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1. Introduction

1 Introduction

1.1 River role in the world ocean circulation

and the Mediterranean Sea

Rivers represent the primary link between the land and the ocean in the water

cycle. Figure 1.1 shows the riverine freshwater discharge to the global coastal

ocean following Milliman and Farnsworth, 2013: the mean annual discharge to

the global ocean is estimate to be 36000 km3/yr. Rivers discharging into the

Black Sea and the Mediterranean Sea are estimated to be about 930 km3/yr and

are drawn Fig.1.1 as part of the European drainage into the North Atlantic (green

area) which accounts for almost 2100 km3/yr. The e↵ects of the freshwater dis-

charge are generally confined to the coastal zone of the open ocean, but if the

basins receiving the freshwater release are semi-enclosed (i.e. the Mediterranean

Sea, the Adriatic sub-basin and the Black Sea) the rivers may strongly a↵ect the

basin wide circulation and dynamics.

The literature counts several estimates of the total freshwater discharge into the

Mediterranean Sea which have been performed by means of national and inter-

national repositories as the Global River Discharge database RivDIS (Vrsmarty

et al., 1998), the Global Runo↵ Data Center (GRDC) hydrological database and

the Mediterranean Hydrological Cycle Observing System, Medhycos, data server

(Medhycos, 2001) or by means of modelling studies (Ludwig et al., 2009).

Most estimates vary around 400-450 km3/yr for the Mediterranean Sea and 350-

400 km3/yr for the Black Sea. Major di↵erences among the several databases are

due to a strong damming occurred within the last 60 years (Skliris et al., 2007;

Vervatis et al., 2013) in the Eastern and Western Mediterranean sub-basins in-

volving their major freshwater sources (i.e. the construction of the Aswan Dam

along the Nile, the damming of the Ebro river and the Russian rivers draining

into the Black Sea).

Rivers flowing into the Adriatic Sea currently provide almost 1/3 of the total

runo↵ of the Mediterranean basin with an annual rate estimate varying from 133

11



1. Introduction

km3/yr (Vrsmarty et al., 1998) to 164 km3/yr (UNEP, 1978). In details the

“river runo↵” represents about 80% of the annual freshwater rate into the Adri-

atic Sea. About 19% of the total runo↵ rate is not conveyed by rivers but enters

the sea as “land runo↵” particularly along the dalmatian coast and an additional

1% is caused by “submarine springs” mostly near the eastern coast (Struglia et

al., 2004). The river runo↵ in the Adriatic basin is mainly due to the Po river,

carrying alone about 28% of the basin annual value, 19% comes from the other

rivers along the northern coast (mainly Adige and Isonzo), 45% comes from the

eastern coast (Buna/Bojana, Vjose and Neretva among the others), and the re-

maining 8% from the western coast (Raicich, 1996).

As know from the literature, the whole Mediterranean Sea is a “concentration

basin” (Pinardi et al., 2006; Cessi and Pinardi, 2014) with negative annual heat

flux meaning the net heat flux is upward oriented (-7 Wm�2 following Pettenuzzo

et al., 2010), and positive annual freshwater flux (defined as evaporation minus

precipitation and runo↵) meaning that evaporation prevails on precipitation and

runo↵ (0.64 m/yr following Pettenuzzo et al., 2010). The Adriatic Sea is instead

a “dilution basin” (Pinardi et al., 2006) with a well marked negative annual heat

flux (-33.2 Wm�2 following Pettenuzzo et al., 2010), but also a negative annual

freshwater flux (-1.14 m/yr following Artegiani et al., 1997 a-b). The sign of the

freshwater flux of the Adriatic basin is due to river runo↵ since evaporation and

precipitation tend to balance each other on annual basis.

This work focuses on the Central Mediterranean Sea, which is composed of the

Adriatic Sea in its northernmost extension and the Ionian Sea in its southern

part, communicating each other at the Otranto Strait. We point out the Central

Mediterranean Sea is one of the few Mediterranean areas where river runo↵ is im-

portant for the coastal as well as the open sea overturning circulation. As far as

we know, there are few evidences in the literature of river e↵ects on on the basin

wide overturning circulation. Only Rahmstorf (1995) speculates an increasing

freshwater inflow in the Northern Atlantic is potentially able to reduce or even

shut down the local overturning circulation. Previously Skliris et al., 2007 and

Somot et al., 2006 pointed out river role on the dense water formation processes

of the Mediterranean basin. Spall (2012) demonstrates that, in marginal sea

12



1. Introduction

areas as the Adriatic Sea, an increase in surface freshwater gain (due to both pre-

cipitation and runo↵) can lead to a shutdown of water sinking and dense water

formation, and the marginal sea Meridional Overturning Circulation may switch

from anti-estuarine to estuarine mode.

River role on the Central Mediterranean Meridional Overturning Circulation, ex-

pecially on its downwelling branch in the Adriatic Sea, is here presented for the

first time.

1.2 Structure of the Regions Of Freshwater

Influence

Several theoretical as well as modeling studies (Simpson et al, 1993; Kourafalou

et al, 1996; Kourafalou, 1999; Schiller and Kourafalou, 2010) pointed out the

freshwater discharge radically a↵ects the shelf areas adjacent to the estuaries,

the so called Regions of Freshwater Influence (ROFIs).

A ROFI system experiences a physical regime that is radically di↵erent from the

other parts of the shelf sea, where the wind stress, the surface heating-cooling

and the tidal currents represent the predominant mechanisms of the buoyancy

budget. Simpson (1993) and Garvine(1999) among the others have shown that

the input of freshwater in a coastal area generates baroclinic dynamics. This

means that river discharge creates its own local circulation: the freshwater inflow

spreads o↵shore of the river mouth and promotes the water column stratifica-

tion and the local overturning circulation (Chapman and Beardsley 1989).The

resulting dynamical structure in the coastal region is the so called ‘buoyant river

plume’ which consists of an o↵shore bulge turning anticyclonically plus a coastal

alongshore current due to the geostrophic adjustment.

The o↵shore expansion of the buoyant river inflow into the continental shelf has

been widely investigated in the literature: Yankovsky and Chapman (1997) cate-

gorized river plumes as ‘surface advected plumes’ and ‘bottom advected plumes’

based on the properties of the estuarine outflowing water: the outlet width, the

13



1. Introduction

outlet depth, the velocity and density of the river discharge. The surface advected

plume (Figure 1.2) develops when inflowing water remains on the top layer of the

shelf area with the ambient dense water below. It spreads mainly radially and re-

sults in an o↵shore cyclostrophic bulge which is attached to the estuary and turns

anticyclonically; a surface along-shore current due to the geostrophic adjustment

is also present but very narrow. On the other hand, the bottom advected plume

(Figure 1.3) is tipically established when the buoyant inflow occupies the entire

water column into a depth greater than the outlet depth and its o↵shore trans-

port is controlled by the advection in the frictional bottom boundary layer. The

related coastal current remains in contact with the bottom while moving o↵shore,

with the density front extending from the surface to the bottom. Generally high

density di↵erence between the plume and the ambient flow favors the surface ad-

vected plume while a bottom advected plume is established if the buoyant inflow

shows a high volume transport.

More recent developments (Garvine and Whitney, 2006; Mac Cready 2009; Mac

Cready and Geyer, 2010 among the others) focused on understanding which role

the salt ocean water entering the estuary plays in the resulting river plume (Fig-

ure 1.4). Thus the estuary dynamics started to be investigated jointly with the

coastal ocean dynamics and the characteristics of “sharply stratified”, “partially

stratified” and “well mixed” estuaries have been pointed out as well as their e↵ects

on the resulting river plume. A sharply stratified estuary is generally established

when the “flow ratio”, defined as the tidal velocity over the river streamflow ve-

locity, is less than 0.1 with a sharp vertical salinity gradient. A partially stratified

estuary shows a flow ration between 0.1 and 10 meaning that the tidal flow is

comparable with the river flow and a relatively vigorous mixing in the vertical

smooths the salinity gradient. A well mixed estuary shows a flow ratio major

than 10 and the tidal pumping is so vigorous that the salinity is homogeneous in

the vertical and varies in the horizontal (Fischer et al., 1979).

The shape and dynamics of a river plume are also a↵ected by external forcings,

mainly wind stress and tides. The predominant role of tides or wind stress on

river plume depends on the strength of both wind stress (i.e. wind intensity and

direction with respect to surface currents) and tides (i.e. spring or neap tides,
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ebb or flood tides) as well as on the relative distance of the plume with respect to

the outlet (Chen and MacDonald, 2006). The plume dynamics has been proved

to be strongly tidal in the so called “near-field plume” (Jirka et al, 1981), that

is immediately out of the river outlet and corresponds to the excursion length

of ebb tides. The tidal e↵ect changes during a whole tidal cycle depending on

flood or ebb tides: during flood currents the tidal pumping is onshore directed

and favors the ocean water entrainment into the estuary and thus the mixing of

the water column; during the ebb currents the tidal pumping is o↵shore directed

and tends to bring river freshwater seaward, thus increasing the stratification of

the water column in the shelf area (Guarnieri et al, 2014). Winds a↵ect the river

plume as well: the downwelling winds favour the homogenization of water col-

umn and tend to turn the plume into an along-shore current while the upwelling

winds promote the water stratification and the o↵shore drift (Chao, S. Y., 1987).

The role of wind stress prevails on tides as the buoyant river inflow moves far

from the outlet. This area is named “far field plume”, and here the wind mixing

removes the increased stratification due to the freshwater discharge and leads to

the irreversible turning of river water into shelf water (Mac Cready 2009).

1.3 Numerical modeling the coastal water

cycle

Modeling the spatial and temporal distribution of the water cycle is a challenge

because water cycle processes span a wide range of spatial and temporal scales

and because many human activities influence the water cycle.

Integrated meteo-hydrological modelling system are essential to improve the rep-

resentation of the whole water cycle both on local and large scales pointing to the

reconstruction of historical events as well as the short term forecasts of extreme

events and the assess of future scenarios.

Most meteorological and climatological models still represent the surface and sub-

surface processes of the water cycle in a oversimplified way, by using a “column-

only” land surface sub-model and without accounting for the lateral routing of
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surface and subsurface water flow.

Hydrological modelling got limited success in the past due to the lack of obser-

vational datasets and surface and subsurface input data (Nickovic et at., 2010).

However during the last decades, the availability of hydrological observations

has improved; moreover higher-resolution data on topography, river routing, soil

types and land use have become available.

Hydrology modelling covers a huge variety of approaches: from easier methods

(i.e. conceptual and parametric models) to more complex wave systems (i.e.

kinematic, di↵usive or dynamic wave models).

As far as we know the HYdrology surface runo↵ PROgnostic Model,HYPROM

(Nickovic et al., 2010), is currently the only hydrological modeling system with

fully prognostic equations for overland water flow but it doesn’t represent the sub-

surface physical processes as the groundwater drainage, the saturated subsurface

water flow and the aquifer water storage. In this study we use the WRF-Hydro

system (Gochis et al., 2013) which is based on the di↵usive wave approximation

for representing both the overland water flow and the river streamflow. Moreover

it solves the subsurface soil physics and is 2-way coupled with NOAH-MP (Niu

et al., 2011) land surface model.

The quality of meteo-hydrological modelling is a demanding issue. Precipita-

tion forecasting is still one of the most critical task for meteorological mesoscale

models since the precipitation field is the end result of many multi-scales pro-

cesses interacting each other and is sensitive to topography, soil types and land

use conditions. Moreover the grid spacing of mesoscale models is in the range

of ”gray-zone” (Moeng et al., 2007; Shin et al., 2013) resolutions for convection,

where the power spectrum of the turbulence reaches its peak and thus the con-

vective motions and the precipitation are only partially resolved.

The quality of meteorological modelling is critical for ensuring the quality of

hydrological modelling as the uncertainties associated with the meteorological

simulations propagate into the hydrological models (Pappenberger et al., 2005).

Finally the hydrological models rely on many parameterised processes with tun-

able coe�cients requiring a calibration procedure.

Several advances have been achieved in the coupling between hydrology and at-
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mosphere models or between ocean and atmosphere models, while the link of

hydrological and ocean models is still poorly investigated and the ocean models

treat the river discharge in a simplified way for both short term predictions and

long term scenarios (e.g. climatological discharge and zero or constant salinity

at river mouths).

Moreover literature shows several modelling studies dealing with ROFI’s regime

and river water turning into shelf water, while only few studies have started to

explore the salt ocean water entrainment into the estuarine areas and how this

conditions and perhaps drive the net freshwater release at river outlets.

The ocean models neglect the energy and water balance occurring into the es-

tuary and the exchange-flow triggered by the ocean water entrainment, which

conditions the net freshwater release. Moreover the freshwater release at river

outlets is usually parameterises by means of climatological discharge and zero or

constant salinity. We pointed out rivers a↵ect the coastal as well as the basin

wide circulation and dynamics, thus the performance of regional ocean models is

expected to be strongly dependent on a comprehensive and e↵ective representa-

tion of the estuary dynamics and the net freshwater release.

On the whole the reliable representation of the streamflow along the river net-

work as well as the water exchange at the estuaries are challenging tasks of the

numerical modelling and are both assessed in the presented study.

1.4 Objectives and structure of the thesis

The aim of this study is to understand and to assess the e↵ects of river freshwa-

ter inflow on the circulation and dynamics of our region of interest, the Central

Mediterranean Sea, both on shelf and basin scales, over short-term as well as

long-term range.

As far as we know this study provides the first investigation on river role on the

Central Mediterranean overturning circulation.

On the same time we point to improve the hindcast/forecast capability of our

regional hydrodynamics model both on shelf and basin scales through a consis-

tent representation of river inflow into the Central Mediterranean Sea taking not
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account all the physical processes involved in the local water cycle of specific

catchments. An integrated modelling system including the atmosphere, the hy-

drology and the estuary dynamics has been set up upstream the regional ocean

model at the Ofanto river outlet. The Estuary Box Model developed by the

University of Connecticut (UCONN) jointly with the National Centre for the

Atmospheric Research (NCAR) Climate Global Division and the University of

Washington (UW) has been implemented for the selected case study, the Ofanto

river, downstream of the meteo-hydrological chain and upstream of the regional

ocean model. The model performance has been evaluated by comparison with a

highly simplified approach based on Knudsen’s relation (Knudsen, 1900). Finally

we built up an intermediate modelling approach.

The thesis is organised as follows.

Chapter 2 describes a set of twin experiments, which either does or does not ac-

count for the river inflow respectively. Rivers are treated as surface point sources

of climatological discharge and salinity. The spanned period is from the beginning

of 1999 to the end of 2012 and a high resolution marine hydrodynamics model

based on Nucleus for European Modeling of the Ocean code, NEMO (Madec et

al, 2008), has been set. These experiments aim to point out river role on the

estuarine/anti-estuarine character of the Adriatic Sea circulation, the Adriatic

Dense Water Formation processes and the Central Mediterranean anti-estuarine

meridional overturning circulation developing between the Adriatic basin and

the open Ionian Sea. The set-up of the integrated modeling system including

the atmosphere, the soil processes and the hydrology/hydraulics is described in

Chapter 3. The implemented chain consists of the mesoscale meteorological model

WRF-ARW (Skamarock et al., 2008), the land surface model NOAH-MP (Niu

et al., 2011) and the hydrological model WRF-HYDRO (Gochis et al., 2013).

The strategy we adopted consists of a dynamical downscaling approach moving

from the regional scales of the atmospheric modeling to the catchment scales for

the hydrology/hydraulics purposes. We chose the Ofanto river catchment and its

estuary as a relocatable case study. The Ofanto is a semi-perennial river with

a mean annual value at its outlet of about 15 m3s�1, but may significantly in-

crease its runo↵ when heavy rain events occur and eventually floods. Chapter 4

18



1. Introduction

is divided into two parts. First part o↵ers a theoretical discussion on the mod-

elling of the estuarine dynamics. Two approaches are tested and compared: the

Knudsen’s relation and a steady-state and tidal-cycle averaged 2-layer box model

developed by UCONN and NCAR (Garvine and Whitney, 2006). Moreover a

new approach is developed and here presented. The second part of Chapter 4

focuses on the coupling of the the estuary dynamics representation with the re-

gional ocean model. The added value of representing the water exchange into

the estuaries is discussed as well as the capability of the regional ocean model to

simulate the resulting buoyant river plume.

An overall summary of the performed work and the conclusions are o↵ered in

Chapter 5. The papers written during the PhD project and the talks held at the

workshops I joined are listed in an additional section.
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Figure 1.1: Fluvial discharge of freshwater to the global coastal ocean. Num-

bers are mean annual discharge (km3/yr); the arrows are proportional to these

numbers (from Milliman and Farnsworth, 2013)

Figure 1.2: Schematic of a surface advected plume (from Yankovsky et Chapman,

1997)

Figure 1.3: Schematic of a bottom advected plume (from Yankovsky et Chapman,

1997)
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Figure 1.4: Schematic of the components of estuary vertical profile of velocity
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2 River e↵ects on the overturning circulation

and dynamics of the Central Mediterranean Sea

Preamble

This chapter is a co-authored paper with N.Pinardi, P. Oddo, S.A. Ciliberti and

G.Coppini, entitled “Influence of river runo↵ in the Central Mediterranean Sea

basins” and submitted to the Ocean Dynamics.

The role of riverine freshwater inflow in the Central Mediterranean Sea is studied

using a high-resolution ocean model with a complete distribution of rivers in the

Adriatic and Ionian catchment areas. The impact of river runo↵ on the Adriatic

and Ionian Sea basins is assessed by two twin experiments, with and without river

inflow, from 1999 to 2012. This study underlines, for the first time, how river dis-

charge a↵ects the intensity of the Central Mediterranean Meridional Overturning

Circulation (MOC), especially its northern downwelling branch in the Southern

Adriatic. It is found that the Central Mediterranean Sea is characterized by a

persistent anti-cyclonic, anti-estuarine MOC with secondary estuarine cells that

strengthen in years of large river runo↵ due to an enhanced stratification close

to the surface and a more stagnant circulation at the bottom. It is found that

the Adriatic Sea is dominated by an anti-estuarine dynamics, also when large

and anomalous river runo↵ occurs and the resulting buoyancy budget is posi-

tive or null. However rivers act on favouring lower kinetic energy circulation

of the Adriatic basin and thus weaken the intensity of the antiestuarine MOC.

We found rivers strongly reduce the Adriatic dense water formation, not only in

the northern sub-region where the major discharge is concentrated, but also in

its southern area by modifying the local water stratification. On the whole the

Central Mediterranean MOC is demonstrated to be controlled by wind forcing at

least as much as by buoyancy which includes river runo↵.
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2.1 Introduction

River discharge is one of the components of the water budget in the Mediterranean

basin, together with evaporation, precipitation and the net inflow of freshwater

from the Atlantic ocean through the Strait of Gibraltar and from the Black

Sea through the Dardanelles Strait. Annual water losses due to evaporation

exceed water gains from precipitation and river runo↵ resulting in a positive sur-

face freshwater budget, defined as evaporation minus precipitation and runo↵

(i.e.0.64m/yr following Pettenuzzo et al., 2010). Moreover, the net heat bud-

get of the basin is negative (Bethoux, 1979; Pettenuzzo et al., 2010), thus the

Mediterranean Sea is a “concentration basin”.

The general characteristics of the Mediterranean thermohaline circulation are

schematized in Figure 2.1. This circulation is characterized by inter-annual as

well as multi-decadal time scales and it is driven by three major conveyor belts:

the Zonal Overturning Circulation (ZOC) in the Southern Mediterranean pro-

pelled by the Gibraltar stream flow and Levantine Intermediate Water (LIW)

formation processes, the Western Mediterranean Meridional Overturning Circu-

lation (MOC) originating in the Gulf of Lion, the Central Mediterranean MOC

originating in the Adriatic Sea (Figure 2.1). These overturning cells are triggered

by buoyancy losses and water mass sinking which occur in the open ocean ar-

eas of the Northern Mediterranean Sea and the Levantine sub-basin. Both deep

and intermediate waters form in the regions o↵shore the Gulf of Lions, in the

Southern Adriatic and in the Northern Levantine Basin, forced by intense winter

heat losses and influenced by the presence of large scale permanent cyclonic gyres

driven by wind stress curl (Pinardi et al., 2006). The Aegean Sea is marked as

another dense water site in Figure 2.1 (red spiral), but Roether et al. (1996)

demonstrated it played a relevant role only during the Eastern Mediterranean

Transient, EMT, occurred at the end of the eighties and first half of the nineties.

Moreover Manca et al. (2003) have found that the Aegean Sea has stopped the

production of deep waters after the occurrence of the EMT and that the Adriatic

Sea has started to be again the unique site of production of the deep waters for

the Eastern Mediterranean sub-basin.
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The Central Mediterranean Sea area, composed of the Adriatic Sea in its northern

part and the Ionian Sea in its southern extension, is one of the few Mediterranean

Sea areas where river runo↵ is important for the coastal as well as the open sea

circulation, not only in the Adriatic Sea, where most of discharge is located (i.e.

about 1/3 of the whole Mediterranean river discharge following Ludwig et al.,

2009), but also in the Ionian Sea because the Adriatic Sea dense waters are one

of the major drivers of the Ionian abyssal circulation (Curchitser et al., 2001,

Manca et al., 2002). Moreover the Southern Adriatic opean-sea convection rep-

resents the downwelling branch which drives the overturning circulation pattern

in the Central Mediterranean sub-basin.

As far as we know this is the first study on river influence on the Central Mediter-

ranean MOC, similarly to Rahmstorf’s speculation (Rahmstorf, 1995) on fresh-

water role on the Northern Atlantic overturning circulation.

Previously Skliris et al., 2007 investigated the impact of reduced discharge of

Ebro and Nile rivers on the dense water formation in the Eastern and Western

Mediterranean sub-basins and Somot et al., 2006 pointed out river role on the

dense water formation processes of the Mediterranean basin in a transient cli-

mate change simulation with lower river runo↵. On the other hand the role of

freshwater inputs (due to both rivers and precipitations) on the dynamics of a

marginal sea, as the Adriatic basin, has been widely investigated in the litera-

ture. Spall (2012) demonstrates that, in marginal sea areas, an increase in surface

freshwater gain can lead to a shutdown of dense water formation and sinking, and

the marginal sea Meridional Overturning Circulation (MOC) switches from anti-

estuarine to estuarine mode. Recently, Cessi et al. (2014) established that the

estuarine/anti-estuarine character of a semi-enclosed sea with a two-layer flow at

the strait is determined by both wind and buoyancy forcings. The wind forcing

is normally a source of mechanical energy for the circulation, while the buoyancy

forcing could be either an energy source or a sink depending on the sign of the

net buoyancy flux at the surface. For estuarine basins, such as the Baltic and

Black Sea, the positive buoyancy flux (dominated by precipitation and runo↵

exceeding evaporation), is a net energy sink for the circulation, thus producing a

less vigorous meridional circulation than in the anti-estuarine basins.
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The Adriatic Sea is a “dilution basin” with a negative annual freshwater bud-

get of about �1myr�1 (Artegiani et al., 1997), mainly due to river runo↵ and a

negative annual heat budget. The buoyancy flux, which is a combination of the

net heat and freshwater fluxes, could eventually be positive, thus determining

a net sink in energy and possibly a net estuarine character of the circulation.

Pinardi et al. (2006) show that, due to river runo↵, the Adriatic Sea could be

characterized by zero net buoyancy flux, thus producing a basin where the cir-

culation is mainly powered by the wind stress. However, the energetics proposed

by Cessi et al. (2014) cannot be applied satisfactorily to the Adriatic Sea, since

the flow at Otranto is not just a two-layer flow. Thus, a comprehensive analy-

sis of surface buoyancy and meridional transport is needed to fully establish the

estuarine/anti-estuarine character of the Adriatic Sea circulation.

In order to evaluate the Central Mediterranean MOC we need to characterize

the Adriatic Sea circulation and its forcings since the MOC downwelling branch

starts there. Having a large freshwater budget, which makes the Adriatic basin

a dilution basin as explained above, it is key to study the influence of runo↵

on the Adriatic Sea overturning circulation and its possible e↵ects on the MOC.

Two main questions are addressed by the present paper: is the Adriatic Sea an

estuarine or anti-estuarine basin in a realistic runo↵ regime? How is the Cen-

tral Mediterranean MOC a↵ected by rivers? Related issues regarding how rivers

a↵ect the formation processes of Adriatic dense waters and their spread toward

the Ionian Sea are also addressed.

In order to answer these questions, a high resolution general circulation model

was set up, forced by realistic fluxes of water, heat and momentum. The impact

of freshwater inflow on the circulation is assessed by studying a twin experiment

based on a mechanistic approach: the full dynamics case is close to reality (EXP1)

so that taking out just the rivers (EXP2) we can estimate their theoretical e↵ect

on the circulation.

The paper is organized as follows. Section 2 outlines the experimental design,

and details the parameterization of the rivers as surface boundary conditions and

the validation of the model performance. Sections 3 to 6 describe the experiments

highlighting the role of the river runo↵ forcing. A summary and conclusions are
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presented in the last section.

2.2 Experimental design

2.2.1 Model configuration and twin-experiment set-up

The numerical model used is the Nucleus for European Modelling of the Ocean

(NEMO) in its latest version (Madec, 2008). It is a three-dimensional finite di↵er-

ence numerical model adopting the Boussinesq and hydrostatic approximations.

The area covered by the model grid is the Central Mediterranean Sea from 12.2�E

to 21.0�E and 30.2�N to 45.8�N with a horizontal resolution of about 2.2 km (2.5

km in the meridional direction and 1.7 to 2.2 km in the zonal direction).

Figure 2.2 shows the bathymetry of the domain, river mouth grid points and the

three sub-regions into which the Adriatic Sea is conventionally subdivided on the

basis of its bottom morphology: the Northern (NAd), the Middle (MAd) and

the Southern Adriatic (SAd). The connection with the Ionian Sea occurs at the

Otranto Strait where the sill is 800m deep, located at approximately 40�N .

Two twin experiments were performed, with and without river discharge, span-

ning the period from 1 Jan 1999 to 31 Dec 2012. The time series of the kinetic

energy integrated over the basin volume show the model spin up period consists

of the first few months of 1999, thus the whole 1999 is assumed to represent the

model spin-up and results for this year are not shown.

We later refer to the two simulations, with and without river discharge respec-

tively, as Experiment 1 (EXP1) and Experiment 2 (EXP2).

It’s worth stressing that the conceptual paradigm of the paper is to explain the

role of river inflow but not to fully reproduce reality. To do this, we adopt a

mechanistic approach: the full dynamics case (EXP1) is close to reality so that

if we take out just the rivers (EXP2) we can estimate their theoretical e↵ect on

the circulation.

To note that this study o↵ers the first implementation of NEMO code over the

Central Mediterranean Sea area, with even a complete representation of almost
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all the rivers flowing into the Central Mediterranean Sea. In this work the re-

gional model is forced by a 1/16� resolution dynamical downscaling of the daily

analysis of the operational Mediterranean forecasting System, MFS (Tonani et

al., 2008; Pinardi and Coppini, 2010) which is based on the same NEMO engine

and covers the entire Mediterranean basin.

We found out a tuning procedure is required in order to optimize the horizontal

eddy viscosity and di↵usion coe�cients of our model, starting from the constant

values customized for MFS configuration and considering that both models use

a biharmonic operator for the horizontal mixing terms but horizontal resolutions

are in the ratio 1:3.

A further di↵erence with the mother model MFS is that TKE turbulence closure

scheme is used (Mellor and Blumberg, 2004) for computing the vertical eddy

viscosity and di↵usivity coe�cients instead of using a local Richardson number

dependent formulation (Pacanowski and Philander, 1981).

All the details on the numerical model configuration are given in Appendix A.

2.2.2 River runo↵ parameterization and datasets

River runo↵ into the Mediterranean Sea is mainly concentrated in the Central

Mediterranean sub-basin, whit rivers flowing into the Adriatic Sea providing al-

most 1/3 of the total (Struglia et al., 2004; Ludwig et al., 2009). Furthermore

a strong damming occurred within the last 50 years in the Eastern and Western

sub-basins involving their major freshwater sources. After the construction of the

Aswan Dam in 1964, the runo↵ of the Nile, the river with the largest water load

and drainage basin in the Mediterranean until the early sixties, was drastically

reduced (by more than 90%, from 2700 m3s�1 to 150 m3s�1), a↵ecting the salt

budget of the basin. The runo↵ of the Ebro River, one of the major rivers drain-

ing into the Western Mediterranean Basin, was also abruptly reduced (by more

than 60%, from 1500 m3s�1 to 400 m3s�1 ) due to damming in the early sixties.

Finally the control of the Russian rivers draining into the Black Sea started in

the fifties with the runo↵ decrease reaching about 60 km3/yr at the mid-nineties

(Skliris et al., 2007; Vervatis et al., 2013).
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Thus currently the only major runo↵ sources located out of the Central Mediterra-

nena Sea are the Rhone and the Ebro rivers flowing into the Western sub-basin.

The freshwater discharge into the Central Mediterranean Sea is almost totally

concentrated along the Adriatic coastlines: the Po river is the main freshwater

source of the Central Mediterranean Sea and accounts for almost 30% of the

Adriatic annual discharge (Cushman-Roisin et al., 2002). Besides the Po, other

significant freshwater inputs are the Buna/Bojana, Vjose and Neretva along the

Eastern Adriatic coast, and the Adige and Isonzo along the northern Italian

coast. Moreover the Mediterranea Sea counts on a great number of very small

rivers (Milliman, 2001), owing to strong topographic relief favouring the forma-

tion of small watersheds.

This study provides the first numerical representation of all the rivers draining

into the Central Mediterranena Sea, there are 67 Adriatic and Ionian rivers in

total, 52 flowing into the Adriatic Sea and 15 into the Ionian Sea. Model rivers

are parameterized as “surface sources” of runo↵ and salinity at the estuary grid

points while no temperature information is prescribed. Our assumption of no

temperature di↵erences between river inflow and shelf sea is generally valid as

river plumes are controlled by the salinity gradient.

To note that all the other major rivers flowing into the Western and Eastern

sub-basins (i.e. the Ebro, Nile and Rhone rivers) are parameterizes as monthly

climatologies of runo↵ and salinity in the mother model MFS; the net inflow at

Dardanelles Strait is also parameterized as a river with monthly climatological

runo↵ and salinity values taken from Kourafalou and Barbopoulos (2003).

Moreover sensitivity tests carried out with MFS mother model in the shelf areas

close to river outlets suggest to set salinity values equal to 15 psu for all rivers,

except 17psu for the Po river due to the extensive tidal mixing occurring in the

Po delta. We maintain the same choice in our model configuration. Discharge

values consist of monthly climatologies for all the parameterized rivers, except

daily observations for the Po river.

Monthly climatologies are applied in the middle of each month after a prelim-

inar correction following the Killworth’s procedure (1996), which produces new

monthly “pseudo-values” and preserves the original monthly values when linear
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daily interpolation is applied.

The Po river data, which are not climatologies but daily averages based on ARPA

EMR 30 minute observations at the Pontelagoscuro station, are unequally divided

into nine grid points representing the nine branches of the delta (Po di Goro, Po

di Gnocca, Po di Tolle, Po di Bastimento, Po di Scirocco, Po di Bonifazi, Po di

Dritta, Po di Tramontana, Po di Maistra) according to percentages in Provini et

al. (1992). It is worthy to highlight that the observational dataset of the Po river

is the only one available over the simulation period, but working at least with the

daily observations of the Po river enabled us to capture most of the interannual

variability of the riverine freshwater release in the Central Mediterranean Sea,

being mainly due to the Po river. Moreover, as mentioned before, we point to

explain the theoretical role of a realistic river inflow but not to fully reproduce

reality, thus any weaknesses of our numerical set up and data choice don’t im-

pact our speculation that focuses on the di↵erences we found out by means of a

mechanistic approach.

We parameterize river outlets as surface sources of runo↵ and salinity and we use

a “natural boundary condition” (Huang, 1993), plus ad-hoc salt values prescribed

at river mouths. Most of previous modeling studies represented river discharge in

the Mediterranean Sea by means of the “virtual salt flux boundary condition” as

Somot et al, 2006 while Kourafalou, 1996, Skliris et al., 2007 and Vervatis et al.,

2013 adopted the so called “natural boundary condition”. The virtual salt flux

formulation or “mixed boundary condition” (Bryan, 1986) prescribes freshwater

flux as additional salt flux added to the salt flux boundary condition allowing

the concentration-dilution e↵ect to be represented. This is the approach gener-

ally assumed in the ocean general circulation models with rigid lid hypothesis,

eventually jointly with a restored sea surface salinity.

The natural boundary condition (Huang, 1993) prescribes freshwater flux as a

volume surplus of zero-salinity water, modeled as a correction to the model’s top

sigma layer vertical velocity at the grid points covering the source locations. Thus

a real freshwater flux is specified as the vertical velocity boundary condition for

the continuity equation while the salt flux through the surface is set equal to

zero. Kourafalou, 1996 was the first to extend the natural boundary condition
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to the riverine freshwater flux. Moreover Beron-Vera et al. (1999) introduces

a complementary non-zero salt flux at river outlets through ad-hoc salt values

in the salt flux boundary condition. Indeed in this model we use the natural

boundary condition for vertical velocity and a complementary non-zero salt flux.

The surface boundary condition for vertical velocity reads:

w |z=⌘ �
@⌘

@t
+ (u, v) |z=⌘ ·5H ⌘ = (E � P � R

A
) (2.1)

where w is the vertical velocity, ⌘ is the sea surface height, E is the evaporation

rate (ms�1) computed from the latent heat flux (see eq.(A.14) in Appendix A)

and thus function of the ECMWF atmospheric data with 6h frequency, P is the

precipitation rate (ms�1) coming from CMAP (CPC, Climate Prediction Center,

Merged Analysis of Precipitation) monthly climatologies, R indicates the river

runo↵ (m3s�1) we provide at the grid points representing the outlets and A stands

for the river mouth cell areas. Further details and the complete description of

the numerical set up are provided in Appendix A.

The complementary salt flux boundary condition is also:

Kt
@S

@z
|z=⌘= Sz=⌘(E � P � R

A
) (2.2)

where Kt is the vertical mixing coe�cient for tracers and Sz=⌘ is the ocean model

surface salinity except prescribed ad-hoc salt values at river mouths.

To note the inter-annual variability of the surface water (and consequently salin-

ity) flux through the surface boundary conditions written above is driven only

by variation in the evaporation flux and in Po river regimes. This is a lack of

our configuration since the interannual variability of the freshwater gains of the

Mediterranean basin is only due to the Po river regime and doesn’t account for

the precipitation variations and the other rivers regime. However there are no

consequences on our theoretical purpose that is to assess how rivers a↵ect the

basin dynamics just including or not their parameterization in the model set up.

Daily time series of total discharge in the model domain during the simulation

period (1 Jan 1999 to 31 Dec 2012), are shown in the top panel of Figure 2.3,

while the Po’s daily discharge is displayed in the bottom panel. According to

our discharge data, the annual average runo↵ rate in the Central Mediterranean
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Sea is equal to 4.72 · 103m3s�1, 29.7% coming from the river Po. Moreover 94.6%

due to the Adriatic rivers, and 5.4% to the Ionian rivers. Maximum values of the

total daily discharge were observed in autumn 2000, autumn 2002, and autumn

2008-winter 2009. Annual mean peaks took place in 2000 (5.28 · 103m3s�1), 2002

(5.19 · 103m3s�1), 2009 (5.37 · 103m3s�1), and 2010 (5.26 · 103m3s�1).

Table 2.1 lists the adopted climatological datasets for river runo↵, the time range

for computing the monthly climatologies and the annual mean discharges as use-

ful reference values.

Most of the datasets consist of observations taken at the hydrometric stations

nearest to river mouths, and few of them are estimated values. Time series for

the various rivers cover di↵erent periods. However, the time series of the major

rivers, accounting for the most of the Central Mediterranean discharge, overlap

for at least 20 yr.

All river mouths are “point sources” except for 2: Marecchia to Tronto rivers

(Tronto excluded) in the Marche region and Vibrata to Fortore rivers (Fortore

excluded) in the Abruzzo and Molise regions which are “di↵used sources” and

thus, were split among several grid points. These di↵used sources and the rivers

in Puglia are the only rivers of the model based on Raicich’s (1996) climatologies

(see Figure 2.2).

The estimated discharge into the plain between the Po and the Marecchia was di-

vided between eight sources: Po di Volano, Reno, Lamone, Fiumi Uniti, Bevano,

Savio, Rubicone, and Uso. The Bacchiglione and Agno-Gu rivers flow into the

Brenta river before reaching the sea, thus their runo↵ was not considered. The

plain between the Brenta and the Piave corresponds to the hydrographic basin

ending in the “Venice Lagoon”, thus the monthly flow was divided among the

three main lagoon outlets: Porto di Chioggia, Porto di Malamocco, and Porto

di Lido. In the plain between the Piave and the Tagliamento, the outflow was

divided among 4 main rivers: Livenza, Sile, Canale Nicessolo and Canale dei

Lovi. The plain between the Tagliamento and the Isonzo (Malacic and Petelin,

2009) is characterised by the rivers draining into the “Marano Lagoon”. The

estimated outflow of the plain rivers was divided among the main lagoon outlets:

Porto di Lignano, Zellina, Porto Buso, Canale di Morgo, La Fusa, and Bocca
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di Primero. (Simoncelli et al, 2011). M. Pasaric et al., (2004) analyzed a time

series of monthly mean river discharges along the Croatian coast and calculated

the mean annual cycle of eleven rivers: Mirna, Rasa, Rjecina, Dubracina, Zr-

manja, Krka, Jadro, Zrnovnica, Cetina, Neretva, and Ombla. According to the

Albanian Hydrometeorological Institute, the main Albanian rivers discharging

into the Adriatic Sea are: Buna-Bojana (into which the Drin river discharges as

a consequence of landslides during the 19th century and the construction of hy-

dropower plants along the river path), Mati, Ishmi, Erzeni, Shkumbini, Semani

and Vjosa. Two other Albanian rivers, the Bistrica and Pavla, discharge into

the Ionian Sea. Two Greek rivers discharging into the Ionian Sea, the Thyamis

and Arachtos, were extracted from Global Runo↵ Data Centre, GRDC, datasets.

Finally eleven Italian rivers discharging into the Ionian Sea were provided by

several institutions (i.e. ARPAs, CNR IRPI, GRDC, and the Autorit di Bacino

Basilicata).

2.2.3 Model validation with observations

The performance of the model was evaluated by comparing simulated fields with

available in situ and satellite observations. We propose a comparison with tem-

perature and salinity profiles collected by means of two Argo profiling floats for

the last three years of the simulation. Figure 2.4 shows the trajectories of the

Argo floats in the Adriatic and Northern Ionian Sea, respectively. Figure 2.5

shows vertical mean profiles of RMSE and BIAS for temperature and salinity.

On the whole, the EXP1 model output is in good agreement with the observed

data, comparable RMSE and BIAS values were found for another, recent model of

the Adriatic Sea (Guarnieri et al., 2013). In EXP2 without rivers, water masses in

the Adriatic Sea appear saltier and warmer with respect to the observed dataset.

Comparing observations with EXP2, RMSE and BIAS values were double those

in EXP1, thus showing the impact of river runo↵ on the correct reproduction of

the basin water mass characteristics. Analysed and modelled sea surface tem-

peratures are shown in Figure 2.6. Analysed SST are obtained by Optimal In-

terpolation of SST measurements from daily AVHRR Pathfinder dataset. The
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agreement between the modeled and observed datasets is high. The full dynamics

Experiment, EXP1, fits Satellite SST better that EXP2: EXP1 RMSE = 0.78�C

and EXP2 RMSE = 0.81�C.

2.3 Is the Adriatic Sea an estuarine or

anti-estuarine basin?

Traditionally, estuarine and anti-estuarine circulation has been classified on the

basis of the net water flux at the surface only (Sverdrup, 1947; Pickard and Emery,

1990). Estuarine and anti-estuarine circulation is also linked to the cyclonic and

anti-cyclonic overturning circulation which connects the marginal sea to the open

ocean. Spall (2011, 2012) analysed a marginal sea overturning circulation pre-

dicting that the freshwater input could stop the anti-estuarine circulation and

the anti-cyclonic MOC. Rahmstorf (1995) speculates that increasing freshwater

inflow in the Northern Atlantic may potentially reduce or even shut down the

overturning circulation. Cessi et al. (2014) show that both buoyancy forcing and

wind stress work are connected to the strength of the circulation and thus, also

to the MOC developing between the marginal sea and the open ocean.

Following Spall (2012) we assessed the non-dimensional thermal forcing parame-

ter, µ/✏, and freshwater forcing parameter, �/✏. The former describes the relative

balance between heat budget in the interior basin and the lateral eddy fluxes that

advect warm water into the basin and the latter describes the relative balance

between freshwater budget in the interior basin and the lateral eddy fluxes ad-

vecting salty water. The lateral eddy fluxes detach from the cyclonic boundary

current which comes from the open ocean and encircles the marginal sea. Small

values of these parameters with eventually negative values of the freshwater pa-

rameter, indicate the lateral eddy fluxes prevail on the surface cooling of the

interior basin due to the atmospheric forcing and may trigger the shutdown of

deep convection.

We computed the two parameters over the whole simulation period and discovered

that the thermal parameter is essentially the same in both experiments, 5 · 10�5
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in EXP2 and 4.9 · 10�5 in EXP1, while the freshwater parameter is 7 · 10�4 in

EXP2 and �2 · 10�2 in EXP1 (see Appendix B for details on the computation of

Spall’s coe�cients). This means that the Adriatic Sea runo↵ has the potential

to shut down the deep convection.

Spall (2012) also shows that the ratio4S/4T , where 4T and 4S are the model-

diagnosed temperature and salinity non-dimensional anomalies between the inte-

rior basin and the boundary current, can be written as a function of the thermal

and freshwater forcing parameters (see Appendix B for details on the compu-

tation of these values). A ratio 4S/4T less than 1 means that the general

circulation is in “thermal mode”, which means the heat and freshwater balance

in the interior basin oppose the lateral eddy fluxes and thus the deep convection

is sustained by surface cyclonic boundary current and anti-cyclonic MOC. A ratio

4S/4T > 1 indicates the “haline mode” of the marginal sea circulation with

heat and freshwater balance of the interior basin favoring a cold and freshwater

interior opposing the lateral eddy fluxes. This implies the shut down of deep

convection and inversion of the MOC. The collapse of deep convection is demon-

strated to be possible also in the thermal mode case if 4S/4T > 0.5.

We obtain 4T = 0.35 and 4S = 0.10 in EXP1, while 4T = 0.28 and 4S = 0.03

in EXP2. These values give a ratio 4S/4T = 0.28 and 0.12 in EXP1 and EXP2,

respectively. Thus the Adriatic Sea is characterized by an anti-estuarine circula-

tion with thermally driven deep water formation processes despite a large runo↵

budget. Even if we focus only on the year 2002, which was characterized by one

of the largest river runo↵s (Fig.2.3), 4S/4T = 0.42 in EXP1 and 0.29 in EXP2,

meaning that the Adriatic deep water formation and the anti-estuarine circula-

tion characterize both experiments with and without river runo↵, but in EXP1

we found 4S/4T closer to 0.5. Thus a strong river runo↵ has the potential to

shutdown deep convection and reverse the overturning circulation of the marginal

sea.

In order to further assess river influences on the MOC, an analysis of both buoy-

ancy and wind stress forcing was performed. The surface buoyancy flux per unit
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area, (m2s�3), is expressed according to Cessi et al. (2014) as follows:

Qb =
g↵T

⇢0wCw

Q� ↵SS0g(E � P � R

A
) (2.3)

where ↵T,S are the coe�cients of thermal and haline expansion respectively,

⇢0w is the reference sea surface water density, Q is the net heat flux, Cw is the

heat capacity of sea water, S0 is the surface salinity. Finally, (E�P�R/A) is the

freshwater flux with evaporation rate, E, and precipitation rate, P, in ms�1, river

discharge, R in m3s�1, and A representing the grid area of river mouths (m2).

Furthermore the following values were assumed: ↵T = 2.3 · 10�4�C�1, ↵S =

7.5 · 10�4psu�1, CW = 3990Jkg�1�C�1, S0 = 38.7psu and ⇢0w = 1029kgm�3.

The net heat flux, Q, components are computed according to bulk formulae de-

scribed in Appendix A.

First, we analyse the impact of R in the water flux contained in eq.2.3. Figure

2.7 shows the seasonal time series of the surface freshwater budget, (E-P-R/A),

both for the whole computational domain (the Central Mediterranean Sea) and

for the Adriatic Sea alone. We followed Artegiani et al. (1997) definition of a

season: winter is from January to April, spring is May and June, summer from

July to October, autumn corresponds to November and December. The whole

Central Mediterranean Sea has a positive freshwater budget, 0.60 myr�1, while it

is negative over the Adriatic Sea, -0.69 myr�1. Indeed our results highlight that

the Central Mediterranean Sea is a concentration basin, while the Adriatic Sea

is a dilution basin with river discharge playing a crucial role in the freshwater

budget.

An annual time series of Adriatic surface buoyancy flux and wind work is shown

in Figure 2.8. The realistic buoyancy flux (EXP1) is generally negative, imply-

ing a net anti-estuarine forcing of the circulation, however in certain years, the

values can be several times smaller in absolute value than other years, and even

change sign. This is the case for 2000, 2002 and 2008 where the buoyancy flux

reached small or positive values. The small or positive buoyancy budget could

weaken the anti-estuarine MOC in certain years, as we will see later. To note

that 2001 to 2003 are the years characterized by the most relevant river role with

respect to the other forcing mechanisms of the circulation (see green pointed line

35



2. River e↵ects on the overturning circulation and dynamics of the Central
Mediterranean Sea

in Fig.2.8), this is consistent with the lowest surface heat losses (not shown) and

the minimum dense water volumes we found in these years (see Fig.2.11), in good

agreement with findings of previous studies (Oddo and Guarnieri, 2011; Gunduz

et al., 2013, Pinardi et al., 2015).

The wind work (m3s�3) is defined as ⌧w·us

⇢0
, where us is the sea surface velocity,

⇢0 is the reference sea surface water density and ⌧w is the wind stress defined

in Appendix A. In order to compare the wind work with the buoyancy flux, the

wind work has been normalized by the basin volume.

Figure 2.8 shows that the wind work is always positive (10�8 m2s�3), implying a

net source of mechanical energy for the Adriatic Sea and it is one order of magni-

tude larger than the buoyancy flux (10�9 m2s�3) in the realistic experiment with

rivers. Thus considering the two major forcings of the circulation, the Adriatic

Sea results again to be an anti-estuarine basin characterized by a large wind work

energy source.

The buoyancy flux of the Adriatic Sea represent an energy sink if positive, and

thus tends to counterbalance the energy source due to wind work giving rise to

a low kinetic energy basin circulation. This is consistent with the weaker anti-

estuarine MOC and the more stagnant circulation below the Otranto sill depth

(both in SAd Pit and Ionian abyss) we found out in EXP1, especially in 2002, as

detailed in the next section.

2.4 How is the intensity of Central

Mediterranean MOC a↵ected by runo↵?

In order to better quantify the river influence on the Central Mediterranean MOC,

an inter-annual analysis of the meridional transport stream function was carried

out. The literature contains ample evidence that the ocean MOC is primar-

ily driven by wind and tidal stirring (Munk et al., 1998; Paparella et al., 2002;

Marshall et al., 2012). In addition, the relationship between the dense water

formation, driven by the buoyancy flux, and the strength of the overturning cir-

culation has been highlighted in several theoretical, as well as realistic modelling
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studies (Rahmstorf, 1995; Rahmstorf, 1996; Pisacane et al., 2006). Similarly,

here we focus on the downwelling branch of the Central Mediterranean MOC,

which develops inside the Southern Adriatic sub-basin due to the local open-

ocean convection and dense water formation sustained by winter heat losses and

a permanent cyclonic gyres driven by wind stress curl.

The meridional transport stream-function,  , is defined as (Pedlosky, 1987):

 (y, z) = �
Z x1

x0

Z z

�H

v(x, y, z)dxdz (2.4)

with �H < z < 0 as the depth, x0 and x1 the more eastern and more western sea

points, v is the time-averaged meridional velocity. The velocity field is tangent

to the isopleths of  , and positive  values indicate anti-estuarine cells turning

anti-cyclonically, while negative values indicate estuarine cells turning cycloni-

cally.

Figure 2.9 shows the transport stream-function for EXP1 and EXP2, averaged

over the whole simulation period. A large anti-estuarine cell down to a 700-800

m depth is detected in both experiments in the Northern Ionian Sea and SAd

sub-region, but with di↵erent intensities. Interestingly enough many estuarine

cells exists in the domain: one at the surface in the NAd, one in the deep layers

of the Southern Adriatic Pit around 41-42�N , SAP, another in the Middle Adri-

atic Pit around 43�N , MAP, and the last in the Northern Ionian abyss.

Fig.2.9 demonstrates that, even with a realistic representation of the river runo↵,

the anti-estuarine character of the Central Mediterranean MOC is maintained.

Indeed, in EXP1, the secondary estuarine cells of the NAd, MAd, SAd sub-regions

and Northern Ionian basin are larger than in EXP2, however the anti-estuarine

MOC cell still dominates.

The estuarine component of the MOC may become more evident on a seasonal

basis, particularly during summer. Figure 2.10 focuses on summer 2002 and

summer 2009 because these years had the largest river discharge (Fig. 2.3). In

summer 2009 (Fig. 2.10 bottom panels), a well-defined surface estuarine cell

characterizes the whole meridional extension of the basin with no di↵erences be-

tween EXP1 and EXP2, which means that the wind forcing becomes a dominant

contribution to the estuarine secondary cells. During this season the wind work is
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maximum (Fig. 2.8 bottom panel) but the buoyancy flux is still negative (Fig.2.8

top panel) thus maintaining an anti-estuarine MOC in the Adriatic Sea. In sum-

mer 2002 (Fig. 2.10 top panels), the river influence is more significant probably

due to the weaker wind forcing and the positive buoyancy forcing. In EXP1 the

anti-estuarine character of the MOC is weak and restricted to 200-400 m depths,

while the secondary estuarine cells are stronger. However even in this case the

dominant overturning circulation is still anti-estuarine, in agreement with the

Spall‘s (2012) freshwater and thermal forcing parameters predictions.

We conclude that the Central Mediterranean anti-estuarine MOC is a stable con-

figuration of the local meridional overtuning circulation driven by winds and by

highly variable buoyancy forcings. River runo↵ can a↵ect MOC strength, thus

enhancing the amplitude of the secondary estuarine cells and reducing the in-

tensity of the large anti-estuarine cell but the anti-estuarine MOC remains the

largest overturning, anti-estuarine structure of the Central Mediterranean Sea.

2.5 How do rivers influence the formation of

dense water in the Adriatic Sea?

The aim here is to establish how rivers impact the dense water formation pro-

cesses in the Southern Adriatic Sea and thus impact the MOC.

Figure 2.11 shows the dense water volume formed in the SAd computed as the

water volume with larger potential density anomaly than the threshold value,

29.2 kgm�3. EXP1 results are in agreement with previous model findings (Oddo

and Guarnieri, 2011; Gunduz et al., 2013, Pinardi et al., 2015). The greatest

dense water volume was formed in 2006 and 2012, while minimum dense water

volumes were found in 2001 to 2003 owing to a relative high buoyancy flux (with

the concomitant e↵ect of strong river runo↵ and weak heat losses) and low wind

work.. The dense water rate ranges from 0.03 Sv in 2001 to 1.53 Sv in 2006 and

the mean annual SAd dense water rate is 0.3 Sv, a value corresponding to several

previous studies (Artegiani et al., 1989 and 1997; Lascaratos, 1993; Cushman-
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Roisin et al., 2002; Curchitser et al., 2001; Manca et al., 2002; Mantziafou et al.,

2004 and 2008). EXP2, without river forcing, shows 20-30% larger dense water

volumes than in EXP1. To explain the river impact on the open sea convection,

Figure 2.12 shows seasonal ⇥ � S diagrams in three Adriatic sub-region zonal

sections for winter 2009. In this period river runo↵ determines a large stratifica-

tion of the water column with respect to the no-river case and the dense water

mass volume formation decreases by almost 30%.

Previous studies suggest that rivers a↵ect SAd dense water volumes because they

reduce the lateral advection of NAd dense waters which are known to flow along

the western shelf and slide down into the Southern Adriatic Pit near the Bari

canyon (Mantziafou et al., 2004; Wang et al., 2007; Mantziafou et al., 2008).

However, in our case this is not su�cient to account for the di↵erence between

the SAd dense water volumes in EXP1 and EXP2 because this di↵erence is larger

than the sum of NAd and MAd dense water volume di↵erences.

The preconditioning factors of open-sea convection and dense water formation in

the Southern Adriatic are known to be the permanent cyclonic gyre sustained by

wind stress curl, the surface winter cooling and the inflow of LIW through the

Otranto Strait.

Thus we conclude that river runo↵ primarily influences the dense water formation

processes by changing the SAd vertical stratification characteristics. However

these stratification changes can determine changes in the MOC characteristics

only if the concomitant buoyancy forcing is positive, as shown for the 2002 case.

In the 2009 case, wind stress work is large and buoyancy forcing still negative,

thus balancing the large river runo↵ stratification e↵ects and producing no rele-

vant changes in the MOC.
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2.6 How do rivers influence the volume of

Adriatic dense water that spreads into the

Northern Ionian Sea?

The Adriatic dense waters outflow through the Otranto Strait into the abyssal

Ionian Sea, generally occupying the layer below the dense waters coming from

the Cretan Sea and the Levantine basin (Roussenov et al., 2001; Bensi et al.,

2013, Curchitser et al., 2001).

Figure 2.13 shows the seasonal potential density anomaly of the 200m layer above

the seabed in both EXP1 and EXP2 and their di↵erences with a zoom on the

Ionian Sea. The maps show spring 2012 because this was the year with one of

the greatest dense water volumes (Figure 2.11).

SAd dense water initially spreads into the Northern Ionian Sea following the to-

pography and then tends to sink to the bottom of the Ionian basin due to friction

and turbulent mixing thereby creating a nearly homogeneous layer below 1200m

(Curchitser et al., 2001). It is well known that newly formed Adriatic dense wa-

ters fill the Ionian abyss in two-three years (Wu et al., 1996; Bensi et al., 2013).

Figure 2.13 shows that the bottom boundary current forced by dense water out-

flow from the Otranto Strait is characterized by less dense waters that intrude

o↵shore in EXP1 across the isobaths in the Northern Ionian open ocean area.

In EXP2, the Adriatic dense water outflow is limited to a narrow band against

the Italian shelf. This suggests that river runo↵ will have consequences on the

Northern Ionian Sea water mass structure and mixing processes.

2.7 Summary, conclusions and future

developments

This study enabled us to investigate the influence of river freshwater inflow on

the circulation and dynamics of the Central Mediterranean Sea.

Two twin experiments, with and without river inflow, were carried out from the

beginning of 1999 to the end of 2012 covering the whole Central Mediterranean
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Sea with a complete distribution of rivers in the Adriatic and Ionian catchment

areas.

ARGO data were used in support of numerical findings. They confirm that rivers

are necessary to correctly reproduce the observed water mass characteristics and

show that results of the model are in good agreement with observations in a re-

alistic runo↵ regime.

We first studied the role of rivers on the estuarine/anti-estuarine character of

the Adriatic Sea. The model results indicate that the Adriatic Sea is an anti-

estuarine basin even when a strong river runo↵ occurs. The computation of Spall

(2012) thermal and freshwater forcing parameters in both experiments demon-

strates that river runo↵ cannot reverse the dominant anti-estuarine character of

Adriatic circulation or shut down the deep convection in the basin interior. The

inter-annual analysis of buoyancy and wind stress forcings confirms that although

the Adriatic buoyancy budget is positive in years with a large river runo↵, the

anti-estuarine character of the Adriatic circulation is persistent and mainly driven

by wind work and heat losses.

We analysed the meridional transport stream function in the Central Mediter-

ranean Sea and detected a permanent anti-estuarine anti-cyclonic meridional

overturning cell, occupying the Southern Adriatic and the open Ionian Sea, plus

secondary estuarine cells in the NAd and in the SAd, MAd deep layers as well

as in the Northern Ionian abyss. A key result is that the Central Mediterranean

MOC is largely wind driven but large and anomalous river runo↵ can a↵ect its

strength, enhancing the amplitude of the secondary estuarine cells and reducing

the intensity of the dominant anti-estuarine cell. We focused on the downwelling

branch of the Central Mediterranean MOC, which develops in the Adriatic basin

due to dense water formation processes. Rivers were demonstrated to a↵ect the

Adriatic dense water volumes. Previous studies showed that rivers reduce the

dense water formation in the Northern sub-region where most discharge is lo-

cated. Here we show that rivers also directly a↵ect the vertical mixing processes

in the Southern Adriatic sub-region by changing the water column stratification

in the SAd and thus decreasing the dense water volumes. Finally we showed

that the Adriatic dense waters overflowing the Otranto Strait are less dense in a
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realistic runo↵ regime, thus implying a stronger turbulent mixing with the Ionian

abyssal waters and a higher o↵shore spreading.

Future investigations will point to an advanced implementation of river discharge

accounting for the ocean water entering river outlets and the exchange flow into

the estuary areas. This would allow to force the ocean model in a more realistic

way. In this work values of salinity at the river mouths were largely decided on

an ad hoc basis. In addition better resolved wind forcing should be considered

because of its importance in determining the local MOC strength.

The presented study focused on river role on the interannual-dynamics of the

Central Mediterranean sub-basin which holds an antiestuarine overturning circu-

lation cell and gets most of river release into the Mediterranean basin. However

the question of teleconnections among the mediterranean sub-basins could be

studied in deep to weigh river role with respect to the other forcings of the whole

Mediterranean circulation, expecially for what regards the spreading of the Lev-

antine Intermediate Waters toward the Central Mediterranean Sea. Thus we

plan to perform a new twin experiment extending the model configuration to

the whole Mediterranean Sea and prolonge it up to 50yr in order to capture the

multi-decadal natural variability of the Mediterranean Sea.
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Figure 2.1: The conveyor belts of the Mediterranean Sea. The red and yellow

dashed streamlines in the zonal direction stand for the zonal overturning circula-

tion in the surface-intermediate layers that is forced by the Gibraltar stream flow

and Levantine Intermediate Water (LIW) formation processes. The red spirals

indicate the preferential sites for strong heat losses during wintertime and dense

water formation processes. Two anti-cyclonic meridional overturning circulation

patterns can be distinguished (white spirals): the Western Mediterranean MOC

originating in the Gulf of Lion, and the Central Mediterranean MOC originating

in the Adriatic Sea (reproduced from Pinardi et al., 2006)

43



2. River e↵ects on the overturning circulation and dynamics of the Central
Mediterranean Sea

Figure 2.2: Model domain and details on areas of interest. The red lines de-

fine the three Adriatic sub-regions and the Ionian Sea. Black isolines show the

bathymetry. Blue stars and arrows indicate the model river mouths
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Figure 2.3: Top Panel: Daily Time Series of total river discharge during the entire

simulation period, 1999-01-01 to 2012-12-31. Bottom Panel: Focus on Po river

discharge based on observations
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Figure 2.5: Temperature and Salinity RMSE and BIAS for the available Argo

observations over 2010-2012 in EXP1 and EXP2
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Figure 2.6: Monthly time series of satellite (black line) and modelled (red line

for EXP2 and blue line for EXP1) Sea Surface Temperature. EXP1 RMSE =

0.78�C, EXP2 RMSE = 0.81�C
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Figure 2.7: Seasonal time series of the surface freshwater budget respectively for

the entire computational domain (top), and the Adriatic Sea only (bottom). The

red lines are for the freshwater budget (E �P ) in EXP2, while the blue ones are

for (E � P �R/A) in EXP1
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Figure 2.10: Summer 2002 (Top Panel) and Summer 2009 (Bottom Panel) Merid-

ional Transport Stream Function for the Central Mediterranean Sea
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range of temperatures and salinities
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Figure 2.13: Seasonal potential density anomaly on a 200m layer above seabed

and di↵erence between EXP1 and EXP2 with zoom on the Ionian Sea
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River Dataset Reference Discharge Mean Annual
Period Basin Discharge

(m3s�1)

Adige (Italy) GRDC 1922-1984 Adriatic Sea 223.75

Agri (Italy) Autorita’ di bacino n.r. Ionian Sea 9.14

Alcantara (Italy) Piano Tutela Acque Sicilia 1980-1997 Ionian Sea 4.7

Arachthos (Greece) GRDC 1964-1980 Ionian Sea 19.73

Basento (Italy) CNR IRPI 1933-1971 Ionian Sea 13.23

Belice (Italy) Piano Tutela Acque Sicilia 1980-2000 Ionian Sea 51.57

Bevano (Italy) ARPA EMR n.r. Adriatic Sea 6

Bistrica (Albania) Albanian Hydrometeorological Institute 1949-1987 Ionian Sea 32.1

Bocca di Primero (Italy) ARPA VENETO n.r. Adriatic Sea 10.28

Bradano (Italy) CNR IRPI 1929-1971 Ionian Sea 5.85

Brenta (Italy) ARPA VENETO n.r. Adriatic Sea 93.17

Buna/Bojana(Albania-Montenegro) Albanian Hydrometeorological Institute 1965-1985 Adriatic Sea 675

Canale dei Lovi (Italy) ARPA VENETO n.r. Adriatic Sea 22.7

Canale di Morgo (Italy) ARPA VENETO n.r. Adriatic Sea 10.28

Canale Nicessolo (Italy) ARPA VENETO n.r. Adriatic Sea 22.7

Cervaro (Italy) Raicich (1996) n.r. Adriatic Sea 2.92

Cetina (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 88.28

Crati (Italy) CNR IRPI 1926-1966 Ionian Sea 26.2

Dubracina (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 4.14

Erzen (Albania) Albanian Hydrometeorological Institute 1949-1992 Adriatic Sea 16.9

Fiumi Uniti (Italy) ARPA EMR n.r. Adriatic Sea 12.06

Fortore (Italy) Raicich (1996) n.r. Adriatic Sea 12.25

Imera Meridionale (Italy) GRDC 1978-1980 Ionian Sea 4.26

Ishm (Albania) Albanian Hydrometeorological Institute 1968-1992 Adriatic Sea 19.8

Isonzo (Italy) Malacic e Petelin (2009) 1945-2000 Adriatic Sea 110.43

Jadro (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 7.18

Krka (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 56.51

La Fosa (Italy) ARPA VENETO n.r. Adriatic Sea 10.28

Lamone (Italy) ARPA EMR n.r. Adriatic Sea 12.06

Livenza (Italy) ARPA VENETO n.r. Adriatic Sea 88.33

Marecchia to Tronto, Tronto excluded (Italy) Raicich (1996) 1956-1965 Adriatic Sea 121.92

Mat (Albania) Albanian Hydrometeorological Institute 1951-1986 Adriatic Sea 87.4

Mirna (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 7.91

Neretva (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 366.86

Neto (Italy) ARPA CAL n.r. Ionian Sea 6.22

Ofanto (Italy) Raicich (1996) n.r. Adriatic Sea 14.92

Ombla (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 27

Pavla (Albania) Albanian Hydrometeorological Institute 1951-1991 Ionian Sea 6.69

Piave (Italy) ARPA VENETO n.r. Adriatic Sea 54.33

Platani (Italy) GRDC 1978-1980 Ionian Sea 2.37

Po di Levante (Italy) ARPA EMR n.r. Adriatic Sea 21.67

Po di Volano (Italy) ARPA EMR n.r. Adriatic Sea 6

Pto Buso (Italy) ARPA VENETO n.r. Adriatic Sea 10.28

Pto di Chioggia (Italy) ARPA VENETO n.r. Adriatic Sea 17.27

Pto di Lido (Italy) ARPA VENETO n.r. Adriatic Sea 17.27

Pto di Malamocco (Italy) ARPA VENETO n.r. Adriatic Sea 17.27

Pto Lignano (Italy) ARPA VENETO n.r. Adriatic Sea 10.28

Rasa (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 1.58

Reno (Italy) ARPA EMR n.r. Adriatic Sea 49.33

Rjecina (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 7.22

Rubicone (Italy) ARPA EMR n.r. Adriatic Sea 6

Savio (Italy) ARPA EMR n.r. Adriatic Sea 12.06

Seman (Albania) Albanian Hydrometeorological Institute 1948-1987 Adriatic Sea 86

Shkumbi (Albania) Albanian Hydrometeorological Institute 1948-1991 Adriatic Sea 58.7

Sile (Italy) ARPA VENETO n.r. Adriatic Sea 52.92

Simeto (Italy) GRDC 1978-1980 Ionian Sea 3.31

Sinni (Italy) CNR IRPI 1937-1976 Ionian Sea 20.58

Tagliamento (Italy) ARPA VENETO n.r. Adriatic Sea 96.92

Thyamis (Greece) GRDC 1963-1978 Ionian Sea 51.39

Tronto (Italy) Raicich (1996) 1956-1965 Adriatic Sea 17.92

Uso (Italy) ARPA EMR n.r. Adriatic Sea 6

Vibrata to Fortore+Pescara+Sangro +Trigno+Biferno (Italy) Raicich (1996) 1956-1965 Adriatic Sea 190

Vjiose (Albania) Albanian Hydrometeorological Institute 1948-1987 Adriatic Sea 189

Zellina (Italy) ARPA VENETO n.r. Adriatic Sea 10.28

Zrmanja (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 40.10

Zrnovnica (Croatia) Pasaric et al (2004) 1947-2000 Adriatic Sea 1.76
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Table 2.1: River runo↵ climatological values adopted for the Adriatic and Ionian

rivers, time period for the climatologies and mean annual discharge values. Some

of the datasets consist of observations taken at hydrometric stations and some

are estimated values. To note that Po di Levante and Po di Volano are point

sources di↵erent from the 9 branches of the Po delta. Po river runo↵ values are

not included in this Table since daily averaged observations are assumed at each

branch of the delta

Parameter EXP1 EXP2

µ/✏ 5 ⇤ 10�5 4.9 ⇤ 10�5

�/✏ �2 ⇤ 10�2 +7 ⇤ 10�4

4T 0.35 0.28

4S 0.10 0.03

4S/4T 0.28 0.12

Table 2.2: Summary of the key parameters of the Twin Experiment. The model-
diagnosed quantities are the thermal forcing parameter µ/✏, the freshwater forcing
parameter �/✏, the temperature anomaly of the convective water mass 4T and
the salinity anomaly of the convective water mass 4S
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3 The local water cycle of river catchments.

Modeling the meteorological and hydrological

processes

Preamble

This chapter is a co-authored paper with N. Pinardi, J. Tribbia, D. Gochis, A.

Navarra, G. Coppini, T. Vukicevic, and D. Shea, entitled “A meteo-hydrological

modeling study for flood events in the Ofanto river catchment” and submitted

to the Natural Hazards and Earth System Sciences.

A meteo-hydrological modelling system has been set up over the Central

Mediterranean Sea with a focus on the Ofanto river catchment, and we evaluate

the capability of this integrated system to simulate the local water cycle.

The modeling chain consists of the mesoscale meteorological model Weather

Research and Forecasting WRF (Skamarock et al., 2008), the Land Surface

Model NOAH-MP (Niu et al., 2011) and the hydrological model WRF-Hydro

(Gochis et al., 2013). NOAH-MP is coupled in two-way mode with WRF and

WRF-Hydro.

Two simulations have been carried out over winter 2011 and autumn 2013. The

final goal is a reliable meteo-hydrological reconstruction of the severe historical

events which hit the Southern Italy during the selected time ranges with heavy

rainfall and flooding of the river.

Several sensitivity tests have been performed and we assess which tunable param-

eters, numerical choices and forcing data most impact the model performance.

The simulated precipitation has been validated by comparison with raingauge

stations in the Ofanto basin and corrected by a simple method of successive

corrections. WRF capability to reproduce heavy rain events is sensitive to the

initialisation time and we found that a spin-up of about 1.5 days is needed. The

Ofanto hydrograph is correctly reproduced by the model, and the simulated

runo↵ errors are shown by comparison with Cafiero station observations.

The calibration points out that two parameters should be set carefully: the
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infiltration coe�cient should be treated as seasonally dependent and the aquifer

discharge coe�cients as soil type dependent.

3.1 Introduction

Severe weather events associated with heavy rainfall and river floods have in-

creased during the last decades in many regions around the world including the

Mediterranean area (Barredo, 2007). Moreover longterm projections show inten-

sity and occurrence of extreme events are expected to grow (Groisman et al., 2004

and 2005). Thus the meteo-hydrological short term forecasts are expected to be

released with su�cient accuracy for warning purposes and long term predictions

are required for management and resilience activities.

For these reasons the scientific community started to dedicate a great e↵ort for

increasing the performance of high resolution meteorological and hydrological

models as well as coupling them.

Modeling the spatial and temporal distribution of the water cycle is a challenge

because water cycle includes several processes which span a wide range of spatial

and temporal scales and interact each other.

Most meteorological and climatological models still represent the surface and

subsurface processes of the water cycle in a oversimplified way, just using a land

surface sub-model which represents the soil processes on a 1-dimensional column.

The added value of the hydrological modeling is the capability to laterally route

both the surface and subsurface water flows and to describe how they interact

each other. Hydrology modelling covers a huge variety of approaches: from sim-

ple empirical models to more complex wave systems (i.e. kinematic, di↵usive and

dynamic wave models).

As far as we know the HYdrology surface runo↵ PROgnostic Model,HYPROM

(Nickovic et al., 2010), is currently the only hydrological modeling system with

fully prognostic equations for the overland water flow but it doesn’t represent

the subsurface physical processes as the groundwater drainage, the saturated

subsurface water flow and the aquifer water storage. In this study we use the
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WRF-Hydro system (Gochis et al., 2013) which is based on a di↵usive wave ap-

proximation for representing both the overland water flow and the river stream-

flow. Moreover it solves the subsurface soil physics and is 2-way coupled with

NOAH-MP (Niu et al., 2011) land surface model.

The quality of meteo-hydrological modelling is still a demanding issue. Precip-

itation forecasting is one of the most critical task for meteorological mesoscale

models since the precipitation field is the end result of many multi-scales and

interacting processes and is sensitive to topography, soil types and land use con-

ditions. The grid spacing of mesoscale meteorological models is in the range of

”gray-zone” (Moeng et al., 2007; Shin et al., 2013) resolutions for convection,

where the power spectrum of the turbulence reaches its peak and thus the con-

vective motions and the precipitation are only partially resolved. The quality

of meteorological modelling is then critical for ensuring the quality of hydrologi-

cal modelling as the uncertainties associated with the meteorological simulations

propagate into the hydrological models (Pappenberger et al., 2005). An addi-

tional source of uncertainties is due to the parameterisation of many physical

processes involved in the water cycle (e.g. the water infiltration through the soil

column, the groundwater drainage, the aquifer water storage, ...). This means

there are many tunable coe�cients which need to be calibrated.

The aim of this study is to evaluate the capability of our integrated modeling

system to simulate the local water cycle of the Ofanto river catchment, flowing

through the Southern Italy which is a region frequently subject to flash flood

events. A meteo-hydrological modelling chain has been set up and 2 simulations

have been carried out over winter 2011 and autumn 2013. Several rainfall events

as well as dry periods characterise the Southern Italy during the selected time

ranges. The strongest weather storms occurred on 1 March 2011 and 1 Decem-

ber 2013 with serious damages in the Southern Italy and flooding of the Ofanto

river. The final goal of this work is the meteo-hydrological reconstruction of the

selected historical ranges as much reliable as possible.The paper is organised as

follows. Section 2 describes the study area. The meteorological and hydrological

models and the experimental set-up are presented in Section 3. Section 4 o↵ers

the discussion of the modelling results. Conclusions are drawn in Section 5.
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3.2 The study area

The basin of the Ofanto river, flowing through the Southern Italy and ending

into the Adriatic Sea, has been chosen as a relocatable case study in order to

test the meteo-hydrological modeling chain we implemented over the Central

Mediterranean area (left picture of Figure (3.1))with a focus on the Southern

Italy (right picture of Figure (3.1)). The Ofanto river is a semi-perennial river,

whose discharge is close to zero during the dry season but may significantly

increase when heavy rain events occur and eventually cause the river flooding.

The mean annual discharge at its outlet is around 15m3s�1, minimum monthly

climatology is 2.27m3s�1 in August while it reaches its monthly peak, 35m3s�1,

in January. The local annual mean rainfall is about 720 mm/year; the annual

mean temperature is around 14�C (Romano et al., 2009). The watershed area

(Fig.(3.2)), covering Campania, Basilicata and Puglia regions in the Southern

Italy, is about 2790km2 with a mean slope of 8% and its total length is around

170km making it the second longest river of the Southern Italy (see top-right

panel of Fig.(3.2)). The river source is located south of Torella dei Lombardi,

a small village near Avellino at 715 m above the sea level. This is no the only

source of the river, few tributaries with lower water volume ensure a constant

runo↵ avoiding the bed to become dry. The Ofanto basin consists of two distinct

geological areas: the NorthEastern and the SouthWestern part. The NorthEast-

ern part, representing the downstream reach of the river, is a flat area which

includes the flooding area of the river; the SouthWestern part, representing the

upstream reach of the river, is mainly mountain/hilly owing to the Appennino

range and includes the Vulture volcanic massif (see top-left panel of Fig.(3.2)).

This volcanic massif constrains the river to deflect northward drawing a big

bend, which tends to erode the slopes of Vulture massif. The sediments, mostly

volcanic, carried by the river are released into the sea and concur to create a

shallow and sandy coast filling the Gulf of Manfredonia (Romano et al., 2009).

Finally the predominant soil type category in the upstream reach is “loam”

according to the United States Geological Survey, USGS, dataset data while

“clay loam” category prevails in the downstream reach (see bottom-right panel of
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Fig.(3.2)). The Ofanto basin is characterized by a karst aquifer in the upstream

sub-basin and a porous aquifer in the downstream one, the latter favouring the

salt water intrusion from the Adriatic Sea.

This case study is challenging for meteo-hydrological modeling purposes.

For what concerns the hydrological purposes, river basins usually show a

“rain-runo↵” response time which varies from some days for large and/or flat

catchments up to few hours for catchment with small sizes (i.e. the Ofanto

basin) or complex topography making the forecast highly demanding in the

second case. For what concerns the meteorological purposes, the Mediterranean

weather storms have been widely investigated and the literature shows they

are often characterised by heavy rain, strong wind shear and deep lows which

develop as consequences of both the complex orography (e.g. the Alps and Atlas

mountains counteract the westerlies and favour the cyclogenesis) and the warm

Mediterranean basin (Laviola et al., 2010; Buzzi and Tibaldi 1978). The Ofanto

catchment in particular is located in the Southern Italy which is well know as a

region frequently subject to flash flood events (Lin et al., 2001, Delrieu et al.,

2005, Davolio et al. (2008), Laviola et al., 2011, Miglietta et al., 2008, Moscatello

et al., 2008) owing to the simultaneous occurrence of di↵erent preconditioning

factors: the warm Mediterranean Sea, especially in its Southern part, which

feeds the lower layers of the troposphere with heat and moisture as it cools

after the summer peak of heat content, the synoptic southerly winds carrying

warm-moist air, the complex topography of the Italian Peninsula close to the

coastline.

3.3 The experimental set-up of the

meteo-hydrological modeling system

A meteo-hydrological modelling system has been implemented to study the local

water cycle in the Ofanto basin. The model chain consists of the meteorological

mesoscale model Weather Research and Forecasting WRF (Skamarock et al.,
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2008), the Land Surface Model NOAH-MP (Niu et al., 2011) and the hydrological

model WRF-Hydro (Gochis et al., 2013). NOAH-MP is included in WRF and

WRHydro system as sub-model and coupled in two-way mode with both of

them. The coupling between WRF and WRF-Hydro system is 1-way mode. The

several modules of the models and how they face each other are shown in Figure

3.3. A detailed description of the equations and parameterisations relevant for

the discussion of our results is provide in the next paragraphs.

Two simulations have been performed spanning January-March 2011 (hereafter

”Experiment 1”) and November-December 2013 (hereafter ”Experiment 2”).

The selected time windows include several rainfall events of di↵erent intensity,

two of them occurred on 1 March 2011 and 1 December 2013, hereafter referred

as ”Event 1” and ”Event 2”, are characterised by the flooding of the Ofanto

river. The main features of both Experiments are summarises in Table 3.1.

Figure 3.4 shows the concatenation procedure we adopted for both experiments:

a chain of 72h long simulations is carried out and the reinitialization option is

chosen for WRF, since we rely on ECMWF 16km analyses to build initial and

boundary conditions, while restart option is adopted for WRF-Hydro. Several

studies carried out with regional climate models on seasonal and sub-seasonal

scale highlighted the benefits of a simulation with frequent reinitialisation with

respect to a standard continuous simulation (Lucas-Picher et al., 2013). First of

all the reinitialisation mitigates the problems of systematic errors and improves

the accuracy in reproducing the local scale precipitation (Qian et al., 2003). We

aware this method should evolve in a more rigorous approach based on chains

of successive 72 hours long simulations and overlapping of these chains with

delayed start-time, e.g. 24 hours (or less): this would allow to neglect the first

24 hours of each 72h simulation as the spin-up period as well as the last 24 hours

which are usually a↵ected by the drift of the model results.
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3.3.1 Advanced Research WRF meteorological model

The WRF model (version 3.6.1) is a fully compressible and non-hydrostatic

mesoscale meteorological model widely used for research studies (mainly the

Advanced Research WRF solver core, WRF-ARW, developed at the National

Center for Atmospheric Research NCAR and used in this study) as well as

operational systems. The basic equations consists of a set of prognostic equations

for the conserved state variables (i.e. the volume mass, the velocity components,

the virtual potential temperature and the mixing ratios) and a non conserved

state variable i.e. the geopotential. Moreover there are two diagnostic equations

for the full pressure and the dry inverse density. The model uses a following

terrain dry hydrostatic pressure vertical coordinate, we chose 58 unevenly spaced

levels and we set the top of the model at 50hPa. Two domains nested in two-way

mode are considered: a coarse domain covering the Central Mediterranean

area with a horizontal resolution of 6km and a inner domain over the Southern

Italy with 2km horizontal resolution (domains are depicted in Figure 3.1). The

analyses fields by ECMWF-IFS (European Centre for Medium-Range Weather

Forecasts -Integrated Forecasting System) with 16km horizontal resolution and

6h frequency are adopted as WRF initial and boundary conditions.

A set of sensitivity tests (not shown) pointed out the terrestrial datasets, i.e.

the topography elevation and the land use categories, strongly a↵ect the air-land

fluxes and the near surface atmospheric fields. Thus the default USGS datasets

with 800m resolution for topography and land use have been upgraded with

higher resolution and more recent data: Corine 250m Land Use categories

and EUDEM 30m topography data both released by European Environmental

Agency (EEA), SRTM 90m topography data by NOAA.

Moreover di↵erent numerical schemes for the parameterised physical processes

have been tested and and compared by evaluating how they a↵ect the simulation

of the near surface atmospheric fields. The final model configuration uses

RRTMG scheme (Iacono et al., 2008) for long-wave and short-wave radiation,

Monin-Obukhov scheme (Monin et al., 1954) is adopted for the surface sub-layer

of the Planetary Boundary Layer, PBL, and YUS (Yonsei University scheme)
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non local K-profile scheme (Hong et al., 2006) for PBL mixed sub-layer. The

cumulus-convection parameterization is based on Kain-Fritsch scheme (Kain et

al., 1993) in the coarse domain while no convection scheme, thus the convection

is assumed to be explicitly solved, in the inner domain. The mycrophysics is

based on Double-Moment 6-classes Thompson’s scheme (Thompson et al., 2004)

for both domains.

Table 3.2 summaries all the chosen terrestrial datasets and parameterisation

schemes.

3.3.2 NOAH-MP land surface model

A standard ”column-only” land surface model, NOAH-Multi Physics (Niu et

al., 2011) is coupled in two-way mode with both WRF-ARW and WRF-Hydro

systems. The model solves the surface and subsurface soil processes with 4 soil

layers up to 1m below the ground level (layer thicknesses are 0-10cm, 10-30cm,

30-60cm, 60-100cm). A multilayer snowpack is also modelled. Basic equations are

the prognostic equations for the soil moisture content (Richards’ equation) and

the temperature of each soil layer plus a diagnostic equation for the soil surface

water budget. Moreover a set of parameterisations schemes are used to compute

the surface energy flux components (Niu et al, 2011), the groundwater drainage

at the bottom of the deepest soil layer and the partitioning of the soil surface

water (sum of rainfall, dewfall and snowmelt reduced by the evaporation rate)

into infiltration rate and surface runo↵ (Niu et al., 2007). The parameterisation

of infiltration rate, surface runo↵ and groundwater drainage are key issues for

the hydrological modelling performed by WRF-Hydro and are a↵ected by the

calibration of soil texture and moisture coe�cients.

The infiltration rate, I (units of ms�1), is computed as:

I = min( ˙Hsfc, FfrzIMAX) (3.1)

and the surface runo↵ (units of ms�1) is parameterised as follows:

R = max(0, ˙Hsfc � FfrzIMAX) (3.2)
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where ˙Hsfc is the current surface water rate (units of ms�1) given by the sum of

water input (i.e. rainfall, dewfall, snowmelt and the stored surface water) minus

the evaporation rate and is computed by the surface water budget equation. Ffrz

is the fractional impermeable area as a function of soil ice content of the surface

layer, IMAX is the maximum soil infiltration capacity (units of ms�1) dependent

on soil texture and moisture.

The NOAH-MP model parameterises IMAX as an empirical function of 4 tunable

soil coe�cients (all with units ofm3/m3 ): the maximum surface moisture content

SMCMAX , the minimum surface moisture content the plant requires not to wilt or

below which the transpiration ceases SMCWLT , the surface infiltration coe�cient

REFKDT and the saturation of soil hydraulic conductivity REFDK.

The empirical formula is given below:

IMAX = Hmax
Cinf

Hmax + Cinf

/�t (3.3)

where the maximum surface water level (units of m) is given by:

Hmax = max(0, ˙Hsfc�t)

and the infiltration capacity, Cinf (units of m), at the upper soil layer (k=1) is

computed following the exponential formula below:

Cinf (k = 1) = [
NX

k=1

�z(k = 1)(SMCMAX � SMCWLT )(1.0+

�(SMC(k = 1)� SMCWLT )

(SMCMAX � SMCWLT )
)] · (1� e�

SMCMAX ·REFKDT

REFDK
�t1)

(3.4)

where �z(k = 1) is the thickness of the upper soil layer (with k = 1 : N and

N = 4), �t1 is the model time step converted to the ratio of a day thus given by

�t1 = �t/86400, SMC(k = 1) is the soil moisture content (units of m3/m3) of

the NOAH-MP upper layer, solved from Richards’ equation. Finally the tunable

parameters SMCMAX , SMCWLT are soil type dependent while REFKDT and

REFDK are prescribed as unique values.

We found the computation of groundwater drainage is also a crucial step since

this is assumed to be the recharge flow which feeds the unconfined aquifer below

the soil column.

The groundwater drainage is assumed to be a free gravitational drainage, Qbot
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(units ofmms�1), thus formulated as function of the current soil moisture content

in the deepest soil layer:

Qbot = SLOPE ·DKSAT · [max(0.01, SMC(k = 4)/SMCMAX)]
2·B+3 · (1�Ffrz)

(3.5)

where SMC(k = 4) is the soil moisture content (units of m3/m3) of the

NOAH-MP deepest layer (k=4), solved from Richards’ equation. DKSAT and

B are soil type dependent coe�cients, the first is the saturated soil hydraulic

conductivity (units of mms�1), the second is a non-dimensional value accounting

for soil texture. Finally SLOPE is a coe�cients between 0.1-1.0 modifying the

gravitational free drainage out of the bottom layer depending on the surface

slope categories of each grid cell: 9 slope classes are prescribed with di↵erent

range of surface percent slope following Zobler’s method (1986).

3.3.3 WRF-Hydro hydrological model

In this study, WRF-Hydro version 2 (Gochis et al., 2013) has been implemented

over WRF inner domain. Preliminarily, a detailed terrain routing grid is com-

puted by a GIS system over the domain, we chose a resolution equal to 200m

that is 10-times higher than the one of NOAH-MP spatial grid. This terrain

routing grid contains the data layers required to describe the surface and sub-

surface water routing. The data layers are the topography (see top left picture

of Figure 3.2), the flow-direction grid, the flow accumulation grid (see top right

picture of Figure 3.2), the watershed/aquifer grid (see bottom left picture of Fig-

ure 3.2) and the catchment grid. The flow-direction grid specifies the direction

in which each surface cell drains by determining which neighbouring cell is the

lowest. The flow-accumulation grid records the number of cells that drain into

an individual grid cell. The watershed grid is constructed by identifying the grid

points exceeding a minimum threshold value of flow accumulation and they are

assumed to be the river network points. The aquifer grid is assumed to identically

match the watershed grid and sub-basins may be defined as the areas upstream

the monitoring points set along the river network. We select 4 monitoring points
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(three gauge stations and the outlet) along the Ofanto river as detailed in the

bottom left panel of Figure 3.2 and thus the watershed, or equally the aquifer,

is divided into 4 sub-basins. The catchment grid is finally defined following the

Strahler’s method (1952): an increasing index is assigned to the watershed grid

points in order to distinguish the branches and identify a hierarchy of tributaries.

WRF-Hydro model has been designed to integrate the ”column only” NOAH-MP

model with several physics modules which describe the lateral routing of surface

and subsurface water flows and how they interact each other.

The WRF-Hydro system includes 4 routing modules which represent the satu-

rated subsurface flow, the 2d overland water flow, the aquifer recharge/discharge

and the 1d channel streamflow (Figure 3.3).

The saturated subsurface flow module is activated when a supersaturation of the

water column occurs at soil layer k, meaning that SMC(k) > SMCMAX , and

the saturated lateral flow is assumed to follow the topography down gradient

neighbour.

The overland water flow occurs when the surface water level of specific grid cells

exceed a fixed retention depth which is assumed to depend on the surface slope.

The overland water flow is represented by the 2d shallow water equations that are

applied under the di↵usive wave hypothesis, meaning that the inertia term of the

momentum equation is neglected. Moreover the shear stresses in the momentum

equation are negligible. Under all these hypotheses the shallow water governing

equations read:
@h

@x
� Sfx + Sox = 0 (3.6)

@h

@y
� Sfy + Soy = 0 (3.7)

@h

@t
+

@qx
@x

+
@qy
@y

= ie (3.8)

where the unknowns are the water column thickness h = h(x, y, t) (units of m)

defined as the free surface elevation minus the bottom topography h = h̃ �

hbot, and the unit discharges (units of m2s�1) in the x- and y- directions, i.e.

qx = h(x, y, t)u(x, y, t) and qy = h(x, y, t)v(x, y, t). The sink/source term of

the continuity equation, ie, is the surface runo↵ parameterised by NOAH-MP
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(as detailed in eq.(3.2)). Moreover Sfx = ⌫
g
@2u
@x2 and Sfy = ⌫

g
@2v
@y2

are the non-

dimensional friction slope terms (where ⌫ is the kinematic viscosity coe�cient

with units of L2T�1) and Sox = @hbot

@x
and Soy = @hbot

@y
are the non-dimensional

terrain slope terms. Finally @h
@x

and @h
@y

are the non-dimensional pressure slope

terms.

The Sfx and Sfy terms are computed by analytically solving the momentum

equation where h is assumed to be the overland water level provided by NOAH-

MP water budget equation. The Manning’s empirical formula provide the units

discharges qx and qy as follows:

qx =

p
|Sfx|h5/3sign(Sfx)

n
(3.9)

qy =

p
|Sfy|h5/3sign(Sfy)

n
(3.10)

where h(x, y, t) is the unknown of the continuity equation (3.8) and the surface

roughness coe�cient, n(x, y) (units of sm�1/3), is a tunable parameter defined

as function of the land use categories. The unit discharges qx and qy are then

replaced in the continuity equation and h = h(x, y, t) is numerically solved with

the Courant constraint ensuring the stability of numerical solution.

The di↵usive wave equations allow for backwater e↵ects and waterflow on adverse

slopes, this represents an added value with respect to the widely used kinematic

wave models which neglect the pressure slope terms.

The channel streamflow is computed on a pixel-by-pixel basis along the river

network grid. The river network has a trapezoidal geometry, its parameters (side

slope, bottom width and roughness coe�cients) are ”a priori” defined as function

of Strahler’s stream order. The river streamflow is activated if river network

points intercept the 2d overland waterflow. The governing equations are based

on the same assumptions of 2d overland waterflow including the di↵usive wave

hypothesis and are written as follows:

@A

@t
+

@Q

@x
= qlat (3.11)

@h

@x
= �S0 + Sf (3.12)

67



3. The local water cycle of river catchments. Modeling the meteorological and
hydrological processes

where the unknowns are the volume flow rate Q = Q(x, t) and the wetted area

A = A(x, t). The channel water level z(x, t)is derived from A by considering

the trapezoidal shape of the channel section: A(x, t) = (Lbot + ↵z(x, t))z(x, t)

where Lbot and ↵ are the bottom width and the side slope of the channel cross

section.Similarly to the 2d shallow water equations, Sf is the friction slope term,

S0 is the terrain slope term and @h
@x

is the pressure slope term with h assumed as

the water level solved by 2d continuity equation (3.8). Finally qlat is the lateral

flow (units of m2s�1) in (positive) or out (negative) of the channel and is supplied

by the surrounding overland water flow and the aquifer recharge as follows:

qlat(x, y, t) =
q

qx(x, y, t)2 + qy(x, y, t)2 +
Qout

Scatch

h(x, y, t) (3.13)

with qx and qy are computed by the 2d momentum equation (3.6-3.7) and by

taking into account the only overland computational grid points bordering the

river points, in the second term on the RHS of (3.13) Qout is the aquifer discharge

and Scatch is the catchment area. To note that for a specific watershed a con-

ceptual unconfined aquifer is located below the bottom layer of NOAH-MP with

an horizontal extension matching the catchment area thus the aquifer discharge

may directly feed the river streamflow (equation 3.14 below). The aquifer model

is forced in 1way mode by NOAH-MP groundwater drainage and feeds in turn

the shallow water system for the river streamflow. The inflowing volume flux into

the aquifer is represented by the groundwater drainage at the deepest soil layer,

Qbot given by eq.(3.5). The aquifer discharge, Qout, is computed at each model

time step and for each sub-region of the catchment as an empirical exponential

function of the NOAH-MP groundwater drainage Qbot and then the the following

minimum value is assumed:

Qout = min(C(e
↵·z

zmax � 1), z · Scatch/dt) (3.14)

where z is the current conceptual water depth of the aquifer given by the sum of

the groundwater drainage and the stored aquifer water z = z + Qbotdt. Tunable

parameters are the initial value of the aquifer water depth zini (units of mm),

the maximum value of the aquifer water depth, the exponential law coe�cient ↵,

the volume capacity of the aquifer C (units of m3/s). To note the aquifer bucket
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is divided into sub-basins according to the number of monitoring points selected

along the river network. For our case study, we selected 4 monitoring points along

the Ofanto network and thus the river aquifer consists of four sub-regions located

upstream of each monitoring point as shown in the bottom-left panel of Fig.3.2.

The solving strategy is the same adopted for 2d shallow water (eq.3.6-3.8) with

eq.3.12 analytically solved to get Sf which is replaced in the Manning’s formula

for 1d channel to derive Q as empirical function of A. The discharge Q is then

replaced in eq.3.11 which is numerically solved and provides the wetted area A.

The Manning formula for 1d channel is:

Q =
A5/3

p
|Sf |sign(Sf )

P 2/3n
(3.15)

where P is the wetted perimeter computed as function of h as given by eq.(3.8),

and n is the tuneable coe�cient for channel roughness and is defined as function

of the Strahler’s stream order of each branch.

3.4 Analysis of the modeling results

The discussion of the modelling results focuses on two fields: the precipitation

and the river streamflow. We show the validation of both fields and the

calibration of tunable coe�cients involved in the parameterisation schemes of

WRF-Hydro. Critical issues as the predictability limits of the precipitation field

and the required spin-up of meteorological simulations are pointed out. The

added value of modelling both the surface and subsurface runo↵, the water

storage in the aquifer and the river routing is stressed too.

3.4.1 Mesoscale meteorological features

Figure 3.5 and Figure 3.6 provide the mesoscale maps of the two severe weather

events, Event 1 and Event 2, which occurred during the chosen simulation peri-

ods.

The mesoscale analysis proves the WRF capability to capture the weather storms
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which hit the Southern Italy. Maps of 500hPa geopotential point out how the up-

per level features a↵ect the lower level cyclogenesis. WRF maps for Event 1 show

a strong trough of low pressure at 500hPa centered over the Tirrenian Sea (top

panel of Figure 3.5) which is due to a cold front (not shown) progressing eastward.

At lower levels strong synoptic winds, coming from the SouthEast and blowing

over the warm Mediterranean Sea, reach the Italian Peninsula (bottom panel

of Figure 3.5) and turn into a weak cyclonic pattern centred over the Tirrenian

Sea. Maps of 500hPa geopotential for Event 2 show a weak trough in the upper

troposphere which covers the Western Mediterranean Sea and Atlas region (top

panel Figure 3.6), with a small deeper core south of Sicily, and corresponds to a

strong cyclonic circulation at lower level (bottom panel Figure 3.6). This cyclone

is triggered by the combination between southerly winds carring warm-moist air

and reaching the the Southern Italy and a colder wind developing downslope the

Balkans.

These mesoscale convective systems triggered Event 1 and Event 2 over the South-

ern Italy with heavy local rainfall and flooding on the major rivers. As detailed

in the Reports by Puglia Civil Protection, anomalous rainfalls hit the Puglia re-

gion during both events. A precipitation peak of 186.9 mm/day was recorded on

March 1st 2011 (Event 1) at Quasano station exceeding its historical maximum

value of 116mm/day reached in 2010. On December 1st 2013 (Event 2) another

anomalous amount of precipitation was recorded with 189.6 mm/day (77% fallen

in only 12 hours) reached at Bovino station with respect to a historical maxi-

mum value of 135.6mm recorded in 2003. Many other gauge stations reached

their absolute maximum rainfall during Event 2 as Quasano, Orsara di Puglia,

Cassano Murge, Orto di Zolfo and Castel del Monte.The Ofanto river flooded

few days after both events and the recorded water level at Cafiero gauge station

reached 4.62 m on 6th March 2011 and 6.48 m on 7th December 2013, close to the

historical maximum value of 6.8 m recorded on November 11, 1929. The Cafiero

station was damaged after Event 2 because of the flood thus the maximum value

reached could be higher. Another high water level characterises Experiment 1 on

19 February 2011 with 5.32 m as the maximum value gauged at Cafiero station.
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3.4.2 The Precipitation field

3.4.2.1 Validation of the results

A comprehensive analysis of the simulated precipitation in the Ofanto basin is

carried out by means of 27 rain gauge stations which cover the whole simulation

periods with 30-minute frequency (the stations are marked in Fig.3.2-top left

panel). To note that a quality control of the observations has been performed

and one station is removed from the validation of Experiment 2. Figure 3.7 shows

the validation of modelled precipitation by considering for both experiments the

stations with the best and worse statistics. Overall the WRF model captures

fairly well the localisation, the amount and the timing of the rainfall. The aver-

aged statistical indices are calculated on daily basis (which is usually adopted for

validation of the precipitation forecasts) and summarise in Table 3.3. Experiment

2 shows a better correlation than Experiment 1, a lower NRMSE (computed as

the root mean square di↵erence divided by the standard deviation) and higher

BIAS (computed as model minus observation value). This is an expected result

since the Experiment 2 is characterised by a first period (i.e. november 2013)

of continuous rainfall and a second period almost dry while several shorter rain

events succeed one another during Experiment 1 making hard the simulation of

the single events.

3.4.2.2 The sensitivity to the Initialization Time

The full prediction of localisation, amount and timing of rainfall is well know as

a tricky issue for the mesoscale models owing to the meso-� and meso-� scales

involved in these events. In our experiments the horizontal resolution of WRF

inner domain is 2 km thus we are exactly in the ”gray-zone” resolutions for con-

vection, where the power spectrum of the turbulence reaches its peak. This means

the WRF model is not able to fully reproduce the convective motions and conse-

quently the rainfall events with local scale features. Moreover the concatenation

procedure we chose consists of a chain of WRF simulations 72 hours long with

reinitialisation option and may su↵er a initialisation time particularly close or

far from the occurrence of peak events: in the first case the model is unable to

71



3. The local water cycle of river catchments. Modeling the meteorological and
hydrological processes

develop the mesoscale features required to trigger the local weather pattern, in

the second case the numerical drift may a↵ect the hindcast results (Fiori et al,

2014). Figures 3.8 highlights the sensitivity of the simulated precipitation to the

initialization time: left panel shows the observed 24h cumulated precipitation

as recorder by gauge stations on February 18th 2011 at 14:00 UTC, the middle

and right panels show the model findings with di↵erent initialization times. We

found the simulation initialized 38 hours before the recorded rain peak (right

panel) exhibits a pattern more similar to the available observations (left panel)

with respect to the one initialized 14 hours before (middle panel) Similarly, for

the rain peak recorded at 12:00 UTC on December 1st 2013 the adopted con-

catenation procedure includes a WRF simulation starting 12h before the peak,

thus a new simulation with a lead-time of 36 hours has been overlapped. Thus

we argue a spin-up period of at least 24 hours is needed. Moreover we plan to

adopt a di↵erent concatenation procedure in the future implementations of our

meteo-hydrological system with the overlap of more chains consisting of 72h long

runs with delayed start time. This would allow to discard the first 24 hours and

the last 24 hours of each 3 days run and to hold only the central 24 hours which

are expected to be the most reliable ones.

3.4.2.3 The correction of the precipitation field

We followed the Barnes (1964) ”method of successive corrections” which enables

to reduce the spatial shift of the modelled precipitation and to avoid the uncer-

tainties associated with the WRF precipitation propagate into the WRF-Hydro

simulations. We used the rain-gauge stations available in the Ofanto watershed

with 30-minutes time frequency. The following formula is adopted for the correc-

tion of the precipitation field:

'(i, j) = 'b(i, j) +

NdP
i=1

wiEi

NdP
i=1

wi

(3.16)

where 'b is the ”first guess” that is the precipitation field as simulated by WRF

at (i, j) model grid point, ' is the corrected precipitation field, Nd is the number
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of gauge stations available in the Ofanto catchment (Nd = 27 in Experiment 1

and 23 in Experiment 2), Ei = Oi�'i
b are the error field defined as the di↵erence

between Oi representing the observed precipitation at ith gauge and 'i
b which is

the first guess bilinearly interpolated at ith gauge. The weights, wi, are computed

as follows:

wi = exp
�
� 4

R2
i

D2
) (3.17)

where D is the radius of influence of the observations set equal to 25km in our

study, and Ri is the distance of each model grid points with the ith observation.

The enhancement of the representation of the precipitation field by means of

Barnes’ method is stressed in Figure 3.9 for Experiment 1 and Figure 3.10 for

Experiment 2. These figures focus on the rainfall peak events of March 1st

2011 (Event 1) during Experiment 1 and December 1st 2013 (Event 2) during

Experiment 2. In both Figures the left picture shows the background field that

is the precipitation field as simulated by WRF, the middle panel shows the in

situ observation used for applying the Barnes’ scheme and the right picture

provides the corrected precipitation field. Barnes’ method is proved to overcome

the WRF shortcomings in the spatial localisation and amount of simulated

precipitation.

3.4.3 The river streamflow

3.4.3.1 Validation of the results

We used the observed data of water level at Cafiero station to validate the mod-

elled river streamflow. Figure 3.11 shows the observed and modelled hydrograph

of the Ofanto river during Experiment 1 by considering the final set up of WRF-

Hydro and by using the simulated precipitation (top panel) or the assimilated

one (bottom panel). Similarly Figure 3.12 refers to Experiment 2. To note that

the gap in the observe time series is due to the river flooding.

In both Experiments working with modelled precipitation we tend to overestimate

the river water level. This overestimation is reduced by means of assimilated pre-

cipitation (eq.3.16) and thus the runo↵ peaks are better captured. Moreover the
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timing and the amount of the precipitation as simulated by WRF, is expected to

a↵ect the volume and the shape of the hydrograph and thus we adopt the strat-

egy of overlapped WRF runs (see fig.3.8) when time lags in the reconstruction of

hydrograph are found. To note that even the overlapping strategy doesn’t allow

to better reproduce the peak on November 23th 2013 during Experiment 2. This

peak is not captured especially when the corrected precipitation is adopted and

this shortcoming will be further investigated.

On the whole the final configuration of the meteo-hydrological modelling chain

including an appropriate calibration shows a satisfying performance when the

precipitation uncertainties are low. The WRF-Hydro system is capable to rea-

sonably simulate the Ofanto hydrograph and to correctly reproduce the main

peaks event s as well as the plateaus. We found the calibration of the infiltra-

tion rate and the aquifer recharge-discharge are crucial to improve the model

performance as detailed in the next paragraph.

3.4.3.2 Sensitivity to NOAH-MP and WRF-Hydro tunable

parameters: performed calibration and aquifer set-up

A manual calibration is employed with the aim of identifying the most relevant

parameters and roughly calibrating them. We trust a manual calibration is less

powerful than a more sophisticated procedure based on a statistical approach but

on the other hand this simple approach avoids the uncertainties arising from the

tuning of highly correlated parameters.

Preliminary we focused on the tunable parameters of the land surface model

which control the total water volume.

Several tests have been carried out to point out the role of the tuneable coef-

ficients and finally we found out 3 parameters playing a key role in the Ofanto

catchment: the slope coe�cient of Class 2, the infiltration coe�cient REFKDT

and the maximum soil moisture content SMCMAX of ”Clay-Loam” soil type (all

have units of m3/m3) . They directly a↵ect the surface water budget equation

and the soil moisture equation of NOAH-MP through the parameterisations of

infiltration capacity (eq.3.4) and groundwater drainage (eq.3.5). Moreover they
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indirectly condition the WRF-Hydro overland water flow through the source term

(eq. 3.2) of shallow water system and the aquifer discharge law (eq.3.14) through

the groundwater drainage. The tuned values of the parameters are listed in Table

3.4.

The SLOPE coe�cients modify the gravitational drainage out of the bottom

layer of NOAH-MP and are function of the surface percent slope. The slope

classes which characterise the Ofanto basin are class 1 (i.e. 0-8% slope and coef-

ficient equal to 0.1), class 2 (i.e. 8-30% slope and coe�cient equal to 0.6), class

4 (i.e. 0-30% slope and and coe�cient equal to 0.35) and class 6 (i.e. 8-30% and

¿30% slope and coe�cient equal to 0.8) with the steepest class, Class 6, located

in the upstream sub-region of the basin and the others in the downstream part.

Class 2, which a↵ects a small portion of the basin in the southern part of the

Ofanto low valley, prescribes a relative high value of SLOPE coe�cient equal to

0.6, but the tuned value has been reduced to 0.2. We reduced the slope coe�-

cient of Class 2 making it closer to the values which characterise the low valley

of the Ofanto river and we speculate this means the SLOPE coe�cients should

be assumed to be function not only of the surface slope but also of the soil types.

The seasonality of the soil physical processes is also pointed out by additional

sensitivity tests on the tunable parameters: we found out two of them, i.e. the in-

filtration coe�cient and the maximum soil moisture content of ”Clay-Loam” soil

type, are seasonally dependent and thus di↵erent values are assumed in the two

Experiments. In winter season, the soil is expected to be wetter than in autumn

and the soil porosity lower, this implies the values of REFKDT and SMCMAX

are fixed as lower in Experiment 1 than in Experiment 2.

After this first phase of calibration we focused on the parameters controlling the

hydrograph shape. The Manning’s 2d and 1d roughness coe�cients play a crucial

role in the computation of discharge as they are involved in the empirical formula

for computing the unit discharges qx and qy (eq.3.9-3.10) of 2d water flow as well

as the channel streamflow discharge Q (eq.3.15). The 2d roughness coe�cients

are indexed using the Land Use Categories and the 1d coe�cients are assigned

on the basis of Strahler’s stream order. We upgraded the computation of the 2d

roughness coe�cients by replacing the default USGS Land Use Categories with
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the higher resolution and updated Corine data (EEA dataset) and we refined the

computation of Strahler’s order and thus the 1d roughness coe�cients by adopt-

ing the higher resolution and updated EUDEM topography data (EEA dataset) .

The calibration of WRF-Hydro aquifer is manually performed too, and tuned val-

ues of aquifer coe�cients are uniquely defined and listed Table 3.5. We guess the

aquifer discharge is controlled by the soil texture which a↵ect the soil hydraulic

conductivity, thus we distinguish between the upstream sub-basin (sub-basin 1)

and the low valley of the Ofanto (sub-basin 2, 3 and 4) following the basin parti-

tion described in bottom left panel of Fig.3.2. The low valley ”Clay Loam” soil

type is much less pervious than the upstream ”Loam” soil type, thus the low

valley is characterised by a lower hydraulic conductivity and tend to counteract

the upward aquifer discharge. This means we set the values of the aquifer initial

water depth zini, the exponential law coe�cient ↵ and the volume capacity C

as lower in the downstream sub-basins 2, 3 and 4 with respect to the upstream

sub-basin 1, while zmax is higher.

Figure 3.13 points out the key role of representing the aquifer discharge. The

comparison of the modelled time series of Fig.3.13 (aquifer switched o↵) with

Fig.3.11-bottom panel (aquifer switched on) demonstrates the aquifer a↵ects the

baseflow and thus the plateaus among the peak discharges.

3.4.4 WRF-Hydro simulated river runo↵ versus

NOAH-MP parameterized surface runo↵

We highlight the added value of coupling the land surface model NOAH-MP

with a hydrology/hydraulics model as WRF-Hydro in Figure 3.14. The ”column

only” land surface model NOAH-MP parameterises the surface runo↵ through

eq. (3.2) and this is inadequate to represent the Ofanto hydrograph as stressed

in the related timeseries of Fig.3.14. WRF-Hydro system realistically routes the

river streamflow as well as the subsurface waterflow and aquifer storage which

eventually feeds the river network. Overall we found out the integrated modelling

system including atmosphere, land surface, hydrology and hydraulics components

is able to reproduce the local water cycle of the Ofanto basin and thus the Ofanto
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river hydrograph.

3.5 Conclusions

The goal of this work is a realistic reconstruction of meteo-hydrological events

for a specific river basin. We aimed to point out the strenghts of our meteo-

hydrological modelling system as well as its shortcomings.

We chose the catchment of a semi-perennial river, i.e. the Ofanto river, as our

case study. This is a demanding case study since it is a small-size catchment with

short ”rain-runo↵” response time and is located in the Southern Italy, a region

frequently subject to flash flood events. We simulated the local water cycle dur-

ing two time windows characterized by the occurrence of severe weather events

with flooding of the river.

Model findings and their comparison with available in situ observations confirm

the importance to represent the local water cycle by means of an integrated mod-

elling system which includes the atmosphere, the hydrology and the hydraulics

and which is able to explicitly solve the subsurface and surface runo↵, the aquifer

water storage and the river routing.

The final set-up of the WRF model has been achieved by several sensitivity

tests in order to select the most e↵ective parameterisation schemes and input

forcings. Overall the localisation, the amount and the timing of the rainfall is

captured fairly well as stressed by the statistical indices. The Barnes correc-

tion method enabled to increase the quality of modelled precipitation field and

to avoid the related uncertainties propagate into WRF-Hydro simulations. The

Ofanto hydrograph, including both peak events and plateaus, has been repro-

duced during the two simulation periods. We found out the representation of

the aquifer recharge/discharge and the parameterisation of the infiltration rate

and surface runo↵ are key issues for improving the model performance. More-

over the aquifer recharge/discharge law enables to take into account the aquifer

water storage which may directly feed the river network. Thus a great e↵ort

has been devoted to the calibration of the tunable coe�cients involved in the

parameterisation schemes of both NOAH-MP and WRF-Hydro. The coe�cients
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of the aquifer recharge/discharge law have been calibrated as soil type dependent

while the coe�cients for infiltration rate and soil moisture content are found to

be seasonal dependent. The performed calibration seems to indicate the SLOPE

coe�cients should be prescribed as function of soil types as well as the surface

slope. Finally the roughness coe�cients involved in the shallow water equations

for 2d overland water flow and 1d channel streamflow are respectively prescribed

as function of the land use categories and the topography data and thus we ben-

efited from working with higher resolution and upgraded terrestrial data.

The comparison of the Ofanto hydrograph reproduced by WRF-Hydro and the

surface runo↵ simulated by NOAH-MP, highlights a ”column only” land surface

model is definitely inadequate for the hydrological purposes and the coupling

with a hydrological model is needed.

The critical issues we faced in this study are also pointed out. We experienced the

predictability limits of the precipitation field and the required spin-up of the me-

teorological forecasts. Our model resolution is in the ”gray-zone” for convection

and thus the precipitation is expected to be only partially solved. Furthermore

the WRF capability to reproduce the heavy rain events is strongly sensitive to the

initialization time: the model could be unable to develop the mesoscale features

of a weather pattern if it is too close to the initialization time, on the other hand

the numerical drift may imply the model cannot capture the event if too far from

the initialization time. We found a spin-up period of about 1.5 day is needed to

capture the local heavy rainfall.

As a future development we plan to adopt a more robust concatenation procedure

of re-initialised WRF simulations: an ensemble of chains of 72-hours simulations

with delayed start-time. We also point to a more powerful approach for correcting

the precipitation field, based on the data assimilation technique. Finally a fu-

ture e↵ort could be devoted to fully prognostically solve the WRF-Hydro shallow

water system instead of the current di↵usive wave approximation.
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Figure 3.1: The study area. Left panel: WRF coarse domain (EEA-SRTM topog-

raphy dataset). Right panel: WRF inner and WRF-Hydro domain (EEA-Eudem

topography dataset)
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Figure 3.2: The Ofanto river Catchment. Top left panel: Topography height

(units of m) and location of 27 rain-gauge stations in the catchment. Top right

panel: Flow Accumulation grid defined by the number of grid cells which drain

into an individual cell along the river network grid. Bottom left panel: The whole

basin and the 4 sub-basins (coloured zones) defined as the areas upstream of the

selected monitoring points (black dots). Bottom right panel: USGS Soil Type

Categories in the region of the Ofanto basin.
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Figure 3.3: The meteo-hydrological modeling chain

Figure 3.4: The concatenation procedure of the simulations
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Figure 3.5: Mesoscale maps during the weather storm on 1 March 2011 (Event 1).

Top panel: WRF (domain1) Geopotential height (in m/10, colours) at 500hPa.

Bottom panel: WRF (domain1) 2m Temperature (in Cdeg, colours) and 10m

wind (in m/s, black arrows).
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Figure 3.6: Mesoscale maps during the weather storm on 1 December 2013

(Event 2). Top panel: WRF (domain1) Geopotential height (in m/10, colours)

at 500hPa. Bottom panel: WRF (domain1) 2m Temperature (in Cdeg, colours)

and 10m wind (in m/s, black arrows)
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Figure 3.7: Validation of the hourly modeled precipitation through the entire

simulation period in the Ofanto basin. Top Panels: observed and modelled time

series at the stations with the best (left) and the worse (right) WRF performance

for Experiment 1. Bottom Panels: observed and modelled time series at the sta-

tions with the best (left) and the worse (right) WRF performance for Experiment

2
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Figure 3.8: Upper panels: Comparison of 24h cumulated precipitation on

2011/02/18 as recorded by 27 gauge-stations (left panel), modelled by WRF

with start time 14h before the rain peak (middle panel) and modelled by WRF

with start time 38h before the rain peak (right panel). Lower panels: Comparison

of 24h cumulated precipitation on 2013/12/01 as recorded by 25 gauge-stations

(left panel), modelled by WRF with start time 12h before the rain peak (middle

panel) and modelled by WRF with start time 36h before the rain peak (right

panel)

85



3. The local water cycle of river catchments. Modeling the meteorological and
hydrological processes

Figure 3.9: Maps of 24h cumulated precipitations (in mm/day, colours) during

the peak event on March, 1st 2011. Left panel: model findings (left), Middle

panel: 27 observed spots used for applying the Barnes method, Right panel:

model findings corrected with Barnes scheme

Figure 3.10: Maps of 24h cumulated precipitations (in mm/day, colours) during

the peak event on December, 1st 2013. Left panel: model findings (left), Middle

panel: 23 observed spots used for applying the Barnes method, Right panel:

model findings corrected with Barnes scheme
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Figure 3.11: Validation of Ofanto discharge for Experiment 1 at Cafiero Station.

Top panel: modelled precipitation, aquifer switched on, calibration of NOAH

and WRF-Hydro coe�cients (discharge RMSE =0.75m , CORR=0.66). Bottom

panel: assimilated precipitation, aquifer switched on, calibration of NOAH and

WRF-Hydro coe�cients (discharge RMSE = 0.65m, CORR=0.74)
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Figure 3.12: Validation of Ofanto discharge for Experiment 2 at Cafiero Station.

Top panel: modelled precipitation, aquifer switched on, calibration of NOAH

and WRF-Hydro coe�cients (discharge RMSE= 0.82m, CORR=0.81). Bottom

panel: assimilated precipitation, aquifer switched on, calibration of NOAH and

WRF-Hydro coe�cients (discharge RMSE=0.74m, CORR=0.88)
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Figure 3.13: Validation of Ofanto discharge for Experiment 1 at Cafiero Station

working with assimilated precipitation, calibration of NOAH and WRF-Hydro

coe�cients but aquifer switched o↵ (discharge RMSE= 0.69m, CORR=0.77)

Figure 3.14: Comparison of Ofanto discharge for Experiment 1 at Cafiero Sta-

tion as provided by the best WRF-Hydro set-up (discharge RMSE= 0.65 m,

CORR=0.74) and by NOAH-MP (discharge RMSE= 1.68 m, CORR=0.61)
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Experiment Time Window Date of Start time of Max recorded value

severe Events WRF 72h Run of 24h cumulated

for Events 1-2 precipitation

Experiment 1 Jan-Mar 2011 1 March 2011 27 February 2011 00 UTC 186.9 mm/day

(Event 1)

Experiment 2 Nov-Dec 2013 1 December 2013 1 December 2013 00 UTC 189.6 mm/day

(Event 2)

Table 3.1: Details on the Experiments

WRF ARW SET-UP DOMAIN 1 DOMAIN 2

Topography SRTM 90m EUDEM 30m

Land Use categories USGS 800m + Corine 250m
Corine 250m (Europe)

Radiation RRTMG (2008) RRTMG (2008)

PBL surface sub-layer Monin-Obukhov (1954) Monin-Obukhov (1954)

PBL mixed sub-layer YUS (2006) YUS (2006)

Convection Kain-Fritsch (1993) Explicit

Microphysics Thompson (2004) Thompson (2004)

Table 3.2: Terrestrial datasets and parameterization settings adopted over WRF
Domain 1 (6 km grid spacing) and Domain 2 (2 km grid spacing)

Statistical index Experiment 1 Experiment 2
of precipitation

NRMSEave 1.15 0.59

BIASave (mm/day) +0.11 +0.45

CORRave 0.70 0.86

Table 3.3: Statistical indices for validation of modeled precipitation by compar-
ison with rain-gauge stations in the Ofanto basin during the entire simulation
period
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Tuned Coe�cient Experiment 1 Experiment 2

SLOPE - Class 2 0.2 0.2

REFKDT (m3/m3) 0.1 0.7

SMCMAX - ClayLoam (m3/m3) 0.232 0.465

Table 3.4: Tuned coe�cients of WRF-Hydro/NOAH-MP for both Experiments

Tuned Coe�cient Sub-basin1 Sub-basins 2-3-4

Zini(mm) 0.0450 0.0036

Zmax(mm) 2.00 5.55

↵ 1.861 0.861

C (m3s�1) 0.014 0.0014

Table 3.5: Tuned coe�cients of WRF-Hydro-aquifer model for each Ofanto river
sub-basin
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4 The physical regime of ROFIS

Preamble

This chapter is a co-authored paper with N. Pinardi, J. Tribbia, F. Bryan, Y.

Tseng, Q. Sun and G. Coppini, entitled “Estuarine dynamics for ocean modeling:

the case study of the Ofanto estuary” and to be submitted to the Journal of

Physical Oceanography.

The regional ocean models generally treat the riverine freshwater release in a

oversimplified way by means of climatological runo↵, based on gauges located far

from river outlets, and zero or at most constant salinity values corresponding to

the runo↵. Thus the water exchange into the estuaries, owing to to the ocean

water entrainment, is not taken into account. We consider the highly stratified

estuary of the Ofanto river as case study and we aim to describe the main physical

processes involved in the water and energy balance of the estuary.

Three approaches of estuarine dynamics are tested and compared: the simple

Knudsen’s relation, an upgraded version of the Knudsen’s relation we developed

with the addition of tides, and an estuary box model developed by the University

of Connecticut and the National Center for Atmospheric Research. A set of

sensitivity experiments has been performed in the ROFI of the Ofanto river by

forcing the regional ocean model with the runo↵ and salinity computed by the

di↵erent approaches of the estuarine dynamics. We found that the added value of

better representing the estuarine dynamics and its e↵ect on the coastal dynamics

becomes particularly clear during the upwelling wind regime in the Puglia region.

The UCONN-NCAR model is the only one which is capable to represent a well

defined river plume during upwelling wind. On the other hand, the estuary model

based on the Knudsen’s relation with the addition of tides is the most rigorous

one from the theoretical point of view, thus future e↵orts will be devoted to the

development of this new approach.
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4.1 Introduction

Several modelling and theoretical studies have pointed out rivers play a cru-

cial role on the overturning circulation of both shelf area (Simpson et al, 1993;

Kourafalou et al, 1996; Kourafalou, 1999; Schiller and Kourafalou, 2010) and

open ocean (Rahmstorf, 1995; Skliris et al., 2007; Somot et al., 2006; Spall,

2012). The investigations carried out on the shelf areas adjacent to estuaries, the

so called Regions Of Freshwater Influence (i.e. ROFIs), highlighted the riverine

freshwater discharge generated baroclinic dynamics by promoting the water col-

umn stratification and the o↵shore drift (Chapman and Beardsley, 1989; Garvine,

1999). The resulting dynamical structure is the ”buoyant river plume” which con-

sists of an o↵shore cyclostrophic bulge which turns anticyclonically plus a coastal

alongshore current due to the geostrophic adjustment.

A key issue which is still poorly investigated is that the net freshwater release

at river mouth is a non-zero salinity outflow (MacCready and Geyer, 2010) as

consequence of the ocean water entering the river mouth. The tidal pumping

plays the predominant role in the exchange of fresher water leaving the estuary

(ebb tide) and saltier ocean water entering the estuary (flood tide).

The regional ocean models based on finite di↵erence grids cannot solve the estuary

dynamics due to their numerical constraints. Moreover they are usually forced at

river outlets by freshwater volume fluxes based on climatologies and zero at most

constant salinity values. We point to overcome this shortcoming and introduce a

reasonable river discharge into regional ocean models, thus di↵erent approaches

of estuary dynamics are here evaluated: the simplest method based on Knudsen’s

relation (Knudsen, 1900), an upgraded method we developed for including the

tidal pumping into the Knudsen’s relation and finally a 2-layer steady state estu-

ary box model developed by UCONN and NCAR (Garvine and Whitney, 2006;

MacCready and Geyer, 2010). The di↵erent methods are described in Section2

and their application to a case study, i.e. the estuary of the Ofanto river, is

presented in Section 3. Section 4 deals with the coupling of the estuary dynamics

methods with a regional ocean model. Summary and conclusions are provided in

Section 5.
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4.2 Estuarine dynamics: the theory

The estuary region is here assumed to be a two-layer rectangular box as drawn

in Figure 4.1. The two layers have constant thickness H/2, length Lx, width

Ly and vertically uniform features. The estuary mouth is defined as the origin

of the x-axis which is positive toward the ocean. The origin of the z-axis is at

the bottom of the box and upward oriented. We define the estuary head as the

last point along the river network moving downstream with salinity still equal to

zero, thus not a↵ected by the ocean water entrainment. We assume the heat flux,

the freshwater flux and the wind stress at the top surface and the infiltration at

the bottom are negligible at the scales of the estuary box. Thus the horizontal

boundaries at the top and the bottom are closed. The vertical boundary at the

estuary mouth is open through both layers while the vertical boundary at the

estuary head is open only through the upper layer.

The drawing of a two layer estuary box design is fully consistent with estuaries

classified as “highly stratified estuaries” (Fischer et al., 1979), a deeper study

should be devoted to the cases of “well-mixed estuaries”.

4.2.1 The Knudsen’s relation

The Knudsen’s relation describes the estuarine circulation by means of 2 diag-

nostic equations: the volume conservation equation (units of m3/s) and the salt

conservation equation (units of psu ⇤m3/s).

The volume conservation equation is given by:

Qebm
ul = Qriver +Qocean

ll (4.1)

The salt conservation equation is equal to:

Sebm
ul Qebm

ul = Socean
ll Qocean

ll (4.2)

The subscript “river” stands for the riverine variable at the head, the subscript

“ll” indicates the lower layer variables and the subscript “ul” the upper layer vari-

ables. The outflowing volume flux of estuarine water through the upper layer,

Qebm
ul , and the salinity of outflowing water, Sebm

ul , are the unknowns while the
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river volume flux at the estuary head, Qriver, the salinity of inflowing ocean wa-

ter through the lower layer, Socean
ll , and the volume flux of inflowing ocean water,

Qocean
ll , are provided as input forcings. The sketch of the input forcings and un-

knowns is given in Figure 4.2.

The volume conservation of eq.(4.1) is derived starting from the continuity equa-

tion for incompressible fluid while the salt conservation of eq.(4.2) is constructed

starting from the advection/di↵usion equation for salinity.

The estuary length, Lx is the only tunable coe�cient. This is not involved in the

model equations but enables to define the estuary head where Qriver is provided.

Knudsen’s relation is definitely a coarse approach which describes only three

physical processes: the riverine discharge inflowing at the estuary head, the ocean

water flux inflowing at the estuary mouth through the lower layer, the estuarine

water flux outflowing at the mouth through the upper layer.

4.2.2 The development of new approach: the Knudsen’s

relation upgraded with the tidal e↵ect

We upgrade the Knudsen’s relation by including the tidal pumping term into

the conservation equations (4.1)-(4.2). Additional input forcings with respect to

Knudsen’s relation are the ocean water mean salinity Socean, the water level h

and the temporal gradient @h
@t

at the estuary outlet. The details of the model are

drawn in Figure 4.3.

The conservation equations read:

Qebm
ul = Qriver +Qocean

ll +HLxLy

�@h
@t

)/h (4.3)

Sebm
ul Qebm

ul = Socean
ll Qocean

ll +HSoceanLxLy

�@h
@t

)/h (4.4)

We demonstrated the eq.(4.3) starting from the continuity equation for incom-

pressible fluid:

5 · ~u = 0 (4.5)

We consider the volume integral in order to apply the divergence theorem:
Z Z Z

V

5 · (~u) =
Z Z

S

~u · dSn̂ = 0 (4.6)
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In our set-up, the faces of the estuary box are closed except the two cross sections

in the direction of river streamflow, i.e.n̂ = x̂, and thus we consider only the fluxes

through these boundaries at the estuary head and mouth:
Z H

H/2

Z

dy

~uebm
ul · n̂dzdy �

Z H

H/2

Z

dy

~uriver · n̂dzdy+

�
Z H/2

0

Z

dy

~uocean
ll · n̂dzdy �

Z H

0

Z

dy

~ubaro
ocean · n̂dzdy

����
x=0

= 0

(4.7)

where ~ubaro
ocean = ~ubaro

ocean(x, y, t) is the barotropic ocean velocity we consider at the

estuary mouth, x = 0. This is essentially due to tides, thus ~ubaro
ocean · n̂ = utide is

the horizontal component in the streamflow direction x̂, which is positive defined

if o↵shore oriented following the x-axis orientation. By considering the geometry

of the estuary box we get:

Qebm
ul �Qriver �Qocean

ll �H

Z

dy

utidedy

����
x=0

= 0 (4.8)

The last term on the LHS of eq.(4.8) is computed starting from the equation for

the sea surface height:

@h

@t
+5H · (h~ubaro) =((((((hhhhhhP +R� E (4.9)

where h(x, y, t) = H + ⌘(x, y, t) is the sea surface height, moreover the surface

freshwater flux is neglected over the estuary area.

The surface integral over the estuary horizontal area reads:
Z Z

@h

@t
dxdy +

Z Z
5H · (h~ubaro)dxdy = 0 (4.10)

By applying the Green’s theorem:
Z Z

5H · (h~ubaro)dxdy =

I
h~ubaro · n̂dl (4.11)

By replacing (4.11) into (4.10) we get:
Z Ly

0

Z �Lx

0

@h

@t
dxdy +

I
(hutidedy � hvtidedx) = 0 (4.12)

We consider the estuary motion is one-dimensional thus at the estuary head we

get vtide = 0 and h = h(t). The equation (4.12) can be rewritten as follows:
Z Ly

0

utidedy

����
x=0

= �(�Lx)Ly

�@h
@t

)/h (4.13)
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By replacing eq.(4.13) in eq.(4.8), we finally get eq.(4.3).

The salt conservation of eq.(4.4) can be constructed starting from the advec-

tion/di↵usion equation for salinity:

◆
◆
◆S

S
S

@S

@t
+5 · (~uS) =⇠⇠⇠⇠⇠⇠XXXXXXKSH

52 S +KSV

@2S

@2z
(4.14)

where KSH
and KSV

are the horizontal and vertical di↵usive coe�cients (units

of m2s�1).

The local variation term is null since the fluid is assumed as steady and we neglect

the horizontal mixing term. The volume integral reads:

Z Z Z

V

5 · (~uS) =
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠XXXXXXXXXX

Z Z Z

V

KSV

@2S

@2z
(4.15)

where the hypothesis of zero surface freshwater flux, E � P � R, at the estuary

top surface implies the volume integrated vertical mixing term is null.

We apply the divergence theorem as done for the volume conservation in eq.(4.6),

thus obtaining:

Z H

H/2

Z

dy

uebm
ul Sebm

ul · n̂dzdy �
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠XXXXXXXXXXXXXX

Z H

H/2

Z

dy

~uriverSriver · n̂dzdy+

�
Z H/2

0

Z

dy

~uocean
ll Socean

ll · n̂dzdy �
Z H

0

Z

dy

Socean~u
baro
ocean · n̂dzdy

����
x=0

= 0

(4.16)

where the second term on the LHS is null owing to Sriver = 0. By replacing the

volume fluxes Qebm
ul and Qocean

ll and ~ubaro
ocean · n̂ = utide we get:

Sebm
ul Qebm

ul � Socean
ll Qocean

ll �HSocean

Z

dy

utidedy

����
x=0

= 0 (4.17)

and by writing the last term on the LHS as demonstrated in eq.(4.13) we finally

get eq.(4.4).

4.2.3 The UCONN-NCAR estuary box model

A 2-layer steady state estuary box model has been developed by UCONN and

NCAR and is based on the assumptions of rigid lid, steady fluid and hydrostatic

equilibrium. The described physical processes are the riverine water inflow at
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the estuary head, the ocean water inflow the lower layer at the estuary mouth,

the estuarine water outflow the upper layer at the mouth, the tidal pumping

over a whole tidal cycle including both flood tide (inflowing ocean water) and

ebb tide (outflowing estuarine water), the tidal mixing at the bottom and the

shear mixing at layer interface. A sketch of the model is given in Figure 4.4.

The numerical core consists of three steady-state and tidal cycle-averaged

equations for water mass conservation (kg/s), salt mass conservation (kg*psu/s)

and potential energy flux conservation (J/s), plus a linear state equation of the

sea water.

⇢oceanll Qocean
ll + (⇢oceanll � ⇢ebmul )mtidesQ

tides
ul /2 + ⇢riverQriver � ⇢ebmul Qebm

ul = 0 (4.18)

Socean
ll ⇢oceanll Qocean

ll + (Socean
ll ⇢oceanll � Sebm

ul ⇢ebmul )mtidesQ
tides
ul /2� Sebm

ul ⇢ebmul Qebm
ul = 0

(4.19)

PEFll + PEFtp + PEFriver + PEFtm + PEFsm � PEFul = 0 (4.20)

The subscripts “tp” and “tm” mean tidal pumping and tidal mixing respectively.

The subscript “sm” represents the shear mixing term. Qtides
ul is the tidal volume

flux over the ebb tide through the upper layer, mtides is the ratio between the

areas of advected volumes during ebb or flood tide.

A simplified linear equation of sea water state computes the density from the

salinity and is given by:

⇢ = ⇢0(1 + ksS) (4.21)

where ks = 7.7 ⇤ 10�4psu�1 (Garvine, 1999) and ⇢0 = 1000kg/m3 is the fresh-

water reference density, thus ⇢river = ⇢0 while ⇢oceanll = ⇢0(1 + ksSocean
ll ) and

⇢ebmul = ⇢0(1 + ksSebm
ul ).

The outflowing volume flux of estuarine water through the upper layer, Qebm
ul , the

salinity of outflowing water, Sebm
ul and the volume flux of inflowing ocean water
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through the lower layer, Qocean
ll , are the model unknowns while the river volume

flux at the estuary head, Qriver and the salinity of inflowing ocean water through

the lower layer, Socean
ll are provided as input forcings.

Moreover this model includes several tunable coe�cients: the estuary length, Lx,

the tidal period, T , the tidal amplitude atide, the bottom drag coe�cient, Cd,

the tidal mixing e�ciency, ✏, the shear mixing e�ciency, �, and the entrainment

constant at layer interface, ↵.

The tidal pumping implies a net increase of water mass, salt mass and poten-

tial energy flux into the estuary over a whole tidal cycle. In details the model

assumes the volumes advected through the mouth during flood tide and ebb

tide are equal, but the flood tide e↵ect prevails on the ebb tide one owing

to the density di↵erence between the advected volumes (see the positive sec-

ond term on the LHS of eqs(4.18)-(4.19)-(4.20) ). The tidal volume flux over

the ebb tide through the upper layer, Qtides
ul , is computed by solving a 1d lin-

earised shallow water system in the entrainment zone o↵ the estuary, thus we get

Qtides
ul = Ly

H
2

2utide

⇡
= Ly

H
2

2atide
p
gH

H⇡
= LY LTH/2

T
where T is the tidal period and

LT is the length of the ebb tide excursion. The water mass flux resealed during

ebb is given by WMebb = ⇢ebmul Qtides
ul , the water mass flux gained during flood is

computed starting from Qtides
ul with an empirical approach.

The equations for water mass conservation (4.18) is derived from the continuity

di↵erential equation with the hypothesis of steady fluid.

The salt mass conservation equation (4.19) is written as the water mass conser-

vation simply multiplying each term by the salinity of the water masses. We

believe this is a limit of the model since the salt conservation equation should be

strictly derived from the advection/di↵usion equation for salinity and this is the

main reason why we decide to write the new set of equations (4.3)-(4.4).

The steady-state potential energy flux conservation equation (4.20) is written

under the hydrostatic hypothesis which enables to get the gravitational poten-

tial energy per unit area (unit of J/m2) as PE =
R H

0 ⇢gzdz = 1
2⇢gH

2. The

potential energy flux for the process i, PEFi (units of Js�1), is thus given by

PEFi =
PE
H
Q = 1

2⇢gHQi.

Further details on the computation of Qtides
ul , PEFtp, PEFtm and PEFsm on
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empirical basis are provided in Qiang, S., et al., A Box Model for Representing

Estuarine Physical Processes in Earth System Models, private communication.

Figure 4.5 summarises the main features of the estuary dynamics approaches

we tested. By comparing the approaches from a theoretical point of view, the

UCONN-NCAR model is capable to solve the highest number of physical pro-

cesses including also the tidal mixing and the shear mixing. On the other hand

the model we developed on the basis of Knudsen’s relation with the addition of

the tidal pumping consists of fully justified equations. Moreover the inflowing

volume flux of ocean water through the bottom is an input forcing instead of an

unknown as in UCONN-NCAR model and this is expected to be a more realistic

approach. Finally no tunable coe�cients are involved in the equations, thus re-

ducing the uncertainties associated with the calibration of these coe�cients. For

these reasons we argue the estuary model based on Knudsen’s relation with the

addition of tides is the most rigorous from the theoretical point of view. The

next step is to compare the performance of the di↵erent approaches in a real case

study.

4.3 Application: the estuarine dynamics of the

Ofanto river

We chose the estuary of the Ofanto river as case study. The main features of

the Ofanto basin are detailed in Chapter 3. We selected the time window over

January-March 2011 which is characterised by high discharge of the river and 2

flooding events well captured by our meteo-hydrological chain (Chapter 3). We

estimated the Ofanto estuary “flow ratio”, defined as the tidal velocity over the

river streamflow velocity (Fischer et al. 1979), over the simulation period:

flow ratio = utide/uriver = 0.01 (4.22)

where the tidal velocity at the river mouth, utide, is given by OTPS (Oregon

State University Tidal Prediction Software, Egbert and Erofeeva, 2002) and the

river streamflow velocity at the estuary head, uriver, is provided by WRF-Hydro.

Following Fischer (1979), a flow ratio minor than 0.1 suggests the estuary is
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a “sharply stratified” estuary. A fully stratified estuary is expected to release

the volume flux through the upper layer and satisfies the Richardson’s number

criteria, thus cannot become unstratified and a high mixing is proved to be at

most an intermittent process occurring in the late ebb-tide phase (Geyer and

Smith, 1987). This means the 2-layer estuary box is fully consistent with the

Ofanto estuary.

The geometry of the Ofanto estuary has been set up. The estuary width,

Ly = 25m, has been measured by Google Earth. The estuary height, H = 5m,

has been assumed equal to the minimum depth of our regional ocean model

bathymetry. The estuary length, Lx = 1km, is based on comparisons with other

case studies (Tseng et al., 2016 in revision) since we cannot rely on in-situ

observations. For what concern the only UCONN-NCAR model, the tidal

characteristics at the mouth, T and atide, have been extracted from Guarnieri

et al, 2013 according to the tide-gauge station o↵shore of Bari. The coe�cients

Cd and ↵ are set to literature-based values and the e�ciencies ✏ and � are still

equal to the default values.

We coupled the estuary box model with WRF-Hydro model (details are in

Chapter 3) at the head and with NEMO ocean model (details are in Chapter

2) and OTPS at the outlet. All the couplings are in 1-way mode. Thus Qriver

is provided by the WRF-Hydro model, Socean, Socean
ll and Qocean

ll (with the only

exception of UCONN-NCAR model assuming Qocean
ll as an unknown) are passed

by NEMO, h is provided by OTPS. The frequency of input forcings is hourly.

To note that Qocean
ll is computed as Qocean

ll = uocean
ll ⇤ Ly ⇤ H where uocean

ll is the

weighted average of ocean velocity values at the NEMO grid points closest to the

lower layer at the river outlet and is assumed zero if seaward oriented. Similarly

h is provided by OTPS by selecting the model grid point closest to the river

mouth, @h
@t

is then computed from h and put equal to zero if negative, @h
@t

< 0.

Figure 4.6 show the results of the performed experiments by the di↵erent estuary

dynamics approaches. The green time-series of both panels in Fig.4.6 show

the Ofanto monthly climatological discharge (Raicich, 1996) and the constant

salinity value (i.e. 15 psu) we currently adopt to force out regional ocean model.

This is definitely an oversimplified and unrealistic way to force the ocean at the

101



4. The physical regime of ROFIS

river outlets.

The results suggest the Knudsen’s relation is clearly the coarsest approach: the

salinity of outflowing estuarine water often drops to zero (blue time series of bot-

tom panel in Fig.4.6), this could eventually occur over few hours corresponding

to the late ebb tide phase but this is definitely unreasonable over several days.

The approach we developed by including the tidal pumping into the Knudsen’s

relation overcomes this deficiency.

The tidal pumping is proved to strongly a↵ect the computation of both salinity

and volume flux of the outflowing estuarine water at the estuary mouth. The

UCONN-NCAR estuary box model shows the highest values of both salinity

and volume flux of the outflowing water. In particular the outflowing volume

flux computed by Knudsen and Knudsen+tides approaches doesn’t significantly

di↵er from the same field provided by WRF-Hydro at the estuary head, while

UCONN-NCAR model shows much higher outflowing volume flux especially

during the peak events with subsequent plateaus. We conclude the key forcing

mechanism is the tidal pumping which implies the high vertical mixing we

observe in the UCONN-NCAR model.

4.4 The coupling with the ocean: the coastal

dynamics o↵ the Ofanto estuary

The literature includes several studies which treat the riverine freshwater re-

lease into the ocean models as “virtual salt flux boundary condition”, also called

“mixed boundary condition” (Bryan, 1986): the freshwater flux is prescribed as

an additional salt flux which is added to the salt flux boundary condition allowing

the concentration-dilution e↵ect to be represented. This is the approach generally

assumed in the General Circulation Models, GCMs, with rigid lid hypothesis. A

new approach called “natural boundary condition” (Huang, 1993) fits the free

surface ocean models by prescribing the freshwater flux as a volume surplus of

zero-salinity water, modeled as a correction to the model’s top layer vertical ve-
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locity at the grid points covering the source locations. Thus a real freshwater flux

is specified through the vertical velocity boundary condition (eq.4.23). Moreover

Beron-Vera et al. (1999) introduces a complementary non-zero salt flux at river

outlets through ad-hoc salt values in the salt flux boundary condition (eq.4.24).

We follow the latter approach, thus rivers are represented as surface point sources

of runo↵ and salinity which a↵ect the ocean model as natural boundary condi-

tions and with ad-hoc salt values at mouths.

The surface boundary condition of our regional ocean model for vertical velocity

reads:

w |z=⌘ �
@⌘

@t
+ (u, v) |z=⌘ ·5H ⌘ = (E � P � R

A
) (4.23)

The surface boundary condition for salt flux reads:

Kt
@S

@z
|z=⌘= Sz=⌘(E � P � R

A
) (4.24)

where Kt is the vertical mixing coe�cient for traces, ⌘ is the sea surface elevation,

Sz=⌘ is the surface salinity solved by the ocean model except prescribed ad-hoc

salt values at river mouths, E is the evaporation rate (units of ms�1), P is the

precipitation rate (units of ms�1), R indicates the river runo↵ (units of m3s�1)

provided at the model grid points representing river outlets and A stands for the

area of river mouth cells.

To note that the other surface boundary conditions of our ocean model for the

heat flux and the momentum flux (Appendix A) are also indirectly and slightly

a↵ected by river parameterisation since rivers locally lower the sea surface tem-

perature and introduce surface velocity. As detailed in Chapter 2, in the current

set-up of our regional ocean model river runo↵ consists of monthly climatologies

for all rivers except daily observations for the Po river and salinity is assumed

equal to 15 psu for all rivers and 17 psu for the only Po river, both values are

chosen on the basis of sensitivity tests with the latter due to the extensive tidal

mixing occurring in the Po delta.

In this study on the estuarine dynamics, we force the ocean model at the Ofanto

mouth with the results of the di↵erent approaches we tested for representing the

estuary dynamics. Doing this a set of sensitivity tests of coastal dynamics o↵

the Ofanto estuary has been carried out. Experiment 1, called “Climatological
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runo↵”, prescribes the Ofanto river freshwater release by means of monthly clima-

tological discharge and constant salinity (15 psu). Experiment 2, called “EBM”,

predicts the Ofanto freshwater release by using the discharge and salinity time

series provided by the UCONN-NCAR model, Experiment 3 called “Knudsen”

works with Knudsen’s relation results of discharge and salinity. Experiment 4

called “Knudsen+tides” uses the river freshwater release predicted by the new

approach we developed by using Knudsen’s relation with tides. Finally Experi-

ment 5 called “Explicit Estuary” is based on the Ofanto estuary explicitly solved

by NEMO mesh mask. The explicit estuary is forced at the grid cell representing

the head of the estuary by the WRF-Hydro discharge and by zero salinity. To

note the WRF-Hydro discharge over the simulation period has been validated

by comparison with the available observations at Cafiero station (Figure 11 of

Chapter 3) and shows a high level of agreement. Thus this experiment is as-

sumed as our benchmark for evaluating the performance of the estuary dynamics

approaches.

Figures 4.7-4.8-4.9 show the daily results of the coastal dynamics experiments on

February, 19th 2011, when a downwelling favourable wind regime along the west-

ern Adriatic coast, i.e. Tramontana, prevails. Similarly Figures 4.10-4.11-4.12

show the same daily results on March, 3rd 2011 when the Scirocco wind blows,

promoting the upwelling along the western Adriatic coast. These figures zoom

over the coastal region o↵ the Ofanto estuary and the selected fields are the sea

surface salinity, the cross shore section of salinity and the surface currents. Fig-

ures 4.9 and 4.12 highlight the surface currents are driven by the large scale wind

on February, 19th while small-scale patterns prevail on March, 3rd. We found

the added value of representing the estuarine dynamics and its impact on the

coastal dynamics is clear during upwelling favourable wind regime. Upwelling

wind acts in the same direction of the freshwater release by promoting strong

o↵shore spreading and vertical stratification (Chao, S. Y., 1987; Kourafalou et

al., 1996).

We aware UCONN-NCAR estuary box model is partially derived on an empirical

basis especially for what regards the computation of the tidal pumping term,

moreover the salt conservation equation is not rigorously justified. On the other
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hand this is the only model among the tested ones which is capable to represent a

well defined river plume as compared to the Explicit Estuary approach assumed

as our benchmark.

The minimum theoretical value of the plume o↵shore expansion following

Yankowsky and Chapman (1997) reads:

ys =
2 (3g0H + v2i )

(2g0H + v2i )
1/2 f

(4.25)

where g0 = g |⇢i�⇢0|
⇢0

is the reduced gravity based on the density anomaly of

the outflowing water, ⇢i � ⇢0, with respect to a constant reference density,

⇢0 = 1000 kg/m3. Moreover H is the mouth depth, vi is the outflowing velocity,

f is the Coriolis parameter.

We apply the eq.(4.25) to the Ofanto plume on daily basis on March 3rd and we

get ys = 17km, with vi = 0.77m/s and ⇢i = 1001kg/m3 computed by using the

time series of Qebm
ul and Sebm

ul computed by the UCONN-NCAR estuary model.

The o↵shore expansion of the river plume in the top right panel of Fig.4.11 is

about ys = 14 km. Thus there is a good agreement between the theoretical

o↵shore distance of the Ofanto plume and the one simulated by our regional

ocean model.

4.5 Summary and concluding remarks

The net freshwater release at river mouths is a non-zero salinity outflow owing

to the salt ocean water entrainment and the consequent water exchange into the

estuary area. A shortcoming of the regional ocean models is they usually treat

the riverine freshwater release in a oversimplified way by means of climatological

runo↵, mainly based on gauges located far from river outlets, and zero or at

most constant salinity.

However rives are known to strongly a↵ect the coastal as well as the open sea

overturning circulation thus the main objective of this work is to develop a

realistic representation of the riverine freshwater release into our regional ocean

model based on finite di↵erence NEMO code.

105



4. The physical regime of ROFIS

The modelling of the estuarine dynamics is a challenging topic and is still poorly

investigated.

We tested di↵erent approaches for representing the estuarine dynamics: the

Knudsen’s relation which consists of two conservation equations, a new version

of the Knudsen’s relation we developed by including the tidal pumping process

and a more complex estuary box model developed by UCONN and NCAR

consisting of three conservation equations and representing also the tidal mixing

and the shear mixing processes. In all the approaches, we assume the estuary

area is a two-layer box with ocean water entering through the lower layer and

estuarine water outflowing through the upper layer at the estuary mouth. This

is a rigorous approach for well stratified estuary while may be lacking for highly

mixed estuaries. The sharply stratified estuary of the Ofanto river has been

selected as first case study and the simulations are carried out on January

to March 2011, which is a time range characterised by severe weather events

with flooding of the river. The estuary box is coupled in 1-way mode with

WRF-Hydro model at the estuary head and NEMO ocean model at the estuary

mouth.

The Knudsen’s relation is proved to be a too simple approach: the salinity of

outflowing estuary water often drops to zero, this may actually occurs only over

few hours corresponding to the late ebb tide phase but is unreasonable over

several days. A new approach we developed by including the tidal pumping

process into the Knudsen’s relation overcomes this deficiency. We found the

tidal pumping strongly a↵ects the resulting salinity of the outflowing estuarine

water by promoting an intense mixing into the estuary.

The UCONN-NCAR estuary box model shows the highest values of both salinity

and volume flux of the outflowing water. In particular the outflowing volume flux

as computed by Knudsen’s relation and Knudsen’s relation with tides doesn’t

significantly di↵er from the same field provided by WRF-Hydro at the estuary

head, while UCONN-NCAR model shows much higher outflowing volume flux

especially during the peak events.

On the other hand the UCONN-NCAR estuary box model is partially derived

on an empirical basis especially for what regards the tidal pumping term and
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includes several tunable coe�cients. Moreover the salt conservation equation

is not rigorously justified. For these reasons we argue the estuary model based

on Knudsen’s relation with the addition of tides is the most rigorous from the

theoretical point of view. A set of coastal dynamics experiments has been

carried out in the shelf area o↵ the Ofanto estuary. The ocean model has

been forced at the Ofanto outlet with the results of the di↵erent approaches

we tested for representing the estuarine dynamics: climatological discharge

and constant salinity in Experiment 1, the discharge and salinity computed by

the Knudsen’s relation in Experiment 2, the results of Knudsen’s relation with

tides in Experiment 3, the UCONN-NCAR findings in Experiment 4. Finally

in Experiment 5 the Ofanto estuary is explicitly solved by NEMO mesh mask

and forced by zero salinity and the WRF-Hydro time series of discharge at the

estuary head.

The added value of representing the estuarine dynamics and its e↵ect on the

coastal dynamics becomes particularly clear during the upwelling wind regime.

Upwelling favourable winds act in the same direction of the freshwater release

by promoting the vertical stratification and the surface o↵shore spreading, this

results in a well defined buoyancy river plume. The coastal dynamics experiment

forced by UCONN-NCAR model is the only one which is capable to reproduce a

well defined river plume. Moreover this is the closest experiment to the Explicit

Estuary approach, which is assumed as our benchmark.

Finally we found a perfect agreement between the theoretical o↵shore distance

of the Ofanto plume we computed following Yankowsky and Chapman (1997)

and that one simulated by our regional ocean model. This supports the strength

of working with the “natural boundary condition” for representing river release

into the ocean.

Future e↵ort will be devoted to a full validation of the estuarine dynamics

approaches by selecting time windows with available in-situ and satellite

observations. Moreover we plan to assume as the next case study a river with a

highly-mixed estuary and flowing into the Norther Adriatic sub-basin where the

tidal pumping plays a strong role.
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Figure 4.1: The estuary box. Shaded areas are the open boundaries

Figure 4.2: Schematic of Knudsen’s model, boundaries and water masses involved.

Black variables are the input forcings, red variables are the unknowns

Figure 4.3: Schematic of Knudsen’s model with tidal e↵ect added, boundaries

and water masses involved. Black variables are the input forcings, red variables

are the unknowns
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Figure 4.4: Schematic of UCONN-NCAR model with tidal e↵ect added, bound-

aries and water masses involved. Black variables are the input forcings, red

variables are the unknowns

Figure 4.5: Features of the tested approaches for representing the estuarine dy-

namics
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Figure 4.6: Discharge (upper panel) and salinity (lower panel) at the Ofanto river

outlet as simulated by the di↵erent methods
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Figure 4.7: Coastal dynamics o↵ the Ofanto estuary. Daily averaged sea surface

salinity on 2011/02/19
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Figure 4.8: Coastal dynamics o↵ the Ofanto estuary. Zonal transect of daily

averaged salinity on 2011/02/19
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Figure 4.9: Coastal dynamics o↵ the Ofanto estuary. Daily surface currents (units

of cm/s) on 2011/02/19
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Figure 4.10: Coastal dynamics o↵ the Ofanto estuary. Daily averaged sea surface

salinity on 2011/03/03
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Figure 4.11: Coastal dynamics o↵ the Ofanto estuary. Zonal transect of daily

averaged salinity on 2011/03/03
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Figure 4.12: Coastal dynamics o↵ the Ofanto estuary. Daily surface currents

(units of cm/s) on 2011/03/03
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5 Conclusions and future perspectives

Two main questions inspired this study.

May rivers play a significant role on the circulation and dynamics of the Central

Mediterranean Sea?

How to realistically represent the riverine freshwater discharge into a regional

ocean model?

The first question arose from the awareness the Central Mediterranean Sea is one

of the few Mediterranean areas where river runo↵ is important for the coastal

as well as the open sea overturning circulation. We started from the hypothesis

rivers a↵ect the buoyancy budget of the Adriatic Sea, since 1/3 of the Mediter-

ranean discharge is here located and makes the Adriatic Sea a dilution basin.

We also expect rivers influence the Ionian Sea because the Adriatic dense wa-

ters are one of the major drivers of the Ionian abyssal circulation. We used a

high-resolution ocean model with a complete distribution of rivers in the Adri-

atic and Ionian catchment areas and we performed a twin experiment, with and

without river inflow, from 1999 to 2012. We applied Spall’s theoretical model,

dealing with the water mass budget in an idealised marginal sea, to the Adriatic

basin. We found that river runo↵ cannot reverse the dominant anti-estuarine

character of Adriatic circulation or shut down the deep convection in the basin

interior. However we demonstrated rivers a↵ect the Adriatic dense water vol-

umes. We showed that rivers counteract the vertical mixing processes in the

Southern Adriatic sub-region by changing the water column stratification and

thus they decrease the local dense water volumes. Finally we showed that the

Adriatic dense waters overflowing the Otranto Strait are less dense in a realistic

runo↵ regime, thus implying a stronger turbulent mixing with the Ionian abyssal

waters and a higher o↵shore spreading.

The Southern Adriatic open-sea convection represents the downwelling branch

which drives the overturning circulation pattern in the Central Mediterranean

sub-basin. As far as we know this study provides the first investigation on river

role on the Central Mediterranean overturning circulation. A key result is that

the Central Mediterranean MOC is largely wind driven but large and anomalous
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river runo↵ can a↵ect its strength, enhancing the amplitude of the secondary

estuarine cells and reducing the intensity of the dominant anti-estuarine cell.

About future perspectives we plan to perform a new Twin Experiment, with

and without river representation, by extending the computational domain of our

ocean model to the whole Mediterranean Sea and the time window up to 50yr.

This would allow to capture the multi-decadal natural variability of the Mediter-

ranean Sea and to weigh river role with respect to the other forcing mechanisms

of the whole Mediterranean circulation.

All these results on the theoretical role of river inflow on the Central Mediter-

ranean Sea strongly motivated us to investigate the second key question which

is how to realistically represent the riverine freshwater discharge into a regional

ocean model.

The regional ocean models based on finite di↵erence grids cannot solve the estu-

ary dynamics due to their numerical constraints. Moreover they generally treat

the riverine freshwater release in a oversimplified way by means of climatological

runo↵, based on gauges located far from river outlets, and zero or at most con-

stant salinity values corresponding to the runo↵. Thus the estuarine dynamics

triggered by the ocean water entrainment and how this a↵ect the resulting buoy-

ancy plume in the ROFI are not taken into account.

We aimed to overcome this shortcoming of the mesoscale ocean modeling and to

increase the forecast/hindcast capability of our regional ocean model by develop-

ing a reasonable representation of the riverine freshwater discharge.

Thus first of all we implemented an integrated modelling system including the

atmosphere, the hydrology and the hydraulics components in order to solve the

local water cycle of a specific catchment. We highlighted the precipitation fore-

casting is still one of the most critical task for meteorological mesoscale models

since this is the end result of many multi-scales processes interacting each other.

Moreover the representation of the precipitation field is critical for ensuring the

quality of the hydrological modelling. We pointed out a full description of the in-

filtration rate, the aquifer water storage and the river routing strongly influences

the capability to predict the river streamflow along the river network and finally

the net discharge at the river mouth. The ocean water entering the river mouth
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and the resulting estuarine dynamics need to be solved as well.

The highly stratified estuary of the Ofanto river is considered as case study. We

aim to describe the main physical processes involved in the water and energy bal-

ance of the estuary. Our results show the tidal pumping plays the predominant

role in the exchange of fresher water leaving the estuary (ebb tide) and saltier

ocean water entering the estuary (flood tide). We compared three approaches of

the estuarine dynamics: the simple Knudsen’s relation, an upgraded version of

the Knudsen’s relation we developed with the addition of tides, and an estuary

box model developed by the University of Connecticut and the National Center

for Atmospheric Research. The results of these method are used to force our

regional ocean model in the ROFI of the Ofanto river. We found that the added

value of better representing the estuarine dynamics and its e↵ect on the coastal

dynamics become particularly clear during the upwelling wind regime. Upwelling

favourable winds act in the same direction of the freshwater release by promoting

the vertical stratification and the surface o↵shore spreading, this results in a well

defined buoyancy river plume.

The UCONN-NCAR model is the only one which is capable to represent a well

defined river plume during upwelling wind. On the other hand, the estuary model

based on the Knudsen’s relation with the addition of tides is the most rigorous

one from the theoretical point of view, thus future e↵orts will be devoted to the

development of this new approach. Moreover we plan to assume as the next case

study a river with a highly-mixed estuary and flowing into the Norther Adriatic

sub-basin where the tidal pumping is expected to play a strong role.
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Appendix A

The numerical model configuration

The numerical simulations were carried out using three-dimensional, finite

di↵erence primitive equations Nucleus for European Modelling of the Ocean

code, NEMO v 3.4 (Madec, 2008).

The model solves prognostic equations for potential temperature, practical

salinity, horizontal velocity components in the meridional and zonal directions,

sea surface height and diagnostic equations for vertical velocity, hydrostatic

pressure and potential density.

Boussinesq and hydrostatic hypotheses are assumed.
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5 · ~u = 0 (A.4)

@⌘

@t
+5H · ((H + ⌘) ~uHbaro) = P +R� E (A.5)

@S

@t
+5 · (~uS) = At 52

H S +Kt
@2S

@z2
(A.6)

@✓

@t
+5 · (~u✓) = At 52

H ✓ +Kt
@2✓

@z2
(A.7)

⇢ = ⇢(✓, S, p) (A.8)

The first two equations (A.1) and (A.2) are the Navier-Stokes equations for the

horizontal velocity vector ~uH = (u, v). The coe�cients Am and Km are the mo-

mentum eddy coe�cients for horizontal and vertical mixing respectively, fv and

�fu are the horizontal components of Coriolis term on f-plane approximation.

The eq.(A.3) is the Navier-Stokes equation in the vertical direction reduced to the

hydrostatic equilibrium equation. The eq.(A.4) is the continuity equation with
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Boussinesq hypothesis (i.e. quasi-incompressible fluid) where ~u = (u, v, w) which

allows to compute the vertical velocity, w, as diagnostic variable. The eq.(A.5) is

the vertically integrated continuity equation, written as a prognostic equation for

the free surface starting from the vertical integration of eq.(A.4) and replacing

the definition of barotropic velocity that is ~uHbaro =
1

H+⌘

R ⌘

�H
~uHdz

The eq.(A.6) and eq.(A.7) are the advection/di↵usion equations for tracers with

At and Kt the horizontal and vertical mixing coe�cients of tracers. Finally the

sea state equation (A.8) prescribes the ocean water density is a non linear em-

pirical function of potential temperature, salinity and pressure (following Jackett

and McDougall 1995).

The sea surface height equation (A.5) and the associated barotropic velocity equa-

tions are solved by the time-splitting formulation, thus using a smaller time step

than for three-dimensional prognostic variables.

In order to solve the mesoscale variability of the Adriatic Sea, at least in the

Southern sub-basin, a horizontal grid resolution equal to 1/45� was chosen, cor-

responding to 2.47 km in the meridional direction and 1.72 to 2.13 km in the zonal

direction. The literature shows the first baroclinic Rossby radius of deformation

in the Mediterranean Sea is around 10-12 km (Grilli and Pinardi, 1998; Pinardi

and Masetti, 2000) if we take the open flow scale variables, but the local values

may significantly reduce depending on season and latitude and moving towards

the shelf areas. In the Northern Adriatic Sea it reduces up to about 3-5 km in

summer and 1 km in winter (Paschini et al., 1993; Masina and Pinardi, 1994;

Bergamasco and Gacic, 1996). This means our model can explicitly resolve the

mesoscale activities in the Adriatic Sea, at least in the Southern sub-basin, on

seasonal as well as on interannual basis with the only exception of the Northern

Adriatic where the model may result eddy-permitting but not eddy-resolving.

The model bathymetry, covering both the Adriatic and Ionia Sea, is taken from

the U.S. Navy 1/60� bathymetric database DBDB1 using bilinear interpolation.

A total of 121 unevenly spaced z-levels with partial steps were adopted in the

vertical direction. Partial steps allow a better representation of the bathymetry.

The higher resolution in the top layers (23 levels in the top 35 m which is the

mean depth of the NAd subregion) leads to an improved simulation of the bottom
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flow in the NAd and vertical mixing during higher stratification in the summer.

There are two open boundaries on the eastern and western sides of the model do-

main. Open boundaries data are provided as monthly means and involve the fol-

lowing prognostic variables interpolated on the model grid: zonal velocity (u3d),

meridional velocity (v3d), potential temperature (✓), salinity (S), and the sea

surface height (⌘). For both the lateral open boundary conditions, LOBCs, and

the initial conditions, ICs, data are taken from daily analysis of the operational

Mediterranean forecasting System, MFS (Tonani et al., 2008; Pinardi and Cop-

pini, 2010) based on the same code, NEMO, and covering the whole Mediter-

ranean basin with 1/16� horizontal resolution.

The numerical schemes adopted for the LOBCs are described below.

Marchesiello’s algorithm (2001) was used for active tracers. It consists of the 2D

radiation condition plus a relaxation/nudging term as follows:

@�

@t
+ C�x

@�

@x
+ C�y

@�

@y
= �1

⌧
(�� �nested) (A.9)

where � is the tracer (✓ or S), �nested is the coarser model (MFS) solution for

the tracer interpolated on our model grid and provided monthly. The time scale

for the nudging term, ⌧ , is constant and equal to one day for inward propagation

and 15 days for outward propagation. For outward propagation, i.e. C�x > 0

where C�x is the component of the phase velocity normal to the boundary, the

tangential component is set equal to zero, C�y = 0. For inward propagation,

C�x < 0, the algorithm prescribes C�x =C�y = 0 thus reduced to a relaxation

condition.

For the horizontal velocity components, u3d and v3d, the imposition scheme is

used and thus, the incoming and outgoing information is totally determined by

the coarser model data, irrespective of the inner solution.

In addition, the horizontal velocity component normal to each boundary is uni-

formly adjusted according to the “interpolation constraint” procedure (Pinardi et

al., 2003) in order to preserve the total volume transport after data interpolation

from the coarse to the fine resolution grid.

For the barotropic velocities, uBT and vBT , Flather’s scheme (1976) was adopted.

The barotropic velocity component normal to the eastern and western boundaries
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is given by Flather’s equation:

uBT = uBT nested �
p
gH

H
(⌘nested � ⌘) (A.10)

where ⌘nested is the coarser model sea surface height at the boundary interpolated

over the finer model grid, ⌘ is the finer model sea surface height at the boundary

and uBT nested is the coarser model normal barotropic velocity over the finer model

grid computed as uBT nested =
1

H+⌘

R ⌘

�H
u3dnesteddz.

The tangential barotropic velocity is set equal to zero: vBT = 0.

In Flather’s formula, ⌘ values at the boundary follow a “zero gradient boundary

condition” which means ⌘B = ⌘B�1 (subscript B stands for boundary line values).

This avoids numerical instabilities.

The bottom boundary condition is applied only on momentum and consists of a

quadratic friction.

No slip boundary conditions are adopted along the coastline for tangential veloc-

ity.

In order to define the air-sea interaction, the vertical fluxes of momentum, heat

and salt and the vertical velocity were parameterized at the sea surface. These pa-

rameterizations are the surface boundary conditions (SBCs) of the model. Wind

stress and heat flux components are computed by means of “bulk formulae”

(Castellari et al., 1998; Maggiore et al., 1998; Oddo et al., 2011; Madec, 2008)

using atmospheric data provided by the European Centre for Medium Weather

Forecasts (ECMWF). These atmospheric data (2m air temperature, 2m dew point

temperature, total cloud cover, mean sea level atmospheric pressure, meridional

and zonal 10m wind components) are operational analyses with a 6h frequency

and with 0.5� or 0.25� horizontal resolution. Only the precipitation rate (P) data

are extracted from the CMAP (CPC, Climate Prediction Center, Merged Anal-

ysis of Precipitation) monthly data set with a horizontal resolution of 2.5�X2.5�.

The surface boundary condition for temperature involves a balance between so-

lar short-wave radiation Qs (computed using Reed’s formula, 1977), long-wave

radiation Ql (computed using Bignami et al., 1995), latent Qe and sensible Qh

heat fluxes (by means of bulk formulae proposed by Kondo, 1975).
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Reed’s formula is:

Qs = Qtot(1� 0.62C + 0.0019�)(1� ↵) (A.11)

where Qtot is the clear-sky radiation, C is the fractional cloud cover, � is the noon

sun altitude in degrees, and ↵ is the sea surface albedo. The albedo is computed

as a function of the sun zenith angle for each grid point from Payne (1972).

The Bignami formula is:

Ql = ✏�T 4
s � (�T 4

A(0.653 + 0.00535eA))(1 + 0.1762C2) (A.12)

where ✏ is the ocean emissivity, � is the Stefan Boltzmann constant, eA is the

atmospheric vapor pressure, Ts is the sea surface temperature predicted by model,

TA is the 2m-air temperature.

The sensible Qh and latent Qe heat fluxes are parameterized through the Kondo

bulk formula:

Qh = ⇢ACpCH |uw|(Ts � TA) (A.13)

Qe = ⇢ALeCE|uw|(esatTs � resatTA)(0.622/pA) (A.14)

where ⇢A = ⇢A(p, TA, r) is moist air density, r is the relative umidity, Cp is

the specific heat capacity at constant pressure, CH and CE are the turbulent

exchange coe�cients computed according to Kondo (1975), Le is the latent heat

of vaporization, esat is the vapor pressure, |uw| is the wind speed modulus, and pA

is the atmospheric pressure. For the heat flux boundary condition at the surface,

we assume:

⇢0Kt
@✓

@z

����
z=⌘

=
1

Cp

[(1� Tr)(Qs �Ql �Qe �Qh)] (A.15)

where Tr is the Jerlov (1976) transmission coe�cient for a “clear” water type and

Kt is the vertical mixing coe�cient for traces.

The wind stress involved in the surface boundary condition for momentum is

calculated from the relative winds with the formula:

⌧w = ⇢0aCD|Urel|Urel (A.16)

where Urel = uw � us = (urel, vrel) is the relative wind field that is the 10m

wind horizontal velocity uw subtracted from the sea surface horizontal velocity
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us, ⇢0a is the density of the moist air and CD(Ta, Ts, uw) is the drag coe�cient

which depends on air temperature, sea surface temperature and wind amplitude

according to Hellerman and Rosenstein (1983).

The momentum boundary condition at the surface is:

⇢0Km
@(u, v)

@z

����
z=⌘

= (⌧wx, ⌧wy) (A.17)

where ⌧wx = ⇢0aCD|Urel|urel and ⌧wy = ⇢0aCD|Urel|vrel are the wind stress com-

ponents and Km is the vertical mixing coe�cient for momentum. The freshwater

balance defined as evaporation minus precipitation and runo↵ (with the latter

divided by the cell area of the river mouth), E � P � R/A, is directly involved

in the conditions for salinity and for vertical velocity.

The salinity boundary condition at the surface reads:

Kt
@S

@z

����
z=⌘

= Sz=⌘(E � P � R

A
) (A.18)

where ⌘ is the sea surface elevation. The surface boundary condition for the

vertical velocity is as follows:

w |z=⌘ �
@⌘

@t
+ (u, v) |z=⌘ ·5H ⌘ = (E � P � R

A
) (A.19)

where w is the vertical velocity. The Evaporation rate, E, is calculated by the

latent heat flux according to E = Qe/Le. With regard to the dynamics, the

following choices were selected: vector invariant form for momentum advection,

bi-laplacian operator for lateral di↵usion and horizontal eddy viscosity coe�cient

equal �5 · 107m4s�1 according to a tuning procedure starting with MFS values,

implicit vertical di↵usion and TKE turbulence closure scheme (Mellor and

Blumberg, 2004) to provide the vertical eddy coe�cients.

With regard to the active tracers: MUSCL advection scheme, bi-laplacian

operator for lateral di↵usion and horizontal eddy di↵usivity coe�cient equal to

�3 · 107m4s�1 according to a tuning procedure, implicit and TKE dependent

vertical di↵usion.
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Appendix B

The computation of Spall’s coe�cients

We followed Spall’s studies (2004, 2010, 2011, 2012) on the overturning circu-

lation in the marginal seas and we applied his theoretical model on the water

mass transformation within an idealised marginal sea to the Adriatic basin. The

Adriatic Sea perfectly matches the characteristics of this theoretical model. We

computed Spall’s non-dimensional coe�cients which represent the relative bal-

ance between surface forcing and lateral eddy fluxes in the heat and salinity

balance. The lateral eddy fluxes advect warm and salty water in the basin in-

terior and detach from the cyclonic boundary current which inflows along the

eastern side from the open ocean and encircles the marginal sea. Details on the

cyclonic boundary current system and the exchange with the interior are drawn

in Figure B.1, taken from Spall, 2012.

The combinations µ/✏ and �/✏ are called respectively thermal and freshwater

forcing parameter and are described below:

µ

✏
=

A�f0
↵TGCpH2T ⇤/

cP

L
(B.1)

�

✏
=

8A⇢0f0S0↵s(E � P �R)

gH2↵2
TT

⇤2 /
cP

L
(B.2)

where A is the area of the Adriatic sea surface (from model domain), � is the

relaxation constant for the basin sea surface temperature toward the atmospheric

temperature (from Spall 2011), f0 is the Coriolis parameter, ↵T is the thermal

expansion coe�cient (from Cessi et al., 2014), ↵s is the haline expansion

coe�cient (from Cessi et al., 2014), H is the depth of the sill (from model

domain), P is the perimeter of the basin interior (from model domain), Cp is

the thermal capacity (from Cessi et al., 2014), L is the width of the sloping

topography over which the inflowing boundary current lies (thus computed from

model results as the cross-shore width of the inflowing boundary current along

the eastern shelf of the Adriatic basin).

The variable � = hx

�⇢x/⇢z
= �0.33 represents the topography slope over the mean
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isopycnal slope following the inflowing boundary current. Thus they are both

computed along the Southern Adriatic eastern shelf: hx is the topography slope

in the zonal direction, i.e. x, ⇢x is the mean isopycnal slope in the zonal direction

and ⇢z is the mean isopycnal slope in the depth, z-direction. To note that �

has been computed by considering a zonal transect of potential density anomaly

at 40.8�N (so just north of the Otranto Strait) on annual basis and focusing

on the eastern side of the basin. For cyclonic boundary current, � < 0 and

the topography acts to stabilize the boundary current and reduce the amount

of lateral eddy flux into the interior. The quantity c = 0.025e2� = 0.05 is an

e�ciency coe�cient that depends on the bottom slope and regulates the eddy

heat flux from the boundary current into the interior (Spall, 2004).

The non-dimensional parameter ✏ = cP
L

is the ratio of the heat flux toward the

basin interior due to lateral eddies compared to that advected into the Adriatic

Sea through the inflowing boundary current along the Southern Adriatic eastern

shelf. The inflowing boundary current is assumed to be a geostrophic current in

thermal wind balance. The value of ✏ is very small for stable boundary currents

and increases for boundary currents that are su�ciently unstable that they lose

all their heat to the interior of the basin before it is carried all the way around

the marginal sea.

Moreover the thermal and freshwater forcing parameters required to compute

T ⇤, that is the di↵erence between the inflowing temperature and the temperature

of the atmosphere over the interior of the marginal sea, as follows:

T ⇤ = T1 � TA =

8
><

>:

2.56�C in EXP1

2.84�C in EXP2

where T1 is the mean temperature of the inflowing current along the eastern

boundary derived from the EXPs, TA is the mean 2m temperature over the

Adriatic basin extracted from ECMWF 25 km dataset.

Finally the surface freshwater flux is defined as follows:

E � P = 0.66 · 10�7(ms�1) in EXP2

E � P �R = �2.18 · 10�7(ms�1) in EXP1

All the quantities described above enable to compute the thermal and
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freshwater forcing parameters in (B.1) and (B.2), giving:

µ/✏ =

8
><

>:

5.0 · 10�5 in EXP1

4.9 · 10�5 in EXP2

�/✏ =

8
><

>:

�2 · 10�2 in EXP1

7.0 · 10�4 in EXP2

As discussed by Spall (2011), µ/✏ is a measure of the relative influence of

lateral eddy heat fluxes from the boundary current into the basin interior

compared to heat loss to the atmosphere. For µ/✏ << 1, lateral eddy heat flux

from the boundary is very strong and leads to a relatively warm basin interior

so that T ⇡ T1, if µ/✏ > 1 the boundary current is relatively stable and the

atmosphere is able to strongly cool the basin interior so that T ⇡ TA. Similarly

�/✏ describes the relative role of surface forcing and lateral eddy fluxes in the

salinity balance. Large values of �/✏ indicate dominance of atmospheric forcing

implying freshwater gains in the basin interior that are not balanced by lateral

eddy fluxes of salt from the boundary current, and small values indicate strong

lateral eddy fluxes.

In order to evaluate the shutdown of deep convection and the reversal of the

overturning circulation, the temperature and salinity anomalies of the basin

convective water mass have been computed as normalized di↵erences of T (i.e.

4T ) and S (i.e. 4S) between basin interior and boundary currents (Spall 2012).

A set of 2 non-dimensional equations has been derived to compute 4T and 4S

(Spall 2012), these equations include the non-dimensional parameters µ/✏ and

�/✏ and describe 4T and 4S as function of basin geometry, atmospheric forcing

and lateral eddy fluxes.

The simplified formula suggested in Spall 2012 are:

4T =
T1 � T

T ⇤ (B.3)

4S =
(S1 � S)↵S

↵TT ⇤ (B.4)

where T and S for the basin interior and T1 and S1 for the inflowing current
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have been computed over 50-200m depth.

The ratio 4S/4T < 1 means the stable circulation state is in the “Thermal

Mode” with surface heat losses and freshwater gains prevailing the lateral eddy

advection of warm and salt water in the basin interior (thermal and freshwater

forcing coe�cients are significantly high). In this case the density contrast is

dominated by the temperature di↵erence and the water in the interior of the

marginal sea is more dense than that in the boundary current.

If 4S/4T > 1, the stable circulation state is in the “Haline Mode” with surface

heat and freshwater budget of the interiors basin favouring the lateral eddy

advection of warm and salt water (thermal and freshwater forcing coe�cients

are low enough and the latter is eventually negative). In this case the density

contrast is dominated by the salinity di↵erence and the water in the interior

of the marginal sea is less dense than that in the boundary current. Thus the

boundary current detaches from the eastern shelf and spreads in the interior

basin. This means in haline mode the surface boundary current is in the opposite

sense, anticyclonic around the coastline, and the deep convection in the basin

interior is not longer supported with reversal of the meridional overturning

circulation.

The theoretical limit for shutdown of deep convection is 4S/4T > 0.5, thus

possible also in the Thermal Mode.

According to our findings, both EXPs are in the Thermal Mode and EXP1 is

closer to the threshold limit for shutdown of deep convection than EXP2.

Results collected for EXP1 and EXP2 are summarizes in Table 2.2 and show

that deep convection in the Southern Adriatic, surface cyclonic boundary current

and anti-cyclonic anti-estuarine overturning circulation of the Adriatic basin

characterize both experiments but in EXP1, with a realistic parameterization of

river runo↵, the freshwater forcing coe�cient is negative and the ratio 4S/4T

close to 0.5. This corroborates strong river discharge in the Adriatic Sea has the

potential to trigger the shutdown of deep convection and the weakening of the

anti-estuarine overturning circulation.
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Figure B.1: Schematic of the idealized marginal sea model. (From Spall, 2012)
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List of attended workshops

1st European Coupled Atmospheric-Hydrological Modeling and WRF Hydro

User Workshop, Cosenza

WRF Workshop-NCAR Summer School, Boulder

NCL Workshop-NCAR, Boulder

IWMO 2014, Bergen

GODAE OceanView Coastal & Shelf Seas Task Team, Lecce

EGU Assembly 2014, Vienna. http://meetingorganizer.copernicus.org/EGU2014/EGU2014-

16855.pdf

Ocean Science Meeting 2016, New Orleans.

https://agu.confex.com/agu/os16/preliminaryview.cgi/Paper90821.html

EGU Assembly 2016, Vienna. http://meetingorganizer.copernicus.org/EGU2016/EGU2016-

13226.pdf

Visiting periods

Student visitor at National Center for Atmospheric Research, Boulder (Colorado,

USA) over September 2015 to March 2016

Student visitor at National Center for Atmospheric Research, Boulder (Colorado,

USA) over February 2016
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List of papers

G.Verri, N.Pinardi, P. Oddo, S.Ciliberti and G.Coppini, 2016. Influence of

river runo↵ in the Central Mediterranean Sea basins. Paper submitted to Ocean

Dynamics

G. Verri, N. Pinardi, J. Tribbia, D. Gochis, A. Navarra, G. Coppini, T.

Vukicevic, and D. Shea, 2016. A meteo-hydrological modeling study for flood

events in the Ofanto river catchment. Paper submitted to the Natural Hazards

and Earth System Sciences

G. Verri, N. Pinardi, J. Tribbia, F. Bryan, Y. Tseng, Q. Sun, G. Cop-

pini, 2016. Estuarine dynamics for ocean modeling: the case study of the Ofanto

estuary. Paper to be submitted to the Journal of Physical Oceanography
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