ē
∂k

]
− cε ē

3/2

lε

Aνm = Cklk
√
ē; AνT = Aνm/Pn

• lε and lk are the dissipation and mixing turbulent length scales;

• Prt Prandtl number.

A.1.3 The Pacanowski and Philander (PP) scheme

As in Pacanowski & Philander (1981), the background viscosity is νb = 1cm2/s,and
diffusivity is set as κb = 0.1cm2/s. The ajdustable parameters are set as: ν0 = 100cm2/s

, n = 2 and α = 5. For the convection case (Ri < 0), a maximum value of 1 ·106cm2/s

is used in order to mix the heat instantaneously in the vertical to a depth that ensures
a stable density gradient.

A.2 Tracer Advections

• Total Variance Dissipation scheme, the tracer at velocity points is evaluated
using a combination of an upstream and a centred scheme. For example, in
the i-direction :

τupsu =

τ i+1 if ui+1/2 < 0

τi if ui+1/2 ≥ 0

τ tvdu = τupsu + cu
(
τ cen2
u − τupsu

)
;

– 0 ≤ cu ≤ 1 flux limiter function;

• Monotone Upstream Scheme for Conservative Laws, the tracer at velocity
points is evaluated assuming a linear tracer variation between two T-points.For
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example, in the i-direction :

τmusclu =

τ i + 1
2

(
1− ui+1/24t

e1u

)
∂̃iτ if ui+1/2 ≥ 0

τ i+1/2 + 1
2

(
1 +

ui+1/24t
e1u

) ˜∂i+1/2τ if ui+1/2 < 0

– ∂̃iτ is the slope of the tracer on which a limitation is imposed to ensure
the positive character of the scheme.

• Upstream-Biased Scheme,it is based on the fourth order scheme to which an
upstream-biased diffusion term is added. In the i-direction :

τubsu =

τ cen4
u + 1

12
τ ′′i if ui+1/2 ≥ 0

τ cen4
u − 1

12
τ ′′i+1 if ui+1/2 < 0

(A.2)

τ ′′i = δi
[
δi+1/2τ

]
– The 4th order part (as well as the 2nd order part as stated above) has to

be evaluated at the now time.

– The diffusion term is a biharmonic operator with an eddy coefficient pro-
portional to the velocity.

A.3 Viscosity Operator

A.3.1 Laplacian Operator

In basin scale models, the smallest spatial scale is often the width of the western
boundary current. When it is controlled by laplacian friction it is called a Munk
boundary layer. The condition that the grid scale ∆x be smaller than the Munk layer
width results in a minimum bound for viscosity (Smith and McWilliams, 2003):

ν > νM ≈ β∆x3
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On the other hand, viscosity cannot be arbitrarily large due to the stability
constraint (similar to the CFL criterion for advection). This criterion is more severe
in ocean models that use explicit leap-frog time stepping schemes for non-linear
advection, with the viscous terms lagged by one time step for stability. For laplacian
viscosity :

ν <
∆x2

8∆t

Laplacian operator as modelled in OPA is :

DlT
T =

1

e1T e1T e1T

[
δi

[
AlTu

(
e2ue3u
e1u

δi+1/2 [T ]
)]

+δj

[
AlTv

(
e2ve3v
e1v

δj+1/2 [T ]
)]

(A.3)

It preserves simmetry and ensures a complete separation between vorticity and
divergence parts.

A.3.2 Bilaplacian Operator

For a biharmonic operator the criterion as coded in the OPA model is:

ν <
∆x4

128∆t

For the biharmonic operation the numerical stability criterion is often more stringent
than the Munk layer constraint. A decrease of the biharmonic coefficient with the
grid spacing is often needed in order to ensure stability on spatially variable grids
Smagorinsky (1963) has proposed to make the laplacian viscosity proportional to
the deformation rate times the squared grid spacing ∆x2. Such a parametrisation
can be physically motivated in three dimensional turbulence and is used in large
eddy simulations. A study by Griffies and Hallberg (2003) suggests that using a
biharmonic operator with Smagorinsky-like viscosity is better in eddy permitting
simulation when the flow is non homogeneous (in the presence of western bound-
ary currents, for instance) because it allows lower levels of viscosity in the interior.
The latter combination is the operational model set-up. The lateral fourth order
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bilaplacian operator on tracers is obtained by applying (A.3) twice.





101

Appendix B

High resolution model

The aim of this study is to give a detailed description of the new implementation
of the OGCM employed Mediterranean Sea forecasting. This model has been de-
veloped starting from the latest operational model, with a higher resolution of 1/24

°(almost 4.5Km) and 91 unevenly spaced vertical levels unevenly spaced and having
a thickness ranging from 2 m at the surface to 245 m at the ocean bottom. The depth
of the first level is 1 m and that of the deepest is 5000 m. The model domain and
the bathymetry are shown in Fig.B.1: the coastline resolves 49 islands. The Digital
Bathymetric Data Base-Variable Resolution has been used to make the MFS2491
coastlines and bathymetry. DBDB-5at 1’ resolution has been used for the Mediter-
ranean basin, whilst for the Atlantic DBDB-5 have been used. The bathymetry file
has been manually corrected along the Croatian coast by a comparison with detailed
nautical charts. The bathymetry has been interpolated on the model horizontal and
vertical grid and manually checked for isolated grid point, islands and straits and
passages and it is shown in figureB.1 . With this new grid, Messina Strait (fig. B.2)
could be resolved, and as for Gibraltar strait an up-stream scheme is used to avoid
numerical instabilities. Other main differences between the old resolution coast line
can be found near Iskenderum gulf, that now it is fully resolved (fig.B.3).
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Figure B.1: New model bathymetry and domain for the MFS2491 set up

Figure B.2: new Bathymetry near Messina Strait
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Figure B.3: new Bathymetry near Iskenderum Gulf

B.1 Vertical model discretization

All the vertical profiles taken from CTD show the same shape: gradients of density
and tracers are often concentrated in the thin layers just below the surface mixed
layer or in the thermocline. Because of the computational limitation, a stretched grid
in vertical direction (with the maximum of resolution near surface) is best choice to
ensure a second-order accuracy scheme (see Treguier et al. (1996)) without increasing
computational cost.
NEMO vertical mesh is determined by four factors:

1. the bathymetry (in meters);

2. the number of vertical level (in our case 72, in the future it can increase till
100);

3. the analytical transformation of z (depth of level, see equations (B.1) and
(B.2)) and the vertical scale factor (vertical derivatives of the transformation);
in our case we use z-coordinate with partial step bathymetry. The vertical
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distribuition follow the equations (see ?) :

z0(k) = hsur − h0k − h1 log

[
cosh

(
(k − hth)
hcr

)]
; (B.1)

e(k) = −h0 − h1 tanh

(
(k − hth)
hcr

)
; (B.2)

In the current configuration the values are

hsur = −110493.9930400577
h0 = 1362.526788714143
h1 = 1362.915990505609
hth = 101.8303560439433
hcr = 30.00000000000000

(B.3)

In figure B.4 we can see the new vertical distribution profile implemented and
compared to the previous version. In figure B.5 is the depicted the new relative
frequency histogram of the number of vertical levels per interval depth, in
yellow, and compared with the old relative frequency, in red.

4. Masking system.

The equation (B.1) allows us to define a nearly uniform vertical location of levels at
the ocean top and a bottom with a smooth hyperbolic tangent transition in the water
column between. Once chosen the desired resolution in the surface (bottom) about
2m (300m) layer and a range of depth (in our case it varies from 0 to -5000m) we can
determine the values of the parameters in expression (B.3). Due to the atmospheric
forcing parametrization and assimilation, the first layer must lie under 1m depth.
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Figure B.4: Vertical level distribution versus the depth of water column as computed by NEMO-
OPA, new one 91 levels in red, in black the old distribution with 72 levels
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Figure B.5: Histogram of relative frequency number of level for each interval depth, in old version
in red, while the new in yellow.
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