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Abstract

The ability to represent the transport and fate of an oil slick at the sea sur-
face is a formidable task. By using an accurate numerical representation of
oil evolution and movement in seawater, the possibility to assess and reduce
the oil-spill pollution risk can be greatly improved. The blowing of the wind
on the sea surface generates ocean currents due to turbulent stress and ocean
waves, which give rise to wave-induced velocities that are known as Stokes’
Drift velocities. The Stokes’ Drift transport associated to a random gravity
wave field is a function of the wave Energy Spectra that statistically fully
describe it and that can be provided by a wave numerical model. Therefore,
in order to perform an accurate numerical simulation of the oil motion in
seawater, a coupling of the oil-spill model with a wave and turbulence cur-
rent forecasting model is needed. In this Thesis work, the coupling of the
MEDSLIK-II oil-spill numerical model with the SWAN wind-wave numerical
model has been performed and tested. In order to improve the knowledge of
the wind-wave model and its numerical performances, a preliminary sensitiv-
ity study to different SWAN model configuration has been carried out. The
SWAN model results have been compared with the ISPRA directional buoys
located at Venezia, Ancona and Monopoli and the best model settings have
been selected. Then, high resolution turbulence currents provided by a relo-
catable model (SURF) have been used to force both the wave and the oil-spill
models and its coupling with the SWAN model has been tested. The trajec-
tories of four drifters have been simulated by the coupled wave-current and
oil-spill model and results have been compared with the real drifters paths.
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Chapter 1

Introduction

An oil spill is the release of any oily substance into the environment due to
human activity, and is a form of pollution. The term is usually applied to
marine oil spills, where oil is usually petroleum released into the ocean or
coastal waters, and in this Thesis will be considered only the latter.

Fig. 1.1: The oil slick in the Gulf of Mexico is seen from a helicopter. (by Rick Loomis, Los Angeles
Times, May 6, 2010)

They may be due to releases of crude oil from tankers, offshore platforms,
drilling rigs and wells, as well as spills of refined petroleum products (such
as gasoline, diesel) and their by-products or heavier fuels used by large ships
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such as bunker fuel.

Oil spills endanger public health, imperil drinking waters, devastate natu-
ral resources, and disrupt the economy and when they occur human health
and environmental quality are put at risk and every effort must be made to
prevent or to clean them up promptly once they occur [75].

The ability to represent the transport and fate of an oil slick at the sea
surface is a formidable task: by an accurate numerical representation of oil
evolution and movement in seawater, the possibility to asses and reduce the
oil-spill pollution risk can be greatly improved.

Many factors affect the motion and transformation of the slick. The most
relevant of these are the meteorological and marine conditions at the air-sea
interface (wind, waves and water temperatures); the chemical characteristics
of the oil; its initial volume and release rates; and, finally, the marine currents
at different space scales and timescales [25]. Therefore oil spill management
strategies need to be developed together with the improvement of meteoro-
logical, ocean and wave forecasting models.

The first time that pioneering examples of oil spill response systems allowed
operators to develop a response strategy rather than react only to observed
information were during the Braer oil spill (Shetland Islands, UK, 1993) [82]
and the Erika oil spill (Brittany coast in the Bay of Biscay, France, 1999) [22].
Further examples of operational forecasting system for developing proper re-
sponse strategies to oil spill emergencies were available during the Prestige
oil spill crisis (Galicia coast, Spain, 2002) [14] [13].

In the Mediterranean Sea, an oil-spill decision-support system was devel-
oped during the largest oil-release accident in the Eastern Mediterranean,
the Lebanese oil-pollution crisis, which occurred in mid-July 2006 [20].

During the recent largest accidental marine oil spill in the history of the
petroleum industry, effective oil spill monitoring and modeling systems were
critical to the rapid responses achieved for the Deepwater Horizon event (Gulf
of Mexico, 2010).
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The wind induces currents in the ocean that are produced by tangential tur-
bulent stresses: the classical example of such currents are called after Ekman,
in addition to the geostrophic flow field that is generated by Ekman vertical
velocities. These currents are normally generated by hydrodynamic models
at the spatial scales of few km.

The blowing of the wind on the sea surface generates also ocean waves, which
give rise to the transport of any kind of floating object placed on the sea sur-
face in the direction of their propagation. This physical process is known as
Stokes’ Drift, in honor of George G. Stokes who was the first to identify and
describe in 1847 this non-linear process [97]. Stokes’ Drift velocities affect
also the motion of oil-slicks.

As it will be shown in this work, the Stokes’ Drift transport associated to
a random gravity wave field is a function of the wave Energy Spectra that
statistically fully describe it. Therefore, in order to perform an accurate nu-
merical simulation of the oil motion in seawater, a coupling of the oil-spill
model with a wave forecasting model is needed.

In this Thesis work, the coupling of the SWAN wind-wave numerical model
with an hydrodynamic and the MEDSLIK-II oil-spill numerical models has
been performed and tested. This research activity has been carried out at
the SINCEM (SImulazioni Numeriche del Clima e degli Ecosistemi Marini)
Laboratory of Department of Physics and Astronomy of the University of
Bologna, with the collaboration of the Istituto Nazionale di Geofisica e Vu-
lanologia (INGV), Bologna section.

MEDSLIK-II is an oil spill model designed to predict the transport and
weathering of an oil spill or to simulate the movement of a floating object
and its code is a freely available community model which can be downloaded
from http://gnoo.bo.ingv.it/MEDSLIKII.

SWAN is a third generation spectral wave model developed by Booij et al.
[10] which can be applied in a wide range of coastal applications, being ef-
fective from high resolution coastal areas up to quasi oceanic scales.

Two kind of hydrodynamic models have been used in this Thesis to sim-
ulate turbulent ocean currents such as Ekman and geostrophic velocities.

Following De Dominicis et al. [24], high resolution and accurate forecasts
of the ocean currents provided by a Relocatable ocean model greatly improve
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the quality of the operational oceanography products. The Relocatable mod-
eling method focus on the rapid implementation of a model nested into a
coarser scale model and it aims to be a valuable tool to be used in support
to any Decision Support System which might need hydrodynamics and wave
data for short time forecasts and applications, such as oil spill monitoring,
search and rescue operations, ship routing, ship traffic monitoring, etc.

In this Thesis work a new model, SURF (Stuctured Unstructered Relocatable
ocean model for Forecasting) model, has been partially developed coupling
SWAN with NEMO (Nucleus for European Modelling of the Ocean) model.

NEMO has been initially developed at the Laboratoire d’Oceanographie Dy-
namic et de Climatologie (LODYC) by the ‘Istituto Pierre Simon Laplace’
(IPSL), and now is run by a European Consortium created in 2008 between
CNRS (France), Mercator-Ocean (France), NERC (UK), UKMO (UK) and,
since, 2011 CMCC (Italy) and INGV (Italy).

NEMO is a finite differences free surface three-dimensional model; it solves
the oceanographic approximated Navier-Stokes equations and it uses the fol-
lowing assumptions: the fluid is incompressible, the Boussinesq approxima-
tion, the Earth is spherical and the vertical component of the motion equation
can be given by the simple hydrostatic balance. The NEMO code provides
many different options to define the numerical grid, the boundary conditions,
the equation of state, the parameterization of small-scale turbulent processes
and numerical schemes for spatial and temporal discretization of the prim-
itive equations. For a complete description of all the possible physical and
numerical configurations allowd by NEMO see [66].

SURF is under development at SINCEM for TESSA project and there is
only Technical documentation [100] [12].
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This Thesis is organized as follows:

• In Chapter 1, after this brief introduction, a review of the-state-of-
the-art of the wind-wave and oil-spill numerical models is given.

• In Chapter 2, the Linear and Statistical Theories developed to math-
ematically and physically describe ocean wind waves are exposed. A
complete description of the SWAN wind-wave model is given, too.

• In Chapter 3 the numerical experiments performed in this Thesis
work are described.

• In Chapter 4, the conclusions are exposed.
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1.1 Wave Modeling: the state-of-the-art

Wave modeling is involved with two aspects of human knowledge: the theory,
often touching basic principles from more fundamental sciences, and practi-
cal applications.

In the last 60 years fundamental advances in wave modeling have taken place,
followed by periods of application and a proliferation of small scale improve-
ments. Unavoidably, the rate with which the knowledge advance tends to
decrease.

The basic principles of wave modeling theory have been described and fully
accepted by the scientific community, and, at the this time, wind wave mod-
els are able to provide satisfactory results on a large scale. Indeed, the bias
and scatter index of the operational ECMWF global wave model are an im-
pressive 4% and 0.11 (statistics of the first four months of 2006), or even
lower once the error of the instrument we compare with, in the above case
the altimeter, is taken into account [98].

Better results are occasionally achieved by local scale modeling, demonstrat-
ing that the improvements in the definition of the surface wind fields is sub-
stantial to have better simulations [98].

Although wave models are able to evaluate with good accuracy the integral
properties of the sea (significant wave height, period and direction), results
are definitely less impressive once we look at the shape of the one- and, more
so, two-dimensional spectra. Peaks and extreme conditions are frequently
not well reproduced, and not only because in these cases the meteorological
input is not good enough. In such conditions, the validity of the physical
assumptions needed to develop sea wave theories are often stretched to their
limits. In the present state, wind wave models are still based on a substantial
degree of empiricism, that unavoidably is due to fail at a more or less large
degree once the usual range of conditions is exceed [98].

In this section, a picture of the present situation of the wind wave models
state-of-the-art is given, following [98].

Wind-Wave generation: The problem of the growth of ocean waves by
wind and the consequent feedback of the ocean waves on the wind has led to
quite some controversy and many debates in the literature. it is an extremely
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difficult problem because it involves the modelling of a turbulent airflow over
a surface that varies in space and time. Although there has been much
progress in understanding turbulence over a flat plate in steady-state con-
ditions, modelling attempts of turbulent flow over (nonlinear) gravity waves
are only beginning and there is still a considerable uncertainty regarding the
validity of these models.

In addition, considering an experimental point of view, it is not an easy
task to measure growth rates of waves by wind.

The commonly adopted cause of wave growth is the work done by the pres-
sure on the surface. This assumption seems plausible in view of the work by
Miles [72]. Miles’ quasi-laminar theory was the first model to give a plausible
explanation of the growth of waves by wind. Basically, this wave generation
by wind mechanism is a resonant interaction of the gravity waves with a
plane-parallel flow. Resonance occurs at a critical height zc which follows
from U(zc) = c(k), where U is the air velocity and c(k) is the phase velocity
of a wave with wave-number k.

The quasi-laminar approach was criticized because the effect of turbulence on
the wave-induced motion was neglected, and nonlinear effects such as wave-
mean flow interaction were not considered.

First attempts to describe the effects of turbulence by means of a mixing
length model have been criticized as well, however, mainly because the ed-
dies in the outer layer in the air are too slow to transfer a significant amount
of momentum on the time scale of the wave motion. Belcher and Hunt
[7] demonstrated why mixing-length modelling is not appropriate in rapidly
varying circumstances such as occur for airflow over growing wind waves. In
Belcher and Hunt [7] model, the main mechanism for wave growth in the is
the so-called ‘non-separated sheltering ’: the Reynolds stresses close to the
surface cause a thickening of the boundary layer on the leeside of the waves
which results in flow separation when the slope is large enough.

Rapid distortion models, such as the one of [7], allows for a determination of
the range of validity of Miles’ theory. Depending on the assumption regard-
ing how rapid eddies transfer momentum, Miles’ approach may be justified
for typical ocean conditions [46].

For a given wind profile, quasi-laminar theory is fairly successful in predict-
ing growth rates and wave-induced profiles. It ignores, however, a possible
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change of wind profile while the ocean waves are evolving [46].

The theory of the interaction of wind and waves was elaborated by Fabrikant
[31] and Janssen [48]. The so-called ‘quasi-linear theory ’ of wind-wave gen-
eration keeps track of the slow evolution of the sea state and its effects on
the wind profile. At each particular time the wave growth follows from Miles’
theory. It turns out that quasi-linear theory permits an explanation of the
observed dependence of the airflow on the sea state.

Nonlinear four-wave Interactions: It is nowadays widely accepted that
resonant weakly nonlinear interactions between sets of four waves play an
important role in the evolution of the energy spectrum of free surface gravity
waves propagating at the ocean’s surface. This role became clear as a result
of the JONSWAP project [41].

The basic equation describing these interactions is the Boltzmann integral
proposed by Hasselmann [39] and a couple of years later by Zakharov1968
who derived it in a form known as the kinetic equation. Hasselmann [39]
developed the theoretical framework for nonlinear four wave interactions for
homogeneous seas with a constant depth. He formulated an integral ex-
pression for the computation of these interactions, which is known as the
Boltzmann integral for surface gravity waves.

Recent work by Janssen [52] suggests that quasi-resonant four-wave inter-
actions play a major role in uni-directional wave field, in relation to the
development of modulational instabilities and the occurrence of freak waves.
Yet unclear is the role of non-resonant interactions in two-dimensional cases.

For nonlinear interactions in deep water the basic problem seems to be the
practical implementation of an already well established theory. The struggle
between the sheer volume of calculations implied by the theory and the prac-
tical possibilities of the present computers has been dominating the stage for
a long while. The capability of routinely carrying out full exact computations
is still far away. The present efforts aim at developing new methods (MDIA,
neural, diffusion), while exploiting the ever increasing computer power, re-
ducing the necessary time within manageable limits. These calculations are
always compromises, and usually this appears as undesirable characteristics
of the final results.
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Spectral Wave Energy Dissipation: Spectral wave energy dissipation
represents the least understood part of the physics relevant to wave mod-
elling. There is a general consensus that the major part of this dissipation is
supported by the wave breaking, but physics of this breaking process, par-
ticularly for the spectral waves, is poorly understood. Furthermore, there is
also a poor understanding on the wave energy dissipation by whitecapping
and its role in the spectra evolution.

There is hardly any agreement neither on the basic physics of the process
nor on the best way, although empirical, to model it.

To summarize, there are several studies which offer different analytical mod-
els. None of the models deals with the dynamics of wave breaking, which
is responsible for dissipation. Rather, they suggest hypotheses to interpret
either pre-breaking or post-breaking wave field properties. All of the hy-
potheses lack experimental support or validation. Results vary from the
dissipation being a linear function of the wave spectrum to the dissipation
being quadratic, cubic or even a function of the spectrum to the fifth power.

Concluding, there is no consensus among analytical theories of the spectral
dissipation of wave energy due to wave breaking, even with respect to the
basic characteristics of the dissipation function. In addition, the theoretical
dissipation functions strongly disagree with the experiments which, on the
othe hand, exhibit some common features in the results but, often, are in
serious disagreement with each other.

Wave-Bottom Interactions: Dissipation associated to the interaction of
waves with the bottom is another subject where we still have a lot to learn.
The problem is associated with two basic characteristics of what is going
on: the number of contemporary and alternative bottom mechanisms that
can be active to dissipate the wave energy, and the difficulty of analysing
and measuring a process while it is active. As a matter of fact practically
all the data we have concern the measurements of wave characteristics at
different progressive locations, in so doing providing information only on the
integrated effect of the process, rather than on the physics and its details.

In general we can say we have a fair idea of the physics involved, but we
lack a solid quantification of the energy lost in the process. The integrated
characteristics of the surface are not always purely indicative of the bottom
dissipation processes, simply because there are often other, not necessarily
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bottom, processes at work, e.g. generation by wind and white-capping. On
the other hand the true characteristics of the bottom are mostly unknown
(dimensions of the ripples, sheet flow, etc.) or, at best, modelled only with
large approximations, and they can easily change the estimate of the derived
energy loss of an order of magnitude.

As waves approach shallower water they start to ‘feel the bottom’ and the
spectrum adopts a new self-similar shape in which enhanced dissipation is
evident.

Several bottom-related dissipative processes are known: percolation into a
porous bottom, motion of a mobile bed or dissipation through turbulent bed
shear stress with an associated bottom boundary layer. Most spectral wave
models that take into account bottom dissipation as a source term, only
model dissipation by bottom friction.

Luo and Monbaliu [64] summarized the work done on the bottom friction
term used in spectral wave models:

Sbf (σ, θ) = −Cf
K

sinh(Kh)
S(σ, θ) (1.1)

where S(σ, θ) is the directional-frequency wave energy spectrum, K is the
wave-number and h is the water depth. The coefficient Cf depends on the
closure model used to solve the momentum equations of the bed bound-
ary layer and several formulations (see for example Hasselmann et al. [41],
Collins [19] and Madsen et al. [67]) are given in literature.

Nonlinear Interactions in Shallow Water: Nonlinear interactions in
shallow water are characterized by the relevance of the third-order ones.
Dealing with interactions, not only in resonant, but also in near-resonant
conditions, is today an active field of research, and the associated wave mod-
elling activity has different lines of attack in this respect.

In general triad interactions transfer energy from the incident wave compo-
nents to higher and lower frequency components (see, e.g., Freilich and Guza
[33], Kaihatu and Kirby [55], Ruessink [89], Sheremet et al. [92], Janssen et
al. [52], and many others). These interactions not only broaden the frequency
spectrum in shallow water, but also phase-couple the spectral components,
causing the characteristic steepening and pitching forward of near-breaking
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wave crests.

Shallow water wave propagation models can generally be divided in two ma-
jor categories (see also Agnon and Sheremet, [1]):

• Deterministic (phase resolving) models are usually derived from the
Euler equation for potential flows (Laplace equation + boundary con-
ditions) under the hypothesis of weak nonlinearity and in the limit
of shallow water. These models, including both the physical domain
Boussinesq models and the complex amplitude evolution models (spec-
tral models), resolve the phases of the individual waves.

• Stochastic (phase-averaged) models are derived from deterministic
equations by applying a turbulence-like closure hypothesis to the in-
finite set of coupled equations governing the evolution of the spectral
moments. For any given deterministic wave equation, with a suitable
closure hypothesis, a stochastic model can be developed. Since the
closure approximation invariably introduces errors, the underlying de-
terministic model is in principle more accurate than its stochastic coun-
terpart.

As waves approach the shore, additional effects such as bottom friction and
depth-induced wave breaking must be considered.
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1.2 The Oil-spill models state-of-the-art

Oil spill modeling and understanding of some of the processes have advanced
in the last two decades. However, for some of the other important processes
our understanding remains poor and their modeling methods are ad-hoc.
There is still much more research needed to understand the fundamental
mechanisms of these processes.

These models can vary from simple trajectory type to models that attempt
to comprehensively simulate the physical-chemical-biological processes that
oil undergoes after a spill. Which type of model to use depends on the situ-
ation, model availability, and end objectives.

The most important processes that influnce the time evolution of oil af-
ter a spill in marine environment are advection and diffusion/dispersion,
mechanical spreading, vertical mixing, evaporation, dissolution, emulsifica-
tion, oil-sediment interaction, sedimentation and shoreline deposition and
re-entrainment of oil.

This review of the state of the knowledge on each process identified is carried
out following [86] and [105].

Oil transport and dispersion: the transport and dispersion of oil on the
water surface and in water column can be modeled by using a modified form
of the advection-diffusion equations [4]. This modified form is much more
complex than its standard form, because it deals with multi species both for
source and sink terms. Multi species are the different sized oil droplets that
can belong to surface layer or water column. Source and sink terms are evap-
oration, dissolution, oil break up from the surface, and resurfacing of oil. In
addition buoyant velocity of oil droplets need to be accounted for each species.

Given the complexity of dealing with this multi-species problem with sources
and sinks, Lagrangian methods are much more suitable for oil spill modeling.
In addiction, oil generally occupies a much smaller area than the modeling
domain and oil droplets can appear anywhere in the system in scattered form.

The most common method is the Lagrangian Parcel (LP) method [107],
where oil is initially represented as a large number of parcels. Then, these
LPs may move around in the modeling domain according to ambient and
buoyant velocities and turbulent diffusion/dispersion. A LP consists of large
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number of droplets of a certain size, but can grow or shrink in mass. Further
details can be found in [107].

Vertical Mixing and Resurfacing: Oil spilled on or near the water sur-
face can be broken up into droplets by the turbulence caused by water current,
wind, and waves. While there can be a coherent oil slick on the water surface,
a significant portion of the oil can be in the form of oil droplets entrained in
the water column.

Oil droplet surfacing will have a major impact on how the oil is transported.

The surfacing rate depends on the oil droplet/bubble size distribution (BSD).
The BSD also depends on the droplet break up and coalescence due to tur-
bulence.

The present knowledge does not allow the calculation of BSD with any con-
fidence. The empirical methods developed by Delvigne and co-workers (e.g.
[27]) are the most commonly implemented methods to calculate the break up
amount, BSD, and the intrusion depth.

Bandara and Yapa [3] developed a more robust method to calculate oil droplet
sizes and their distribution in deepwater plumes.

Evaporation and Dissolution: Depending on the type of oil, evaporation
can be the process that causes the major loss of oil mass. In addiction, it
directly influences dissolution, emulsification and adsorption of oil dissolved
to sediments.

The amount of oil evaporation depends on the oil type, wind condition, tem-
perature, and slick area.

Evaporation and dissolution can be simulated using similar equations al-
though the mass transfer coefficients vary [93]. Wind is not a factor affecting
dissolution. Amounts of oil dissolution are much smaller than that of evap-
oration but, for impact assessment, dissolved amount of oil is important
because of its direct effect on toxicity.

Mackay et al.’s [65] multi component method although dated, gives good
estimates for oil evaporation and dissolution amounts. To use this method
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oil vapor pressures (VP) are needed. [87] provides an improved method to
calculate oil vapor pressures (VP).

More recent developments using other approaches and empirical methods
can be found in a series of papers published in AMOP (Arctic Marine Oil
Spill Program), technical seminars sponsored by Environment Canada.

Emulsification: This is a process that can take days to weeks to develop
and it depends on both turbulence and oil chemistry. When stable emulsions
are formed, the viscosity can increase by few orders of magnitude. The den-
sity can also change due to uptake of water which can be as high as 80% and
in some cases can be even slightly higher than the water density.

Evaporation and weathering impact on emulsification. Emulsification can
be enhanced by evaporation and dissolution [32].

Due to all these property changes, once emulsions are formed it can sig-
nificantly impact the fate and transport of oil including changing some of
the oil to transport inside the water column instead of on the water surface.
Xie et. al ’s [104] model takes into account both oil chemistry and ocean
turbulence to simulate emulsification.

Oil and Sediment Interaction: A main process of removal of oil from
the water environment is oil sediment interaction. It results in an agglomer-
ate which sinks to the bottom of the ocean.

Despite the importance of this process it is one of the poorly understood
processes.

[4] is a very good attempt to model this process. It explains different pro-
cesses within oil sediment interaction such as partitioning and adsorption.
Further information can be found in [4].

Shoreline Deposition and Re-entrainment of Oil: Oil upon reaching
a shoreline deposits either fully or partially and can have a devastating effect
on the coastline. These effects can be on recreation, fishing, or ecology. This
process is important for both short and long term impact assessment.
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Although oil booms are used to protect shorelines, they are not always effec-
tive. The amount of oil retained in a coastline depends on the type of beach
and its holding capacities. The type of beach has been categorized using an
Environmental Sensitivity Index (ESI) by [37]. The ESI can be loosely con-
nected with a half-life value for the beach retention capacity. This method
has been used in models by a few (e.g. [17], [91]). ESI Atlases are available
for many coastlines and inland shorelines in the United States and Canada.
There has not been extensive research for this subject. [37] and [90] are a
good sources for further readings.
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Chapter 2

Numerical Modeling of Surface
Waves

2.1 Linear Wave Theory

Almost all physical systems have the ability to perform free oscillations
around an equilibrium configuration if disturbed by a small perturbation.

Waves are the way by which an oscillation caused by a perturbation orig-
inated by a source located at a some space-time defined point is transmitted
in space and time across a physical system without movement of the medium:
therefore energy travels with waves , while the motion of matter is generally
small or absent.

The periodic behavior of waves is generated by the existence of some kind of
restoring force which tries to bring the system back to its undisturbed state
every time the perturbation causes the system exceeding of the equilibrium.

The most common wave motion experienced by anyone is that one that oc-
curs at the free surface of a liquid disturbed by a some kind of perturbation
and characterized by gravity as the most important restoring force: ocean
waves belong to this category.

In this section the Linear Theory and some of its physical consequences will
be examined. The analysis is carried following [60] and [26].

25



2.1.1 High Frequency Waves in The Ocean

Applying the concept of waves to the ocean it is possible to define ocean
waves as the vertical motions of the ocean surface caused by some kind of
perturbation.

Depending on the nature of the perturbation and of the restoring force and
the temporal scale typical of the wave motion, it is possible to identify dif-
ferent kind of ocean waves:

Fig. 2.1: Typical ocean wave spectrum (from [9])

Naturally all these phenomena are at time scales shorter than the day. For
day-long or longer scales ocean currents are turbulence induced currents, not
to be discussed further in this Thesis.

Considering the nature of the perturbation, it is possible to identify Wind
Waves, which are forced by the local wind blowing on the air/water inter-
face, Tsunamis, which are waves generated by a submarine ‘land’ slide or
earthquake, Tides, sea surface oscillations due to fluctuating gravitational
forces of the Moon and Sun, Storm Surges, the large-scale elevation of the
ocean surface generated by the low atmospheric pressure and the high wind
speeds associated to a severe storm.
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On the other hand, thinking about the nature of the restoring force we de-
fine Gravity Waves and Capillary Waves, for which the restoring force
is, respectively, the Gravity force and the Surface Tension.

Finally, the different temporal scales Long Waves, which include waves
with a period between more than 24 hours and about 5 minutes, and Short
Waves, which are sea surface oscillations with a period between about 5
minutes and 0.01 seconds.

2.1.2 The Wave Equation and Wave Parameters

Defining η as any type of disturbance, like the displacement of the free surface
in a liquid, it is possible to show that the simplest equation which describes
the evolving in time and space of such a perturbation is the Wave Equation

∂2η

∂t2
= c2∇2η (2.1)

which is a linear second order partial differential equation of the hyperbolic
type. Considering waves traveling only in the x-direction the Wave Equation
2.1 becomes

∂2η

∂t2
= c2 ∂

2η

∂x2
(2.2)

which has as general solution the so called d’Alembert solution

η = f(x− ct) + g(x+ ct) (2.3)

where f and g are any arbitrary functions and f(x − ct) represents a wave
propagating in the positive x-direction (see fig. 2.2) while g(x − ct) propa-
gates in the negative x-direction at speed c.

The simplest disturbance which can be thought is the sinusoidal wave with
equation

η = a sin
[2π

λ
(x− ct)

]
(2.4)
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Fig. 2.2: Profile of progressive wave f(x− ct) at two times (from [60])

where a is the amplitude of the wave, λ is the wavelength and c is the speed

of propagation of the wave shape sin
[

2π
λ

(x− ct)
]
. Because of the argument

sin
[

2π
λ

(x− ct)
]

is called phase, c is commonly called phase velocity.

It descends that points with equal phase present the same wave shape, for
example crests or trough.

The period T of the wave is defined as the time needed by the wave to
travel a space equal to λ with the phase velocity c:

T =
λ

c
(2.5)

and the number of oscillations at a point per unit time is the frequency given
by

f =
1

T
(2.6)

Commonly, the equation 2.4 is written in function of the wave number k and
the angular frequency ω instead of the wavelength λ and the frequency f ,
respectively. The wave number is defined as the number of complete waves
in a length 2π

k ≡ 2π

λ
(2.7)

while the angular frequency, also called radian frequency, is the rate of change
of phase (in radians) per unit time.

ω ≡ 2π

T
= 2πf = kc (2.8)

and equation 2.4 can be written as

η = a sin(kx− ωt) (2.9)
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For horizontal plane sinusoidal waves equation can be generalized as

η = a sin( ~K · ~x− ωt) = a sin(kx+ ly − ωt) (2.10)

where ~K = (k, l) is the wave number vector with magnitude

K2 = k2 + l2 (2.11)

and ~x = (x, y) is the vector position.

The wavelenght of equation 2.10 is ~λ = (λx, λy), where λx = 2π/k and

λy = 2π/l and the magnitude of ~λ is λ = 2π/K.

Fig. 2.3: Wave propagating in the xy-plane. In the right north corner it is shown how the components
cx and cy are added to give the resultant ~c (from [60])

The phase velocity vector has the direction of propagation parallel to that of
~K one and can be written as

~c =
ω

K

~K

K
(2.12)

The modulo of ~c is c = ω/K and it is clear that the component of the phase
velocity do not obey the rule of vector addition (in fig 2.3 the method to
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calculate ~c starting from components is shown).

If in the ocean is present a uniform mean flow ~U , then the observed phase
velocity is

~co = ~c+ ~U (2.13)

The dot product of the previous equation 2.13 with ~K and the using of
equation 2.12 allow to write

ω = σ + ~U · ~K (2.14)

where ω is the observed radian frequency at a fixed point, also called absolute
frequency, while σ is the intrinsic radian frequency measured by an observer
moving with the mean flow and also called relative frequency. In other words,
in the presence of a mean flow, the wave frequency is Doppler shifted by an
amount of ~U · ~K.

2.1.3 Surface Gravity Waves

In this sub section the equation describing gravity waves at the free surface
of a sea of uniform depth H will be resulted.

To linearize the problem, let assume that the amplitude a of the free surface
oscillation is small if it is compared with with the wavelength λ and the
depth H; then it means that

a

λ
<< 1 (2.15)

a

H
<< 1 (2.16)

where condition 2.15 means that the slope of the sea surface is small and
condition 2.16 implies that the depth can be considered as constant in time.

In addition, let consider a wave with a frequency f large respect to the Cori-
olis frequency, so that the fluid is unaffected by the Earth rotation and can
be considered not in rotation.

In the last, let think about a fluid with uniform density and small viscos-
ity, so that it is relevant only at the boundaries and do not affect the wave
propagation significantly. The last three conditions, according to Kelvin’s
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Circulation Theorem (see Appendix B), allow to consider the resulting mo-
tion of the fluid as irrotational and ensure the existence (see Appendix A)
of the function potential velocity φ defined as

u =
∂φ

∂x
v =

∂φ

∂y
w =

∂φ

∂z
(2.17)

Now, for algebraic simplicity, let consider a case where the wave propagate
only in the x-direction and the motion is only bi-dimensional in the x − z
plane.

Fig. 2.4: Rapresetation of the Gravity Surface Wave physical problem [60])

Then, the substitution of identity 2.17 in the continuity equation ~∇ · ~u = 0
yields the Laplace equation

∂2φ

∂x2
+
∂2φ

∂z2
= 0 (2.18)

which is a well-known second order homogeneous linear partial derivative
equation. In order to resolve this equation, it is needed to specify boundary
conditions at the bottom and at the free surface.

At the bottom, the kinematic boundary condition is that the velocity field
component normal to the bottom has to be zero, which means that

w|z=−H =
∂φ

∂z

∣∣∣
z=−H

= 0 (2.19)
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The kinematic boundary condition at the surface is that the fluid particle
never leaves it, that is

w|z=η =
Dη

Dt
(2.20)

and, remembering that the Total derivative is defined as

D•
Dt

=
∂•
∂t

+ ~u · ~∇• (2.21)

we can write, for our bi-dimensional problem,

∂η

∂t
+ u

∂η

∂x

∣∣∣
z=η

=
∂φ

∂z

∣∣∣
z=η

(2.22)

which can be simplified to
∂η

∂t
=
∂φ

∂z

∣∣∣
z=0

(2.23)

justifying it with the fact that, for small amplitude wave, both u and ∂η/∂x
are small and, therefore, also the quadratic term u(∂η/∂x) is an order smaller
than the other terms and that, at the first order of accuracy, expanding ∂φ/∂z
in a Taylor series around z = 0, we can write that

∂φ

∂z

∣∣∣
z=η

=
∂φ

∂z

∣∣∣
z=0

(2.24)

On the surface, to ensure the coupling with the atmosphere, we have to
declare a dynamic boundary condition too, which is

p
∣∣∣
z=η

= 0 (2.25)

which can be simplified, as before, in

p
∣∣∣
z=0

= 0 (2.26)

Substituting this in the Bernoulli’ equation for a bi-dimensional motion

∂φ

∂t
+

1

2
(u2 + w2) +

p

ρ
+ gz = 0 (2.27)

we obtain, neglecting the non linear term (u2 + w2),

∂φ

∂t
+ gη = 0 (2.28)
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Hence, summarizing, the gravity surface wave physical problem is described
by the Laplace equation

∂2φ

∂x2
+
∂2φ

∂z2
= 0 (2.29)

and the three boundary conditions

∂φ

∂z
= 0, at z = −H (2.30)

∂η

∂t
=
∂φ

∂z
, at z = 0 (2.31)

∂φ

∂t
= −gη, at z = 0 (2.32)

To solve the partial differential problem, let assume the simplest general
solution for η of the form

η = a cos(kx− ωt) (2.33)

For a cosine dependence of η on (kx−ωt), the two surface conditions 2.31 and
2.32 imply that φ must be a sine function of (kx− ωt). Assuming therefore
a solution for φ in the form of separated variable, it is possible to write

φ = f(z) sin(kx− ωt) (2.34)

and the Laplace equation 2.29 become

∂2f

∂z2
− k2f = 0 (2.35)

As a second order homogeneous liner partial differential equation, the general
solution for 2.35 is

f(z) = Aekz +Be−kz (2.36)

and consequently the potential velocity is given by

φ = (Aekz +Be−kz) sin(kx− ωt) (2.37)

Coefficients A and B have to be determined applying boundary conditions to
equation 2.37. Applying conditions 2.30 and 2.31 to equation 2.37 and using
the general solution fo η 2.33 we obtain the linear system for A and B{

B = Ae−2kH

k(A−B) = aω
(2.38)
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which has solution

A =
aω

k(1− e−2kH)
B =

aωe−2kH

k(1− e−2kH)
(2.39)

Using solutions for A and B in 2.37 we obtain that the potential velocity
is given by

φ =
aω

k

cosh k(z +H)

sinh kH
sin(kx− ωt) (2.40)

and consequently the velocity components are

u = aω
cosh k(z +H)

sinh kH
cos(kx− ωt) (2.41)

v = aω
cosh k(z +H)

sinh kH
sin(kx− ωt) (2.42)

Finally, substituting 2.40 and 2.33 into dynamical surface condition 2.32 we
have the dispersion relation

ω2 = gk tanh kH (2.43)

from which results the phase speed

c =

√
g

k
tanh kH (2.44)

Waves for which c is a function of k are called dispersive, because wave
with different length propagates with different speed, and therefore gravity
surface waves for which the relation 2.43 applies are dispersive.

Considering that for deep waters result that

H

λ
>> 1 (2.45)

and that for shallow waters applies

H

λ
<< 1 (2.46)
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remembering that tanh(x)→ 1 for x→∞ and that tanh(x) ≈ x for x→ 0,
it is possible to write the following approximated dispersion relation:

ω =
√
gk, for deepwater (2.47)

ω = k
√
gH, for shallowwater (2.48)

Under these approximations, the phase speed becomes

c =

√
g

k
, for deepwater (2.49)

c =
√
gH, for shallowwater (2.50)

Hence, in deep waters waves are dispersive while in shallow waters we find
non dispersive waves.

2.1.4 Wave Energy

Surface gravity waves possess Kinetic Energy due to the motion of the fluid
and Potential Energy due to the deformation of the free surface.

Consider a case where the waves propagate in the x direction only, and that
the motion is two dimensional in the xz − plane (see figure 2.4). Let the
vertical coordinate z be measured upward from the undisturbed free surface.
The free surface displacement is η = a cos(kx− σt).
As the Potential Energy of an element in the fluid (per unit length in y) is

dEp = ρgzdzdx (2.51)

the Potential Energy per unit horizontal area of the wave system is

35



Ep =
ρg

λ

∫ λ

0

∫ η

−H
zdzdx− ρg

λ

∫ λ

0

∫ 0

−H
zdzdx (2.52)

=
ρg

λ

∫ λ

0

∫ η

0

zdzdx =
ρg

2λ

∫ λ

0

η2dx =
1

2
ρgη̄2 (2.53)

while the avarage Kinetic Energy per unit horizontal area can be obtained
integrating over the depth and averaging over a wave length the Kinetic
energy associated with a small parcel of fluid with mass dm = ρdxdz:

Ek =
ρ

2λ

∫ λ

0

∫ 0

−H
(u2 + w2)dzdx =

1

2
ρgη̄2 (2.54)

The total wave energy in the water column per unit horizontal area is :

E = Ep + Ek = ρgη̄2 =
1

2
ρga2 (2.55)

considering that the average of cos2 x over a wave length is 1/2.

The Energy for unit surface area associated to a single sinusoidal wave is
therefore

E =
1

2
ρga2 (2.56)

where ρ denotes sea water density at the surface.

It can been shown that in a dispersive system the energy of a wave component
propagates at a group velocity cg defined

cg =
∂ω

∂k
(2.57)

instead of at the phase speed c.

Therefore, for surface gravity wave with dispersion relation 2.43 the group
velocity is found to be

cg =
c

2

[
1 +

2kH

sinh 2kH

]
(2.58)
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and, using the deep water and shallow water approximations, the two limiting
cases are

cg =
1

2
c =

1

2

√
g

k
deep water (2.59)

cg = c =
√
gH shallow water (2.60)

2.1.5 Fluid Particle Path

A water particle at rest will be displaced from its position by the wave-
induced pressures. In order to examine particle orbits, we need to use a
Lagrangian formalism to describe the motion of the particle.

Let (x0, y0) be the coordinates of a fluid particle at rest. Then, the coor-
dinates of the particle during its wave-induced motion will be, as shown in
figure 2.5, (x0 + ξ, y0 + ζ) which, in a Lagrangian formalism, can be written
as (ξ(x0, z0, t), ζ(x0, z0, t)).

Fig. 2.5: Orbitof a fluid particle whose mean position is (x0, z0) [60])

The velocity components of the particle motion will be

u =
∂ξ

∂t
(2.61)

v =
∂ζ

∂t
(2.62)
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where the partial derivative symbol is used because in Lagrangian formalism
the particle identity (x0, z0) is keep fixed in the time derivative.

Expanding the velocity components along the particle path with a Taylor
expansion around the velocity of the particle at its rest position, for small
amplitude waves we find that, at the first order of approximations, the ve-
locity of the particle in the position (ξ(x0, z0, t), ζ(x0, z0, t)) is equal to the
velocity of the particle at its rest position (ξ(x0, z0, t0), ζ(x0, z0, t0)) = (x0, y0).

Fig. 2.6: Particle orbits of wave motion in deep, intermediate and shallow waters

Therefore, using equations 2.41 and 2.42, it is possible to write

∂ξ

∂t
= aω

cosh k(z0 +H)

sinh kH
cos(kx− ωt) (2.63)

∂ζ

∂t
= aω

sinh k(z0 +H)

sinh kH
sin(kx− ωt) (2.64)
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The time integration of 2.63 2.64results in

ξ = −acosh k(z0 +H)

sinh kH
sin(kx− ωt) (2.65)

ζ = a
sinh k(z0 +H)

sinh kH
cos(kx− ωt) (2.66)

By squaring 2.65 and 2.66, adding the two equations and using trigonometric
identity we obtain

ξ2
/[

a
cosh k(z0 +H)

sinh kH

]2

+ ζ2
/[

a
sinh k(z0 +H)

sinh kH

]2

= 1 (2.67)

which is the equation of an ellipse with both the semimajor and the semiminor
axis that decrease with depth and with the semiminor axis which vanishes at
z = −H (see figure 2.6).

2.1.6 Stokes’ Drift

Observing the motion of a floating object placed on the sea surface, it is clear
that it is ’transported’ by waves in the direction of their propagation.

This phenomenon is called Stokes’ Drift, in honor of George G. Stokes who
was the first to identify and describe in 1847 this non-linear process [97], and
is due to the fact that the trajectory which describes the displacement of a
near-surface fluid particle forced by wave motion is not closed but has the
shape shown in fig 2.7 : essentially the particle moves forward faster (when
it is at the top of its trajectory) than backward (when it is at the bottom of
its path) and this fact generates the drift.
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(a) (b)

Fig. 2.7: Stoke’s drift: (a)The not closed orbit which describes the path of a near-surface water
particle displaced by wave motion; (b)The mean position of an initially vertical line of fluid particles
extending downward from the liquid surface will increasingly bend in the direction of wave propagation
with increasing time. (Modified from [60])

The Stokes’ Drift is a second-order effect and, to find a mathematical for-
mulation for it, we need to describe the motion of a water particle moved by
waves both with a Lagrangian formalism that with an Eulerian one.

Let consider a water particle whose position at time t0 = 0 is defined by the
vector position ~x0 = (x0, y0, z0) and the position at any subsequent time is
descripted by the vector ~x = (x, y, z). Therefore, in a Lagrangian formalism,
we can write

~x( ~x0, t0) = ~x0 (2.68)

At any subsequent time t, Lagrangian velocity of the particle is given by

∂~x

∂t
= ~uL( ~x0, t) (2.69)

where the partial derivative operator means that the initial position (used
as a particle tag in Lagrangian motion description) is kept fixed in the time
derivative. The particle position at any time t can be found integrating 2.69:

~x = ~x0 +

∫ t

t0

~uL( ~x0, t)dt (2.70)

Furthermore, indicating with u the Eulerian velocity of the same particle
when it is collocated at the position ~x at instant time t , if the relation 2.70
is true then we can write
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~uL( ~x0, t) = ~u(~x, t) (2.71)

Expanding the Eulerian velocity ~u in a Taylor series about ~x0 it is possible
to write

~uL( ~x0, t) ≈ ~u( ~x0, t) + (~x− ~x0) · ∇0~u( ~x0, t) + ... (2.72)

where ∇0 = (∂/∂x0, ∂/∂y0, ∂/∂z0).

Approximating eq. 2.72 to the first order, it results that the Lagrangian ve-
locity is equal to the Eulerian one and the trajectory of the particle is circular
or ellipsoid (see 2.1.5).

Understanding on the other hand that the Stokes’ drift is due to the fact
that the particle velocity ~uL changes in magnitude and direction during its
displacement trajectory, it is useful to approximate eq. 2.72 to the second or-
der and consider the time mean value of it (the averaging operation is usually
done over one wave period T ):

~uL( ~x0, t) ≈ ~u( ~x0, t) + (~x− ~x0) · ∇0~u( ~x0, t) (2.73)

where • stands for the time averaging operation defined as

• =
1

T

∫ t+T/2

t−T/2
•dt (2.74)

Equation 2.73 states that the mean particle velocity is equal to its initial
velocity plus a correction (proportional to the distance traveled and to the
spatial rate of change of the local velocity field) due to the fact that the
particle moves in an environment where the velocity field varies.

Defining therefore the Stokes’ drift velocity as

~uS( ~x0, t) = ~uL( ~x0, t)− ~u( ~x0, t) (2.75)

it is possible to write

~uS( ~x0, t) = (~x− ~x0) · ∇0~u( ~x0, t) (2.76)
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To estimate the Stokes’ drift for gravity waves, let consider a bi-dimensional
x − z space and the dispersion relationship in deep water approximation
(ω =

√
gk) for algebraic simplicity. The velocity components and particle

displacements for this motion are given in 2.41, 2.42, 2.65 and 2.66 as

u(x0, z0, t) = aωekz0 cos(kx0 − ωt) (2.77)

x− x0 = −aekz0 sin(kx0 − ωt) (2.78)

w(x0, z0, t) = aωekz0 sin(kx0 − ωt) (2.79)

z − z0 = aekz0 cos(kx0 − ωt) (2.80)

Substituting 2.77, 2.78, 2.79 and 2.80into 2.76 we obtain:

uS =
a2kωe2kz0

T

∫ t+T/2

t−T/2
[sin2(kx0 − ωt) + cos2(kx0 − ωt)]dt

=
a2kωe2kz0

T

∫ t+T/2

t−T/2
dt

= a2kωe2kz0

wS =
a2kωe2kz0

T

∫ t+T/2

t−T/2
[sin(kx0 − ωt) cos(kx0 − ωt)− sin(kx0 − ωt) cos(kx0 − ωt)]dt

= 0

The Stokes’ drift velocity has therefore only the x component (in a 2-dimension
space, while for a 3-dimension space it can be shown similarly that it has only
the x− y components) and, in deep water, its surface value (z0 = 0) is a2kω
and the vertical decay rate is twice that for the Eulerian velocity components.
It implies therefore that Stokes’ drift is confined very close to the sea surface.

For arbitrary water depth, the dispersion relationship is ω2 = gk tanh kh
and it can be shown that the Stokes’ drift velocity is (using prosthaphaeresis
formulas for the last identity)

uS = a2ωk
cosh 2k(h+ z)

2 sinh2 kh
= ga2k2 cosh 2k(h+ z)

ω sinh 2kh
(2.81)
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2.2 Statistical Wave Theory

Waves in the oceans are generated by winds, and their properties, as steep-
ness, period or direction, depend on the wind speed, the fetch (i.e, the dis-
tance over which winds blow) and the wind duration [34].

Moreover, observing the sea surface in the presence of wind-generated waves,
it can be noted that the sea surface seems an irregular collection of crests and
troughs, often with neither a well-defined wavelength or wave direction, nor
a fixed wave height; the crests are short, and aligned in different directions,
the waves move, but not all in the same direction, and do not retain their
shape: the position and height of an individual crest is not predictable for
more than a few wavelengths [21] .

Fig. 2.8: Sea surface moved by wind generated waves. (by Diego Bruciaferri, MEDESS4MES Oceano-
graphic cruise, Garcia del Cid Oceanographic Research Ship, 9 September, 2013)

In order to describe, and consequently modeling, the so called wave condi-
tions of the sea (e.g, the properties at some time and place of the sea surface
wind generated waves), because of a deterministic method is impossible to
use due to the intrinsic random nature of wind and waves, a statistical ap-
proach is usually applied to estimate some parameters, as significant wave
height and mean period, which can typify a wave condition respect to another
[43].

However, any small number of statistical parameters would not, in general,
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completely characterise the wave conditions [43].

Considering wind waves as a stochastic process, the spectral technique can
be used and a complete statistical description of sea wave conditions can be
carried out.

In this section, both classical statistical parameters used to describe wind
waves and the random phase-amplitude model based on wave spectra are
described.

2.2.1 Representative Wave Parameters

To define some objective statistical parameters which can typify a given sea
wave condition, before it is needed to specify objectively what a sea wave is.

Let consider a wave time record from a wave gauge at a fixed space point in
the ocean: the surface elevation is the elevation of the sea surface at any one
moment time relative to some reference level while a wave is usually defined
as the profile of the sea surface elevation between two successive downward
zero-crossing of the elevation [43] ( see figure 2.9 ). Therefore surface eleva-
tion can be negative while a wave cannot be and the last comprehends always
a trough and a crest.

Fig. 2.9: Definition of sea wave in a time record with the downward zero-crossings method [43])

Given this practical definition of a sea wave, it is natural to define the wave
height H of a wave as the vertical distance between the highest and lowest
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surface elevation in a wave and the wave period T of the same wave as the
time interval between one zero-down crossing and the next (i.e., between the
start and the end of the wave)[43] [34] ( see figure 2.9 ).

Based on such a definition, considering a long wave time record and the
associated list of height and period data coming out from it, the following
four kinds of representative wave of the wave condition during that time can
be defined [34] :

• Highest Wave, Hmax, Tmax: it is the wave having as wave height Hmax

and period Tmax the max height value and period value of the time
record;

• Mean wave, H̄, T̄ : In a wave record with N waves, the mean wave
height H̄ and the mean wave period T̄ is defined as the arithmetic
means of the heights and periods of all the wave in the record:

H̄ =
1

N

N∑
i=1

Hi, T̄ =
1

N

N∑
i=1

Ti (2.82)

where i is the sequence number in the record. An imaginary wave
having height and period of H̄ and T̄ is defined as the mean wave.

• Highest one-tenth wave, H1/10, T1/10: The waves in the record are
counted and selected in descending order of wave height from the high-
est wave, until one-tenth of the total number of waves is reached. The
means of their heights and periods are calculated and denoted as H1/10

and T1/10,respectively:

H1/10 =
1

N/10

N/10∑
j=1

Hj, T1/10 =
1

N/10

N/10∑
j=1

Tj (2.83)

where j is not the sequence number in the record but the rank number
of the wave based on wave height.

An imaginary wave having height and period of H1/10 and T1/10 is
defined as the highest train one-tenth wave.

• Significant wave (Highest one-third wave): The waves in the record
are counted and selected in descending order of wave height from the
highest wave, until one-third of the total number of waves is reached.
The means of their heights and periods are calculated and denoted as
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H1/3 and T1/3,respectively:

H1/3 =
1

N/3

N/3∑
j=1

Hj, T1/3 =
1

N/3

N/3∑
j=1

Tj (2.84)

An imaginary wave having height and period of H1/3 and T1/3 is defined
as the highest train one-third wave.
Experiments have shown that the height value of this wave is close to
the value of the visually estimated wave [43].

Distribution of Individual Wave Heights and Periods

In 1952 Longuet-Higgins demonstrated the applicability of the Rayleigh dis-
tribution (originally derived by Lord Rayleigh in the 19th century to describe
the distribution of the intensity of sounds emitted from an infinite number of
sources) to sea wave heights if waves are irregular and have very small fluc-
tuations in the individual wave periods and whose heights exhibit a beat-like
fluctuation [34] .

The probability density function for the so-called Rayleigh distribution of
individual wave heights is

p(x) =
π

2
x exp

[
− π

4
x2
]

(2.85)

where x is the normalized wave height H/H̄.

Fig. 2.10: Normalized histogram of wave heights (from [34])

46



An example of a distribution of wave heights obtained by assembling 52 wave
records each containing about 100 waves is shown in figure 2.10 .
Here wave heights are normalized by the mean heights of the respective
records and histogram is carried out by counting the relative frequencies
of the normalized wave heights in their respective classes. The theoretical
Rayleigh distribution is drawn with the solid line [34] .

The wave period does not show a universal distribution law such as the
Rayleigh distribution for the wave heights. Periods of individual waves usu-
ally exhibit a distribution narrower than that of wave heights, even if it
becomes broader or even bi-modal when wind and swell coexist [34] .

Relation between Representative Wave Heights and Periods

If the Rayleigh distribution is assumed to be a good approximation of the
distribution of individual wave heights, it can been shown that, manipulating
such probability density function, a relation between representative wave
heights parameters can be found [34] . Thus, we have

H1/10 = 1.27H1/3 = 2.03H̄, H1/3 = 1.60H̄ (2.86)

and
Hmax = (1.6 ∼ 2.0)H1/3 (2.87)

Concerning the periods, it has been empirically found that the representative
period parameters are interrelated with the following results [34] :

Tmax = (0.6 ∼ 1.3)T1/3

T1/10 = (0.9 ∼ 1.1)T1/3

T1/3 = (0.9 ∼ 1.4)T̄

(2.88)

For the most part of the wave records the following average value can be
applied [34] :

Tmax ≈ T1/10 ≈ T1/3 ≈ 1.2T̄ (2.89)
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2.2.2 Wind Waves as a Stochastic Process

Viewing the sea surface elevation in presence of waves as a Stochastic Process
(see appendix C for the definition of a Stochastic Process ) means to consider
the surface elevation at any one time and space location as a random variable
[34] .

Let consider a laboratory tank where waves can be generated by an arti-
ficial wind and a fixed water gauge placed at location A in the tank (see
figure 2.11): carrying out several experiments, let say N experiments, the
value of the water surface level η measured by the water gauge at time t1, re-
ferred to the t0 time which is the start time of wind blowing, will be generally
different for every experiment , that is

η(i, t1) 6= η(j, t1), 0 < i, j ≤ N (2.90)

where i, j indicates the experiment number [43] .

Fig. 2.11: Laboratory tank where artificial wind generates water waves and a fixed water gauge placed
at location A in the tank where the surface η is measured at time t1 during the experiment 1 (the subscript
1 indicates the number experiment)(modified from [43])

It follows that every experiment can be seen as a time ordered set of random
variables which describes the time evolving of the sea surface at location A,
that is as one of the possible realization of the ensamble of the realizations of
a Stochastic Process which can carried out [43] [34]. Therefore, to indicate the
Stochastic Process sea surface elevation in presence of waves η, it is possible
to write

η(t) = {η1(t), η2(t), ..., ηi(t), ...} (2.91)
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with 0 < i ≤ ∞ and

ηi(t) = {η(t1), η(t2), ..., η(tj), ...} (2.92)

with 0 < j ≤ ∞.

Identity 2.91 describes the general moved by waves surface Stochastic process
and the braces {} indicate the ensamble of all the possible i− th realizations,
while equation 2.92 indicates that every ηi realization is an ordered set of the
j − th random variables η(tj) (the • stands for random variable).

As anyone can easily verify, every realization is composed by random vari-
ables η(t) which are, at short time intervals, related and correlated: if the
surface elevation η(ti) at time ti is large, then, at time tj, with j > i and
ti − tj enough small, the surface elevation η(tj) will be large too; only when
the time interval ti− tj become large the correlation between η(ti) and η(tj)
will be lost.

Fig. 2.12: Time series of four statistically identical realizations of the surface elevation at location A,
in the laboratory tank of figure 2.11 (modified from [43]).

The validity of the Random Phase-Amplitude model described in the next
paragraph is based on the fact that the surface elevation of wind-generated
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waves can be considered as a Stationary, Gaussian, Ergodic stochastic pro-
cess.

The applicability of the above three conditions for random sea waves has
not been rigorously verified [34].

Talking about Stationarity and Ergodicity, the validity of their assumption
is impossible to verify because it is impossible to collect a true ensamble of
wave record for a prescribed sea state, due to the fact that the sea state is
intrinsically random and it is always changing in time and space [34].

However, it is not very far from reality if the sea state is expected to be
constant for a short duration of several minutes to a few tens of minutes and
therefore, for such short wave record, Stationarity is assumed.

Concerning to Ergodicity, it is usually assumed that it holds for sea waves
beacause there is no evidence that it does not [34] .

Thinking about surface elevation of wind-waves as a Gaussian process can
be considered reasonable if some assumptions are made.

The surface elevation at any moment in time ti can be seen as the sum
of the elevations at that time of a large number of simple sinusoidal waves,
each of which has been generated and has traveled independently from the
others: therefore, according to the Central Limit Theorem, the sea surface
elevation should be Gaussian distributed. There are problems with this rea-
soning when we think about the correlation between random variables η(ti)
and η(tj) separated in time by a short time lag: in this situations the vari-
ables can not be defined as independent and the Central Limit Theorem does
not hold.

Hence, sea wave surface displacement can be considered a Gaussian stochas-
tic process if we are not in the surf zone (i.e., in shallow water) and the
waves are not too steep: waves in these conditions can be reasonable seen as
independent one from each other [43] .
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2.2.3 The Random Phase-Amplitude model

The Random Phase-Amplitude model leads to the Ocean Wave Spectrum
concept, which is a way to describe the sea surface as a stochastic process,
characterizing all possible realizations that could have been made under the
same conditions, rather than to describe in detail a given observation (i.e., a
single realization) [43] .

Assuming that sea surface gravity waves can be treated as a Stationary,
Gaussian, Ergodic stochastic process, which means to consider as true the
three conditions exposed in 2.2.2, the random sea waves surface can be inter-
preted as a superposition of sinusoidal free progressive waves generated by
wind in different times and places (see figure 2.13) and, according to Fourier
series Theory, it is possible to write, for a given location on the ocean surface
[43] [34] :

η(t) =
N∑
n=1

an cos(2πfnt+ εn) (2.93)

where N is a large number, an and εn are, respectively, the amplitude and
phase random variables of each discrete frequency fn = n/D, with n =
1, 2, ..., N and D as the time length of the stochastic process (therefore
∆f = 1/D).

Fig. 2.13: Superposition of many harmonic waves, with constant but randomly chosen amplitudes and
phases, to create a random sea surface (modified from [43]).

51



The phases εn and amplitudes an, being random variables, are fully described
by their respective probability density function.

As the amplitude of an ocean wave is

a =
H

2
, (2.94)

where H is the wave height defined in section 2.2.1, and H is Rayleigh dis-
tributed (see always 2.2.1), also an is Rayleigh distributed with the following
probability density function:

p(an) =
π

2

an
µ2
n

exp
(
− πa2

n

4µ2
n

)
for an ≥ 0 (2.95)

where µn is the expected value of the amplitude an

µn = E{an} (2.96)

Since µn is the only parameter in equation 2.95, an is fully statistically de-
scribed by this one parameter.

Concerning to εn, the Random Phase-Amplitude model assumes that the
phase at each frequency fn is uniformly distributed between 0 and 2π (i.e.,
it is treated as a white noise).

Considering densely distributed frequencies fn (i.e., fn+1 − fn is small if
compared to some characteristic wave frequencies), it is possible to write the
function that describes the spreading of this mean amplitude E{an} along
the frequencies axis, and it is called the amplitude spectrum (see figure 2.14).

Consider now the variance of the sea surface elevation η(t); by definition, it
is the expected value of the squared surface elevation (relative to its mean)

σ2
t = E{(η(t)− µt)2} (2.97)

where the subscript •t means that the variance and the mean are referred to
the ensamble of all the possible realizations of η which can be made at time
t.
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Fig. 2.14: According to the Random Phase-Amplitude model, for each frequency fn there is a uniformly
distributed random phase and one Rayleigh distribution for the random amplitude. The expected value
of the amplitude as a function of frequency is shown in the bottom pannel. (modified from [43]).

Usually, the mean value of the surface is taken to be 0, so that the variance
become

σ2
t = E{η2(t)} (2.98)

and it is related directly with the amplitude of the wave. Assuming now that
the hypothesis of stationarity yields, we can write

σ2 = E{η2(t)} = η2(t) (2.99)

where the overbar indicates time averaging over the time length D of the
stochastic process which is considered to be a multiple of the wave period.
Therefore, we can write

σ2 = η2(t) =
1

D

∫ D

0

η2(t)dt =
1

2
a2 (2.100)

with D = nT and remembering that the time average of the cos2 x over a
wave length is 1/2.
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In the Random Phase-Amplitude model a large number of harmonic waves
is superimposed: the variance of this sum, i.e. the variance E{η2(t)} of the

surface elevation, is equal to the sum of the individual variances E{1
2
a2
n}:

E{η2(t)} =
N∑
n=1

E{1

2
a2
n} (2.101)

Considering therefore equation 2.101 and remembering that the Linear The-
ory for surface gravity waves shows that the energy of the wave is proportional
to the variance (see 2.56), it is clear that it is more meaningful to distribute
the variance of each wave component E{1

2
a2
n} over the frequencies fn rather

than the amplitude E{an}, i.e., it is more helpful to use the variance spectrum
instead of the amplitude spectrum.

Since both the variance spectrum and the amplitude spectrum are based on
discrete frequencies, in order to obtain a function which fully describes sea
surface waves (where all frequencies are present), it is needed to distribute
the variance E{1

2
a2
n} over the frequency interval ∆fn for each frequency fn

and to impose that the frequency band ∆fn approach to 0.

By doing so, the function variance density spectrum S(f) is defined as

S(f) = lim
∆f→0

1

∆f
E{1

2
a2}, m2/Hz (2.102)

and it gives a complete statistical description of the surface elevation of
the ocean waves if they are assumed to be a Stationary, Ergodic, Gaussian
stochastic process.

The variance density spectrum provides information on how much variance a
given frequency fn contributes to the total variance, and, extending equation
2.101 to the continuous, it is possible to write

E{η2(t)} = η2(t) =

∫ ∞
0

S(f)df (2.103)

From equation 2.56, it is possible to link the variance density spectrum to
the total energy of a wave and write:

Etot = ρg

∫ ∞
0

S(f)df (2.104)

allowing to define the frequency spectrum S(f) as the variance density spec-
trum or as the energy density spectrum indiscriminately.
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Fig. 2.15: The transformation of the discrete variance spectrum to the continous variance density
spectrum(modified from [43]).
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The Frequency-Directional Spectrum

The frequency spectrum defined in 2.102 is a function of the lonely time and
fully described the Stationary, Ergodic, Gaussian surface elevation process
at one given location in the ocean.

In order to describe the real three-dimensional random sea waves, it is needed
to extend the Random Phase-Amplitude model to the 3−D case.

Fig. 2.16: Computer Simulation of Random Sea Waves surface displacement

According to the Linear Theory, the random sea waves surface can be inter-
preted as a superposition of sinusoidal free progressive waves generated by
wind in different times and places:

η(~x, t) =
N∑
n=1

M∑
m=1

an,m cos(Kn cos θmî+Kn sin θmĵ − ωnt+ ϕ
n,m

) (2.105)

where an,m is the amplitude, Kn is the magnitude of the wavenumber vec-

tor (i.e., | ~Kn|), θm is the angle between the x -axis and the direction of
wave propagation and î and ĵ are the fundamental versors in the x and
y direction respectively, ωn is the absolute or intrinsic frequency defined as
ωn = 2πfn + ~U · ~Kn and ϕn,m is the phase of the (n,m)th wave component.

If the harmonic wave components are independent their dispersion relation-
ship is:

ω2
n = gKn tanh(Knh) (2.106)

where g is the gravity acceleration and h is the total mean water depth de-
fined as h = ζ̄ + hb, where ζ̄(~x, t) is the mean free surface displacement and
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hb(~x) is the depth of the bottom with respect to the unperturbed surface
level.

Fig. 2.17: Wave system physical problem in the xz − plane

As in the one dimensional model, every random amplitude an,m is Rayleigh
distributed and each random phase ϕ

n,m
is uniformly distributed between

0− 2π.

Considering frequencies and directions densely distributed between their prop-
erly ocean range, following the same techniques as before, a continuous two-
dimensional variance density spectrum can be defined, so that, for all n and
m, we have

S(f, θ) = lim
∆θ→0

lim
∆f→0

1

∆θ

1

∆f
E{1

2
a2}, m2/Hz/rad (2.107)

or, in terms of absolute frequency ω

S(ω, θ) = lim
∆θ→0

lim
∆ω→0

1

∆θ

1

∆ω
E{1

2
a2}, (2.108)

where

S(ω, θ) =
1

2π
S(f, θ) (2.109)
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The two-dimensional spectrum S(f, θ) shows how the variance of η(~x, t) is
distributed over frequencies and directions just as the The one-dimensional
spectrum S(f) shows how the variance of η(t) is distributed over frequencies.
Therefore, the volume of S(f, θ) is the total variance η2 of the sea surface
elevation

E{η2(~x, t)} = η2(~x, t) =

∫ 2π

0

∫ ∞
0

S(f, θ)dθdf (2.110)

and, obviously yields,

S(f) =

∫ 2π

0

S(f, θ)dθ (2.111)

An example of the energy wave spectrum expressed in function of frequency
S(f) and in function of frequency and direction S(f, θ) is shown in fig. 2.18.

Fig. 2.18: Variance Density Spectrum S(f) and S(f, θ) (modified from [76]).
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Statistical Theory of Irregular Waves enables to calculate some statistical
integral wave parameters, like Significant Wave Height and Mean Wave Pe-
riod, from Energy Density Spectra. Defining the n-th moment of the Energy
Density Spectrum as

mn =

∫ ∞
0

fnS(f)df (2.112)

it can be proved that the Significant Wave Height, H1/3, and the Mean Wave
Period, T̄ are given by

H1/3 ' Hm0 = 4
√
m0 (2.113)

T̄ =

√
m0

m2

(2.114)

where Hm0 indicates the significant wave height estimated from the Rayleigh
energy spectrum distribution, and m0 = 〈η2〉 is the variance of the sea sur-
face elevation.

Parametric Spectra

The frequency-direction spectrum for a random gravity waves field S(f, θ) can
be directly calculated using a third generation wind-wave model, as SWAN,
or parameterized using some empirical formulas.

One of these is the Pierson-Moskowitz model spectrum, which is based
on the assumption that if the wind blow steadily for a long time over a large
area the waves would come into equilibrium with the wind. This is the con-
cept of a fully developed sea (a sea produced by winds blowing steadily over
hundreds of miles for several days) [78].

In order to obtain a spectrum of a fully developed sea, Pierson and Moskowitz
measured sea waves by accelerometers on British weather ships in the North
Atlantic.
First, they selected wave data for times when the wind had blown steadily
for long times over large areas of the North Atlantic.
Then they calculated the wave spectra for various wind speeds, founding that
the frequency spectra were of the form
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SP (ω) =
αg2

ω5
exp

(
− β

(ω0

ω

)4)
(2.115)

where ω = 2πf , f is the wave frequency in Hertz, α = 8.1× 10−3, β = 0.74
, ω0 = g/U19.5 and U19.5 is the wind speed at a height of 19.5 m above the
sea surface (i.e., the height of the anemometers on the weather ships used by
Pierson and Moskowitz, [78]).

The frequency of the peak of the Pierson-Moskowitz spectrum can be calcu-
lated by solving dS/dω = 0 for ωp, to obtain

ωp =
0.877g

U19.5

(2.116)

Fig. 2.19: Wave spectra of a fully developed sea for different wind speeds according to [78]

For practical reasons, it has become standard to relate the variables to the
main sea state parameters rather than wind speed, and to use slightly differ-
ent values so that the Pierson-Moskowitz spectrum can be expressed as

SP (ω) =
αg2

ω5
exp

[
−5

4

(ωp
ω

)4
]

(2.117)

where ωp is the frequency of the peak and α is Phillips constant.
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Hasselmann et al. [41], after analyzing data collected during the Joint North
Sea Wave Observation Project JONSWAP, found that the wave spectrum is
never fully developed: it continues to develop through non-linear wave-wave
interactions even for very long times and distances. In order to consider
this interactions, an extra and somewhat artificial factor was added to the
Pierson-Moskowitz spectrum to improve the fit to their measurements.
The JONSWAP spectrum is therefore a Pierson-Moskowitz spectrum
multiplied by an extra peak enhancement factor γr

SJ(ω) =
αg2

ω5
exp

[
−5

4

(ωp
ω

)4
]
γr (2.118)

with

r = exp

[
−(ω − ωp)2

2σ2ω2
p

]
(2.119)

Wave data collected during the JONSWAP experiment were used to deter-
mine the values for the constants in equations 2.118 and 2.119:

α = 0.076

(
U2

10

F g

)0.22

(2.120)

ωp = 22

(
g2

U10F

)1/3

(2.121)

γ = 3.3 (2.122)

σ =

{
0.07 ω ≤ ωp

0.09 ω > ωp
(2.123)

where F is the distance over which the wind blows with constant velocity
(the fetch).
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Fig. 2.20: Wave spectra of a developing sea for different fetches according to [41]
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2.3 Description of the Wind-Wave SWAN Nu-

merical Model

The aim of this chapter is to describe the main structure and features of the
SWAN wind-wave model.

The remainder of this chapter presents the main features of the SWAN model,
focusing on the governing equations, physical processes which are important
in wind wave generation and dissipation and numerical schemes adopted by
SWAN to solve the equations.

SWAN is a third generation spectral wave model developed by Booij et al.
[10] which can be applied in a wide range of coastal applications, being ef-
fective from high resolution coastal areas up to quasi oceanic scales.
In order to comprehend how such a model works a brief description of the
developments in wave forecasting over the past 50 years is given in the next
paragraph.

2.3.1 Wind-Wave Models

Wind-waves represent that portion of the ocean wave spectrum that is gene-
rated by wind forcing at the sea surface.

A typical wind-wave spectrum at the ocean surface is generally composed by
the so called ’swell’ part, waves with a period range of 4 - 20 sec generated
by remote winds, and the ’wind sea’ part, which describes waves generated
by local winds with frequencies between 4 and 1 sec.

Due to the specific random and irregular nature of wind blowing, a deter-
ministic approach to describe the sea surface displacement is generally not
possible.

During the Second World War, the interest of the scientific community in
ocean waves and operational prediction increased because of marine military
operations, and it was in the early 1960s that many experiments proved that
statistical properties of the ocean surface, like average wave height, periods
and directions, seem to vary more slowly than the magnitude of temporal
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Fig. 2.21: Typical ocean wave spectrum (from [9])

and spatial scales typical of wind waves, laying the basis for the development
of the statistical theory of ocean waves and suggesting the energy balance
equation as the governing evolution equation for the ocean wave spectrum
(see [47]).

The energy balance equation states that wave spectrum evolution is deter-
mined both by the effects of advection and refraction and by the sum of
physical processes that contribute to generate (i.e. wind input) and dissipate
(i.e wave breaking and nonlinear interactions) wave energy.

Although the energy balance equations are demonstrated and fully accepted
by all the community, researchers, forced by the low computational power
of computers in those years, in 1960 developed the so called first-generation
spectral wave models, which were based only on wave energy advection, wind
input and a primitive kind of white-capping dissipation, neglecting nonlinear
interactions considered not so important in waves spectra evolution.
These kind of forecasting models were used for many years with important
results, but since the beginning it was clear that their formulation was not
suitable to represent all the physical processes implied in wave generation.

Even if in the earlier 1970s many field surveys proved the importance of
non-linear wave-wave interactions for the rapid growing of the low-frequency
part of the spectrum and that non-linear interactions take part in control
the shape of the spectrum, computational power still represented a limiting
factor and researchers developed the so called second-generation models.
The theory behind these models was based on the fact that time scales of
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non-linear interactions are faster than those of the other processes that con-
trols spectral shape and that for relatively steady forcing conditions (fully
developed wind wave) spectra can be approximated by a standard quasi-
equilibrium parametric spectral distribution, like JONSWAP or Pierson-
Moskowitz ones.
The formulation of these kind of model was certainly more correct and accu-
rate than the first-generation ones, but they could not be applied in rapidly
changing wind forcing situations.

In the 1980s, with the rise of super computers and radar technologies, the
scientific community began to develop full spectral models based on ex-
plicit representation of all physical processes implied in sea waves, the so
called third-generation models. Nowadays third-generation models are used
in many operational fields, from engineering to sea state forecasting and the
most used are WAM, WAVEWATCH III and SWAN, respectively developed
by the WAMDI Group, NOAA/NCEP and Delft University of Technology.

2.3.2 Spectral action balance equation

Random sea waves, at a fixed point of the sea surface and at a certain time,
are completely described by the variance density spectrum S(σ, θ) (see sec-
tion 2.2.3).

The evolution in time, space and spectral space of the energy density spec-
trum S(~x, t;σ, θ) is given by the energy balance equations

DS(~x, t;σ, θ)

Dt
= Stot (2.124)

where the operator D/Dt denotes the total derivative which is defined as

D•
Dt

=
∂•
∂t

+∇h ·
[
(~cg + ~u) •

]
+
∂[~cσ•]
∂σ

+
∂[~cθ•]
∂θ

(2.125)

in which ~cg = ∂σ/∂~k is the relative group velocity, ~u is the current velocity
field, the quantities cσ = dσ/dt and cθ = dθ/dt represents propagation veloc-

ities in spectral space (σ, θ) and the operator ∇h is defined as ∇h =
(
∂
∂x
, ∂
∂y

)
.

Stot stands for the net source term resulting from the sum of source and sink
terms which parameterize all physical processes involved in the generation,
dissipation and redistribution of wave energy and which will be briefly de-
scribed in the following section.
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Usually, third generation models resolve the action balance equation instead
of the energy balance equation, where the action density N is defined as

N =
S

σ
(2.126)

The action balance equation can be written therefore as

∂N

∂t
+
∂(cxN)

∂x
+
∂(cyN)

∂y
+
∂(cσN)

∂σ
+
∂(cθN)

∂θ
=
Stot
σ

(2.127)

where, using dispersion relationship and conservation of number of wave crest
equation (see [69]),

d~x

dt
= (cx, cy) = ~cg + ~u =

1

2

(
1 +

2 ~|k|h
sinh(2 ~|k|h

)
σ~k

~|k|
2 + ~u (2.128)

dσ

dt
= cσ =

∂σ

∂h

(
∂h

∂t
+ ~u · ∇hh

)
− cg~k ·

∂~u

∂s
(2.129)

dθ

dt
= cθ = −1

k

(
∂σ

∂h

∂h

∂m
+ ~k · ∂~u

∂m

)
(2.130)

where cx , cy are the propagation velocities of wave energy in x-y space, cσ
and cθ are the propagation velocities in spectral space, h is the total mean
depth defined as h = ζ̄+hb, being ζ̄(~x, t) the mean free surface displacement
and hb(~x) the depth of the bottom with respect to the unperturbed surface
level, s is the space coordinate in the wave propagation direction of θ and m
is a coordinate perpendicular to s. The expression for cθ is presented here
without diffraction effects.

The left hand side of 2.127 is the kinematic part. In particular the sec-
ond term represents the propagation of wave energy due to advection, the
third term denotes the effect of shifting of the relative frequency σ due to
variations in mean currents and depth and the forth term stands for depth-
induced and current-induced refraction.
For coastal-small scales problems equation 2.127 is used.

For oceanic or shelf sea scales applications, equation 2.127 for N(x, y;σ, θ)
can be related to spherical coordinates longitude (λ) and latitude (ϕ), con-
sidering that θ is the wave direction taken counterclockwise from geographic
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East, as

∂N

∂t
+
∂cλN

∂λ
+

1

cosφ

∂cϕ cosϕN

∂ϕ
+
∂cσN

∂σ
+
∂cθ̃N

∂θ
=
Stot
σ

(2.131)

where the propagation velocities in x-y and σ-θ space are given by

cλ =
dλ

dt
= (cg cos θ + uλ)(R cosϕ)−1 (2.132)

cϕ =
dϕ

dt
= (cg sin θ + uϕ)R−1 (2.133)

cσ =
dσ

dh̄

(
∂h̄

∂t
+ ~u · ∇hh̄

)
− cg~k ·

∂~u

∂s
(2.134)

cθ̃ = cθ −
cx cos θ + cy sin θ

R
cos θ tanϕ (2.135)

2.3.3 Sources and sinks

In deep water, the net source term Stot is the result of the sum between
the wind-wave interaction Sin and the non-linear four-wave interactions Snl4
input terms and the whitecapping dissipation Swc term

Stot = Sin + Snl4 + Swhc (2.136)

while in shallow water it includes also the non-linear three-wave interactions
Snl3 source term and the wave decay due to bottom friction Sbot and depth-
induced wave breaking Swbr

Stot = Sin + Snl4 + Snl3 + Swhc + Sbot + Swbr (2.137)

In the following sections, for each term a brief summary of the theory behind
the parameterization and the complete mathematical formulation used in the
relocatable model is given.

Input by Wind

According to Phillips-Miles Theory of Wave Generation, the wind-wave en-
ergy transfer can be described by the sum of two processes, an initial reso-
nance mechanism, which is responsible for the early stages of wave growth
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and which provides a linear in time energy input, and a following feed-back
mechanism, which states that wind-wave interaction is responsible for an en-
ergy transfer which varies exponentially in time allowing the wave grows as
it gets larger. Hence, wave growth due to wind can be written as

Sin(σ, θ) = A+BS(σ, θ) (2.138)

where A describes the linear growth and BS the exponential growth and
both depend on wave frequency and direction, and wind speed and direction.

For wave growth parameterization SWAN uses wind friction velocity U∗ while
it is driven by the wind speed at 10m elevation U10. Friction velocity U∗ is
obtained by

U2
∗ = CDU

2
10 (2.139)

where CD is the drag coefficient expressed according to Wu as

CD =

{
1.2875× 10−3, if U10 < 7.5ms−1

(0.8 + 0.065sm−1 × U10)× 10−3, if U10 ≥ 7.5ms−1
(2.140)

The linear growth term A is expressed using the Cavaleri and Melanotte-
Rizzoli [16] formulation with a filter to eliminate wave growth at frequencies
lower than the Pierson-Moskowitz frequency:

A =
1.5× 10−3

2πg2
(U∗max[0, cos(θ − θw)])4H (2.141)

where θw is the wind direction and H is the filter defined as

H = exp

{
−
(

σ

σ∗PM

)−4}
(2.142)

using the peak frequency of the fully developed sea σ∗PM defined as

σ∗PM =
0.13g

28U∗
2π (2.143)

Three optional expressions for the exponential growth by wind B are avail-
able:

1) The first expression is due to Snyder et al. [95] rescaled in terms of
friction velocity U∗ by Komen et al. [59]:

B = max

[
0, 0.25

ρa
ρw

(
28
U∗
cph

cos(θ − θw)− 1

)]
σ (2.144)

in which cph is the phase speed and ρa and ρw are the air and water
density, respectively.
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2) The second is due to Janssen [49][51]; it is based on a quasi-linear
wind-wave theory and is given by

B = β
ρa
ρw

(
U∗
cph

)2

max[0, cos(θ − θw)]2σ (2.145)

where β is the Miles constant estimated in Janssen’s theory from the
non-dimensional critical height λ as

λ = gze
c2ph
er, r = κc/|U∗ cos(θ − θw|

β = 1.2
κ2
λ ln4 λ, for λ ≤ 1

β = 0, for λ > 1

(2.146)

where κ = 0.41 is the Von Karman constant and ze is the effective
surface roughness. Janssen in his theory assumes a logarithmic wind
profile given by

U(z) =
U∗
κ

ln

[
z + ze + z0

ze

]
(2.147)

in which U(z) is the wind speed at height z = 10m above the mean wa-
ter level, z0 is the roughness length which is expressed by the Charnock-
like relation

z0 = α̂
U2
∗
g
, α̂ = 0.01 (2.148)

and ze is the effective roughness length which is given by

ze =
z0(

1− | ~τw|
~τ

) 1
2

(2.149)

where ~τw is the wave induced stress and ~τ is the total surface stress
defined as

~τw = ρw

∫ 2π

0

∫ ∞
0

σBS(σ, θ)
~k

k
dσdθ (2.150)

~τ = ρa| ~U∗| ~U∗ (2.151)

and which both parameterize the sea state. The value of U∗ can be de-
termined for a given wind speed U10 and a given wave spectrum S(σ, θ)
from the above set of the equations and therefore in this formulation of
the exponential wave growth the computation of U∗ is an integral part
of the source term.
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3) The third formulation is a modified version of that by Yan [106], which
is based on the fact that field observations of wave growth demonstrate
that estimates of wind input rates follow the parameterizations of Sny-
der et al. [95] for weakly forced waves (u∗/c < 0.1) and that one of
Plant [79] for strongly forced waves (u∗/c > 0.1). Because of this fact
Yan proposes an analytical fit through these two wind-induced growth
rates of waves given by

B =

[
D

(
u∗
c

)2

+ E

(
u∗
c

)
+ F

]
cos(θ − α) +H (2.152)

where D,E, F and H are coefficients of the fit. In SWAN the values of
these parameters are somewhat different from those proposed by Yan
and are: 

D = 4.0× 10−2

E = 5.52× 10−3

F = 5.2× 10−5

H = −3.02× 10−4

(2.153)

White-Capping

As waves grow, their steepness increases till a critical point when they break.
This process is highly non linear and limits the wave growth with the lost of
energy. This process depends on the existing energy in the waves and on the
wave steepness.

Three optional formulations of whitecapping dissipation term are available,
two based on the pulse-based model by Hasselmann [40] and one on the
saturation-based model by Alves and Banner [2].

Pulse-Based Model

Whitecapping depends primarily on waves steepness and is formulated as

Sds,w(σ, θ) = −Γσ̃
k

k̃
S(σ, θ) (2.154)

where σ̃ and k̃ are the mean frequency and the mean wave number, respec-
tively, and Γ is a steepness dependent coefficient.
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The mean frequency σ̃ and the mean wave number k̃ are defined as a function
of the total wave energy Etot as

σ̃ =

(
E−1
tot

∫ 2π

0

∫ ∞
0

1

σ
S(σ, θ)dσdθ

)−1

(2.155)

k̃ =

(
E−1
tot

∫ 2π

0

∫ ∞
0

1√
k
S(σ, θ)dσdθ

)−2

(2.156)

Etot =

∫ 2π

0

∫ ∞
0

S(σ, θ)dσdθ (2.157)

The steepness dependent coefficient Γ, according to Günter formulation based
on Janssen [51], is given by

Γ = Cds((1− δ) + δ
k

k̃
)

(
s̃

s̃PM

)p
(2.158)

where Cds, δ and p are ’wind input formulation’ dependent coefficients, s̃ is
the overall wave steepness defined as

s̃ = k̃
√
Etot (2.159)

and s̃PM is the value of s̃ for the Pierson-Moskowitz spectrum [78]:

s̃PM =
√

3.02× 10−3 (2.160)

Since the values of Cds, δ and p depend on wind input formulation, two sets
of coefficient are used:

1) For wind input by Komen et al. [59]:

Cds = 2.36× 10−5 (2.161)

δ = 0 (2.162)

p = 4 (2.163)

2) For wind input by Janssen [51][50]:

Cds = 4.10× 10−5 (2.164)

δ = 0.5 (2.165)

p = 4 (2.166)
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Saturation-Based Model

Experimental findings seems to relate whitecapping dissipation to wave group
hydrodynamics, involving to define a dissipation term that primarily depends
on quantities that are local in the frequency spectrum.

Alves and Banner (2003) have given a formulation of this dissipation term
which depends also on mean spectral steepness and wavenumber, while in
SWAN the adaptation of Van der Westhuysen et al. [102] and Van der West-
huysen [101] is used, in which the dependencies on mean spectral steepness
and wavenumber are removed allowing to give the following formulation:

Sds,break = −C ′ds
(
B(k)

Br

)p/2
(tanh(kh))(2−p0)/4

√
gkS(σ, θ) (2.167)

in which B(k) is the azimuthal-integrated spectral saturation calculated as

B(k) =

∫ 2π

0

cgk
3S(σ, θ)dθ (2.168)

Br = 1.75 × 10−3 is a threshold saturation level, C ′ds = 5.0 × 10−5 is a pro-
portionality coefficient and p depends on a calibration parameter p0 and on
the B(k)/Br ratio, which is a measure of waves breaking or not-breaking.

To provide general background whitecapping dissipation of non-breaking
waves, Van der Westhuysen [101] formulation uses the parameter settings
of Komen et al. [59].

Bottom Friction

SWAN allows three optional bottom friction models all of which can be ex-
pressed in the following form:

Sds,b = −Cb
σ2

g2 sinh2 kd
S(σ, θ) (2.169)

in which Cb is a bottom friction coefficient that generally depends on the
bottom orbital motion represented by Urms:

U2
rms =

∫ 2π

0

∫ ∞
0

σ2

sinh2 kd
S(σ, θ)dσdθ (2.170)

The three options are:
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1) The empirical model of JONSWAP (Hasselmann et al. [41])

which uses Cb = 0.038 m2s−3 for swell conditions and, according to
Bouws and Komen [11], Cb = 0.067 m2s−3 for depth-limited wind-sea
conditions.

2) The drag law model of Collins [19]
which is based on a conventional formulation for periodic waves with
the appropriate parameters adapted to suit a random wave field. The
bottom friction coefficient is Cb = CfgUrms with Cf = 0.015 (Collins,
1972).

3) The eddy-viscosity model of Madsen et al. [67]
which is based on a bottom friction factor which is a function of the
bottom roughness height and the actual wave conditions. Their bottom
friction coefficient is given by:

Cb = fw
g√
2
Urms (2.171)

in which fw is a non-dimensional friction factor estimated by using the
formulation of Jonsson [53] and Madsen et al. [67].

Depth-Induced Wave Breaking

When the ratio of wave height over water depth exceeds a certain limit,
waves start to break, dissipating energy rapidly. In extreme shallow water
(surf zone), this process becomes dominant over all other processes.

In SWAN, the energy dissipation due to depth-induced breaking is expressed
by the bore-based model of Battjes and Janssen [6] in which the mean rate
of energy dissipation per unit horizontal area due to wave breaking Dtot is
given by

Dtot = −1

4
αBJQb

(
σ̃

2π

)
H2
max = −αBJQbσ̃

H2
max

8π
(2.172)

where αBJ is the proportionality coefficient of the rate of dissipation which
is set equal to 1 in SWAN, Qb is the fraction of breaking waves, Hmax is the
maximum wave height that can exist at the given depth and σ̃ is a mean
frequency defined as:

σ̃ = E−1
tot

∫ 2π

0

∫ ∞
0

σS(σ, θ)dσdθ (2.173)
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The fraction of depth-induced breakers (Qb) is determined in SWAN with

Qb =


0 , for β ≤ 0.2

Q0 − β2Q0−exp (Q0−1)/β2

β2−exp (Q0−1)/β2 , for 0.2 < β < 1

1 , for β ≥ 1

(2.174)

where β = Hrms/Hmax, for β ≤ 0.5, Q0 = 0 and for 0.5 < β ≤ 1,
Q0 = (2β − 1)2.

Including the spectral directions in the formulation of Eldeberky and Battjes
[30], the dissipation for a spectral component per unit time is calculated in
SWAN with:

Sds,br(σ, θ) =
Dtot

Etot
S(σ, θ) = −αBJQbσ̃

β2π
S(σ, θ) (2.175)

In SWAN, the maximum wave height Hmax is given by

Hmax = γd (2.176)

in which γ is the breaker parameter and d is the total water depth. According
to Battjes and Janssen [6], a default value of γ = 0.8 is used.

Nonlinear Wave-Wave Interactions

Quadruplets

The quadruplet wave-wave interactions are computed with the Discrete In-
teraction Approximation (DIA) as proposed by Hasselmann et al. [42]. For
the DIA of two quadruplet, frequencies configuration of wave number vectors
of each quadruplet is:

σ1 = σ2 = σ , σ3 = σ(1 + λ) = σ+ , σ4 = σ(1− λ) = σ− (2.177)

where λ is a coefficient with a default value of 0.25.
To satisfy the resonance conditions, wave number vectors of the first quadru-
plet with frequency σ3 and σ4 lie at an angle of θ3 = −11.48o and θ4 = 33.56o

to the angle of the wave number vectors with frequencies σ1 and σ2 while
in the second quadruplet, which is the mirror image of the first quadru-
plet, relative angles of wave number vectors with frequency σ3 and σ4 are
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θ3 = θ+ = 11.48o and θ4 = θ− = −33.56o.

The source term Snl4(σ, θ) for the nonlinear transfer rate is given by:

Snl4(σ, θ) = S∗nl4(σ, θ) + S∗∗nl4(σ, θ) (2.178)

where S∗nl4 refers to the first quadruplet and S∗∗nl4 to the second quadruplet.
Using the DIA, which exchanges wave variance at all three wave number vec-
tors involved in a quadruplet wave number configuration, the rate of change
of wave variance due to the quadruplet interaction at the three frequency-
direction bins can be written as (note that the expressions for S∗∗nl4 are iden-
tical to those for S∗nl4 for the mirror directions):

 δS∗nl4(σ, θ)
δS∗nl4(σ+, θ+)
δS∗nl4(σ−, θ−)

 =

 2
−1
−1

Cnl4(2π)2g−4
( σ

2π

)11

×

[
S2(σ, θ)

{
S(σ+, θ+)

(1 + λ)4
+
S(σ−, θ−)

(1− λ)4

}
−2

S(σ, θ)E(σ+, θ+)S(σ−, θ−)

(1− λ2)4

]
(2.179)

where Cnl4 = 3× 107 by default.

The wave variance density at the frequency-direction bins S(σ+, θ+) and
S(σ−, θ−) is obtained by bi-linear interpolation between the four surround-
ing frequency-direction bins. Similarly, the rate of change of variance density
is distributed between the four surrounding bins using the same weights as
used for the bi-linear interpolation.

In the DIA algorithm, Eq. (2.179) (and its mirror image) is applied to
all spectral bins in a discrete frequency-direction spectrum. An extended
spectral grid is applied to compute the interactions in the frequency range
affected by the parametric spectral tail.

Quadruplet interactions in shallow water with depth d, as suggesting by
WAMDI group [35], are obtained by multiplying the deep water nonlinear
transfer rate with a scaling factor R(kpd):

Sfinite depth
nl4 = R(kpd)Sdeep water

nl4 (2.180)
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where R is given by:

R(kpd) = 1 +
Csh1

kpd
(1− Csh2kpd)eCsh3kpd (2.181)

in which kp is the peak wave number of the frequency spectrum. WAMDI
group [35] proposes the following values of the coefficients: Csh1 = 5.5,
Csh2 = 5/6 and Csh3 = −5/4.

In the shallow water limit, kp → 0 and the nonlinear transfer rate tends
to infinity, allowing to define a lower limit of kp = 0.5 which results in a
maximum value of R(kpd) = 4.43.
To increase the model robustness in case of arbitrarily shaped spectra, the
peak wave number kp is replaced by kp = 0.75k̃.

Triads

In each spectral direction SWAN uses a slightly adapted version of the Dis-
crete Triad Approximation (DTA) of Eldeberky and Battjes [30], the Lumped
Triad Approximation (LTA) of Eldeberky [29], which can be written as

Snl3(σ, θ) = S−nl3(σ, θ) + S+
nl3(σ, θ) (2.182)

with

S+
nl3(σ, θ) = max[0, αEB2πccgJ

2| sin β|
{
S2(σ/2, θ)− 2S(σ/2, θ)S(σ, θ)

}
]

(2.183)
and

S−nl3(σ, θ) = −2S+
nl3(2σ, θ) (2.184)

where αEB is a tunable proportionality coefficient.

The biphase β is approximated with

β = −π
2

+
π

2
tanh(

0.2

Ur
) (2.185)

with Ursell number Ur:

Ur =
g

8
√

2π2

HsTm01
2

d2
(2.186)
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The triad wave-wave interactions are calculated only for 0 ≤ Ur ≤ 1. The
interaction coefficient J is taken from Madsen and Sørensen [68]:

J =
k2
σ/2(gd+ 2c2

σ/2)

kσd(gd+ 2
15
gd3k2

σ − 2
5
σ2d2)

(2.187)

Summary of physical processes in the Wind-Wave Model

In this paragraph, a summary of all the physical processes which can be used
in the SWAN Wind-Wave Model to add or withdraw wave energy to or from
a wave field is given in Table below.

Process Authors

Linear wind growth Cavaleri and Malanotte-Rizzoli [16]
Exponential wind growth Snyder et al. [95] - Komen et al [59]

Janssen [49][51][50]
Yan [106] (modified)

Whitecapping Komen et al. [59]
Janssen [51][50]
Alves and Banner [2]

Bottom friction JONSWAP [41]
Collins [19]
Madsen et al. [67]

Depth-induced breaking Battjes and Janssen [6]
Quadruplets Hasselmann et al. [42]
Triads Eldeberky [29]
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2.3.4 Numerical Schemes

Discretization of the Spectral Action Balance Equation 2.127 is carried out
using the finite differences method.

Since all variables are a function of the x, y spatial dimensions, the frequency
σ, the directions θ and the time t, in order to solve this equation it is needed
to define an horizontal x−y space, a σ−θ spectral space and a time window
and discretize all of them.

In this section, the way in which the x-y space and σ-θ space and the time
window are discretized and the way in which the boundary and initial con-
ditions are obtained in the Relocatable Wind-Wave Model are described.

Time Discretization

Let’s consider the homogeneous part of equation (2.127)

∂N

∂t
+
∂cxN

∂x
+
∂cyN

∂y
+
∂cσN

∂σ
+
∂cθN

∂θ
. (2.188)

Defining spatial mesh sizes ∆x and ∆y in x−, y−direction and dividing the
spectral space into elementary bins with a constant directional resolution ∆θ
and a constant relative frequency resolution ∆σ/σ (resulting in a logarithmic
frequency distribution), we can denote the grid counters as

1 ≤ i ≤ Nx (2.189)

1 ≤ j ≤ Ny (2.190)

1 ≤ l ≤ Nσ (2.191)

1 ≤ m ≤ Nθ (2.192)

in which Nx, Ny, Nσ and Nθ represents the number of grid points in x, y, σ
and θ domain respectively. Doing so all variables will be located at points
(i, j, l,m).

Time discretization takes place with the implicit Euler method, which re-
sults in the following approximation of (2.188):

78



Nn −Nn−1

∆t
|i,j,l,m +

[cxN ]i+1/2 − [cxN ]i−1/2

∆x
|nj,l,m +

[cyN ]j+1/2 − [cyN ]j−1/2

∆y
|ni,l,m +

[cσN ]l+1/2 − [cσN ]l−1/2

∆σ
|ni,j,m +

[cθN ]m+1/2 − [cθN ]m−1/2

∆θ
|ni,j,l , (2.193)

where n is a time-level with ∆t as time step. Note that locations in between
consecutive counters are reflected with the half-indices.

Discretization in Space

The x-y space is discretized by a curvi-linear spatial grid in a spherical co-
ordinate system, so that all geographic locations are located on a sperical
Earth and defined by geographic longitude (x) and latitude (y).

A first order upwind scheme is employed to discretize the space so that the
fluxes cxN at (i+ 1/2, j, l,m), (i− 1/2, j, l,m) and cyN at (i, j + 1/2, l,m),
(i, j − 1/2, l,m) are approximated in the following way:

cxN |i+1/2,j,l,m =

{
cxN |i,j,l,m , cx|i,j,l,m > 0
cxN |i+1,j,l,m , cx|i+1,j,l,m < 0

(2.194)

cxN |i−1/2,j,l,m =

{
cxN |i−1,j,l,m , cx|i−1,j,l,m > 0
cxN |i,j,l,m , cx|i,j,l,m < 0

(2.195)

and

cyN |i,j+1/2,l,m =

{
cyN |i,j,l,m , cy|i,j,l,m > 0
cyN |i,j+1,l,m , cy|i,j+1,l,m < 0

. (2.196)

cyN |i,j−1/2,l,m =

{
cyN |i,j−1,l,m , cy|i,j−1,l,m > 0
cyN |i,j,l,m , cy|i,j,l,m < 0

. (2.197)

Note that the combination of the time and space discretizations in (2.193),
(2.194, 2.195) and (2.196, 2.197) results in

Nn −Nn−1

∆t
|i,j,l,m +

[cxN ]i − [cxN ]i−1

∆x
|nj,l,m +

[cyN ]j − [cyN ]j−1

∆y
|ni,l,m+
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and it is also known as the first order, backward space, backward time
(BSBT) scheme.

Discretization in Spectral Space

Frequency σ-space is defined by the user specifying the lowest frequency and
the highest frequency of the domain: the number of frequencies will be com-
puted by SWAN such that ∆f = 0.1f . In directional θ-space the directional
range is the full 360◦.

To discretize the spectral space a hybrid central/upwind scheme is employed
so that the fluxes cσN at (i, j, l + 1/2,m) and cθN at (i, , l,m + 1/2) are
approximated in the following way:

cσN |i,j,l+1/2,m =


(1− 0.5µ)cσN |i,j,l,m + 0.5µcσN |i,j,l+1,m , cσ|i,j,l,m > 0

(1− 0.5µ)cσN |i,j,l+1,m + 0.5µcσN |i,j,l,m , cσ|i,j,l+1,m < 0
(2.198)

and

cθN |i,j,l,m+1/2 =


(1− 0.5ν)cθN |i,j,l,m + 0.5νcθN |i,j,l,m+1 , cθ|i,j,l,m > 0

(1− 0.5ν)cθN |i,j,l,m+1 + 0.5νcθN |i,j,l,m , cθ|i,j,l,m+1 < 0
,

(2.199)
where the parameters µ and ν have to be chosen. The fluxes at (i, j, l−1/2,m)
and (i, j, l,m − 1/2) are obtained from (2.198) and (2.199), respectively, by
decreasing the indices by 1 in appropriate manner.

For all values µ ∈ [0, 1] and ν ∈ [0, 1], a blended form arises between first
order upwind differencing (µ = ν = 0) and central differencing (µ = ν = 1).

Users can chose the values for ν and µ setting the numerical data parameter
[cdd] and [css] respectively (see ’Input Parameters of the model’ ?? paragraph
at ’Numeric’ level):

a value of [cdd], [css]=0 corresponds to a central scheme and has the largest
accuracy (diffusion ≈ 0) but the computation may more easily generate spu-
rious fluctuations. A value of [cdd], [css]=1. corresponds to a first order
upwind scheme and it is more diffusive and therefore preferable if (strong)
gradients in depth or current are present.
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Initial and Boundary Conditions

The initial spectra are computed (also for grid points located at boundaries)
from the local wind velocities, using the deep-water growth curve of Kahma
and Calkoen [54], cut off at values of significant wave height and peak fre-
quency from Pierson and Moskowitz [78]. The average (over the model area)
spatial step size is used as fetch with local wind. The shape of the spectrum
is default JONSWAP with a cos2-directional distribution.
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Chapter 3

Wave Model Experiments and
Results

Several numerical experiments are presented in this chapter, that is organized
as follows:

• In Section 3.1, experiments have been done to check the model experi-
ments solution sensitivity

- to the input Forcing Fields;

- to different Numerical model Parameters ;

- and, finally, to different Physical processes parameterizations.

The experiment results have been validated by using the Significant
Wave Height and the Peak Period measured by the ISPRA directional
buoys located at Venezia, Ancona and Monopoli.

• In Section 3.2 SURF Relocatable Model is introduced and the coupling
experiments with SWAN Model are presented.

• Section 3.3 describes the numerical tests performed for the calculation
of the Stokes’ Drift fields that are then used with the MEDSLIK-II
oil-spill model to check the resulting particle trajectories.
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3.1 Sensitivity Experiments

For all the sensitivity experiments, the Adriatic Sea has been chosen to be
the case study area. The Adriatic is about 750 km long and 200 km wide,
with a limited opening at its southern connection to the Mediterranean Sea.
The basin is shallow in its northern part while South of Ancona the depth
increases down to 1200 m. The sea is surrounded by mountains, both on the
Italian and on the Balkan side, where we find the Apennines and the Dinaric
Alps respectively [8].

3.1.1 Model Setup

The Spatial domain has been discretized using a rectangular regular grid (see
figure 3.1) with the vertexes located at

A = 12.20◦E, 39.00◦N

B = 20.78◦E, 39.00◦N

C = 20.78◦E, 45.82◦N

D = 12.20◦E, 45.82◦N

Fig. 3.1: Geometry of the entire computational domain

The Spatial Computational Grid uses a Spherical Curvilinear coordinate sys-
tems with constant horizontal resolution equal to 0.03◦ for the longitude and
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0.022◦ for the latitude, resulting in a 287× 311 grid points.

The Frequency domain is discretized with 35 bins starting from a minimum
frequency of 0.04 s−1 by to a 1.5 s−1 maximum frequency. The Directional
grid domain cover the full 360◦ with a resolution of 10◦.

A summary of all the features of the computational domain (both Spatial
than Spectral) of the SWAN model implementation in the Adriatic Sea is
given in table 3.1.

Table 3.1: Features of the Spatial and Spectral computational domains used in the sensitivity SWAN
Model tests

Grid Type Min. Value Max. Value Number of
Grid Points

Spatial Grid 12.20◦E, 39.00◦N 12.20◦E, 45.82◦N 287× 311
Frequency Grid 0.04 s−1 1.5 s−1 35
Directional Grid 0◦ 360◦ 36

The bathymetry (see figure 3.2) is extracted from the Adriatic Forecasting
Systems (hereafter called AFS). It is a high-resolution model implemented
in the Adriatic sea [74]. The AFS horizontal grid resolution is equal to the
SWAN Spatial Grid and the vertical grid is composed of 31 vertical sigma
levels. AFS produces simulations and forecasts provided as daily and hourly
mean outputs [36].
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Fig. 3.2: Bathymetry of the entire computational domain with a horizontal grid resolution of 1/45◦

(approximately 2.2 km)
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All the computations have been performed in Non-Stationary mode, which
means that the equation 2.127 is solved by the numerical model. The time
integration technique chosen is the implicit Euler method described in Sec-
tion 2.3.4.

The simulated period is between 14-05-2013 at 00.00 and 22-05-2013 at 00.00.

The coordinates and the locations of the ISPRA directional buoys used for
the results validation are shown in figure 3.3. The directional buoys data
have been made available as part of the exchange activities set forth by the
scientific collaboration ISPRA-INGV Agreement.

Location Longitude Latitude

Venezia 12.516700◦E 45.333500◦N
Ancona 13.719400◦E 43.825000◦N
Monopoli 17.377800◦E 40.975000◦N

Fig. 3.3: Spatial location of the three ISPRA buoys used to validate sensitivity numerical experiments
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Wind input data used to force the wind-wave model are:

1) forecast and analysis data with a spatial resolution of 1/4◦ and temporal
resolution of 6 hours produced by the European Centre for Medium-
range Weather Forecasts (hereafter called ECMWF) and provided by
INGV.

2) analysis data from the COSMO-ME model implemented by the Italian
National Center of Meteorology and Climatology (CNMCA) over the
European area with a 7 km grid resolution and a 3 hours temporal reso-
lution and made available as part of the exchange activities sanctioned
by the agreement SGV-INGV for COSMO.

The word ‘forecast ’ means that the atmospheric fields are produced by inte-
grating the atmospheric model equations in the future while the word ‘analy-
sis ’ indicates atmospheric fields produced by combining short-range forecast
data with observations to produce the best fit to both.

Currents input data from AFS are provided with a temporal resolution of
1 hour on an Arakawa C-grid [71]. In this kind of grid, scalar quantities (T ,
S, p, ρ) are defined at the center of each tridimensional cell, while vector ones
(u, v, w) are defined in the centre of each face of the cells (see figure 3.4).

Fig. 3.4: Arakawa C-Grid definition

For simplicity, hereafter the three-dimensional grid identified by the points
in which AFS scalar quantities are defined will be called AFS Scalar Grid or
T -grid. Similarly, the two three-dimensional grids identified by points where
AFS zonal and meridional quantities are defined (i.e., u and v) will be called,
respectively, AFS Zonal and Meridional grid or U -grid and V -grid.

The SWAN model requires current fields defined at the AFS scalar grid
points. Thus an interpolation is required to bring (U, V ) current velocities
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components in the T−spatial grid.

The Interpolation Techniques which can be used are the Linear and the
Bilinear methods, considering that, in this case, the last one reduces to the
first one.

The wind velocity grid is very different in resolution from the SWAN one.
Consider, for example, figure 3.5. It represents an ECMWF analysis zonal
wind velocity field, nine grid points of the SWAN Spatial Computational Grid
(in blue) and nine points of the ECMWF grid (in black).

Fig. 3.5: ECMWF zonal wind velocity field, nine grid points of the SWAN grid (in blue) and nine
points of the ECMWF grid (in black).

In order to find a zonal wind velocity value in the vertex (i, j) of the SWAN
grid, it is needed to interpolate on it the data defined in vertexes (m,n),
(m− 1, n), (m,n− 1) and (m− 1, n− 1) of the ECMWF grid. In this case
only the Bilinear technique can be used.
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Therefore, to interpolate the original wind and current forcing fields on
SWAN spatial grid a Bilinear method has been chosen.

Current fields are defined only for sea locations while wind fields are defined
both on the land and on the sea.

On the other hand, a regular computational domain generally comprehends
sea and land locations, the so called wet and dry grid points, respectively.
Therefore, when current fields are interpolated, it can happen that one or
more grid points of the original field are located on the land. On these points
there are no numerical current velocities values associated, and interpolation
becomes asymmetric that changes the properties of the method. We need to
consider that winds exists also on the land but they can not be used to inter-
polate data on the sea, due to the fact that these two environments present
a different roughness and orography.

Therefore, all input fields have been processed with the SeaOverLand proce-
dure that extrapolates average sea values on land points (figure 3.6) before
the bilinear interpolation is used.
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(a) (b)

(c) (d)

Fig. 3.6: Original ECMWF analysis wind and AFS 1 hour current fields (respectively (a) and (b)) and
the same fields after SeaOverLand algorithm application (respectively (c) for the wind and (d) for the
current).
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After the SeaOverLand application, the original wind and current forcing
fields have been bi-linearly interpolated using two algorithms: the first is
that one used by the SWAN model, the second is that one used by the
NEMO model [66].

The differences between forcing fields interpolated with both algorithms are
shown in figures 3.7, 3.8 and 3.9.

(a) (b)

Fig. 3.7: Original ECMWF analysis wind and AFS 1 hour current fields (respectively (a) and (b)).
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(a) (b)

(c) (d)

Fig. 3.8: ECMWF analysis wind and AFS 1 hour current fields interpolated using SWAN (respectively
(a) and (b)) and using NEMO tool (respectively (c) for wind and (d) for current).
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(a) (b)

Fig. 3.9: Difference between ECMWF analysis wind and AFS 1 hour current fields (respectively (a)
and (b)) interpolated by NEMO tool and by SWAN model.

The results demonstrate that for the wind input fields the two kind of bi-
linear interpolation algorithms are equivalent, while for current input fields
there are remarkable differences.

This is probably due to the fact that the SWAN model applies the land mask
on the current fields before that the bi-linear interpolation is performed, van-
ishing the SeaOverland procedure.

Therefore, since the aim of this group of experiments was to test the original
SWAN model code, it has been chosen to use the NEMO bi-linear interpo-
lation algorithm to interpolate all the different forcing input fields on the
SWAN spatial computational grid.

The linear interpolation in time is performed by SWAN.

The default settings parameters used in sensitivity experiments is summa-
rized in table 3.2.

94



Table 3.2: Default settings parameters used in numerical parameters sensitivity experiments.

Parameter Default configuration

General Parameters
Gravitational 9.81ms−2

Acceleration
Water 1025 kgm−3

Density
Wind Drag no cutting off
Coefficient the drag coefficient

Spectral Output based on variance
spectrum

Convection for nautical
wind and wave

direction adopted
Shape of spectral automatic
tail above [fhigh]
Maximum Froude 0.8

number
Computational Parameters

Time mode Non-Stationary
Spatial mode Two-Dimensional

Start time 14.05.2013 at 00.00
of the simulation

End Time 22.05.2013 at 00.00
of the simulation

Geographical-Space Grid
Coordinates spherical

Computational grid curvi-linear grid
Number of meshes 287

in lon-direction
Number of meshes 311

in lat-direction
Spectral-Space Grid

Spectral direction cover the full
grid circle

Number of meshes in 36
θ space

Lowest discrete 0.04 Hz
freq. used in
calculation

Highest discrete 1.5 Hz
freq. used in
calculation

Number of meshes in 35
frequency space

Forcing Input Data
Wind forcing ECMWF forecast

data
Current forcing AFS 1 hour

data
Numerics

Numerical BSBT
scheme

Max number of iterations 100
per time step

Table 3.2: Default settings parameters used in numerical sensitivity experiments.

95



Parameter Default configuration

Initial and Boundary Conditions
First time Initial wave-filed computed
step of the from local wind velocities

computation
Each next Initial wave-field read

restart from hotstart file
Physical Processes: Source and Sinks

Linear wave growth Cavaleri-Malanotte formulation
by wind input with [AGROW ] = 0.015, where

[AGROW ] is the prop. coefficient
for linear wave growth term

Exponential wave growth Komen formulation with
by wind input [cds2] = 2.36e− 5, [stpm] = 3.02e− 3

where [cds2] is the coeff.for the
the rate of whitecapping dissipation
and [stpm] is the value of the wave
steepness for a Pierson-Moskowitz

spectrum
Quadruplet fully explicit computation

of the non linear transfer
with DIA algorithm ([iquad] = 2)

Friction JONSWAP bottom friction
dissipation

Wave Breaking constant breaker parameter
with [α] = 1 and [γ] = 0.73,
where [α] is prop. coefficient

of the rate of dissipation and [γ]
is the ratio of maximum individual

wave height over depth

Table 3.2: Default settings parameters used in numerical sensitivity experiments.
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3.1.2 Sensitivity Experiments to Numerical Parame-
ters

The aim of these experiments is to investigate the SWAN model sensitivity
to some of the numerical parameters listed in table 3.2. In particular, we
examined the computational time-step and the c-theta parameter.

The c-theta parameter is a numerical restriction on the time step which
should be imposed in large-scale SWAN application in order to prevent inac-
curate wave refraction due to large spatial bottom gradient. Specifically, the
Courant number based on ∆T and ∆θ (i.e., time-step and directional bin,
respectively) should not exceed unity, that is,

Cr ≡ |cθ|∆T
∆θ

≤ αθ ≤ 1 (3.1)

where αθ is a user-defined maximum Courant number.

It has to be remarked that equation 3.1 is not required for the stability
of the integration method, but contributes to improve its physical accuracy.

In order to investigate the SWAN model sensitivity to these parameters,
four different numerical tests have been done. First, three experiments has
been performed changing only the time-step and not considering the c-theta
parameter. Then, a test with the numerical restriction for refraction c-theta
and the with the time-step that showed the best results in the previous ex-
periments.

The other model parameters have been set on their Default configurations,
which are summarized in table 3.2.

The configurations of the four numerical experiments performed are described
in table 3.3.

Results are shown in figures 3.10 and 3.11: in picture 3.10, the time series of
the Significant Height computed by the SWAN model at each ISPRA buoy
location for all the four experiments is compared with the time series of the
Significant Height sampled by each ISPRA buoy. In figure 3.11, the Peak
Period measured at each ISPRA buoy is compared to the modeled one.
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Table 3.3: Description of the four numerical experiments performed to test SWAN sensitivity to
time-step and c-theta numerical parameters.

Experiment Number Time-step c-theta

Exp. 1.1 1800 s NO
Exp. 1.2 600 s NO
Exp. 1.3 60 s NO
Exp. 1.4 1800 s YES

[ctheta] = 0.5

In order to objectively quantify the accuracy of the numerical model simula-
tions, the following statistical parameters have been calculated for each time
series:

• The Root Mean Square Error xrmse, which describes the magnitude of
a varying quantity and is defined as

xrmse =

√∑N
i=1(xSWAN

i − xBUOYi )2

N
(3.2)

where xSWAN
i and xBUOYi are the values of the parameter x respectively

calculated by the Wind-Wave model and sampled by the buoy at the
ith index time of the time series. It is a frequently used measure of the
differences between values predicted by a model or an estimator and
the values actually observed.

• The Bias, which shows the tendency of a data set (a model output in
this case) to a specific behavior. It is defined as

Bias =

∑N
i=1(xSWAN

i − xBUOYi )2

N
(3.3)

A large bias value means that the model has a tendency to consistently
forecast on a specific way (under- or overforecast), whereas a small bias
indicates of a more random or dispersive behavior.

• The Correlation Coefficient which is defined as

R =
COV (SWAN,BUOY )√

V AR(SWAN)V AR(BUOY )
(3.4)

where COV (SWAN,BUOY ) is the covariance matrix of the model
and the samples and V AR(SWAN) and V AR(BUOY ) are the vari-
ances of, respectively, the model and the buoy data. R is between zero
and one: data with high correlation show values of R more close to one.
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In tables 3.4 and 3.5 the values of these statistical indexes are shown for each
buoy location, both for Peak Periods and Significant Heights.

Table 3.4: Statistical indexes calculated for the Significant Height.

Statistical Index Exp 1.1 Exp 1.2 Exp 1.3 Exp 1.4

VENEZIA
Mean BUOY 0.82 0.82 0.82 0.82
Mean SWAN 0.72 0.71 0.70 0.72

Bias 0.10 0.11 0.12 0.10
rmse 0.24 0.25 0.26 0.24

R 0.96 0.96 0.96 0.96
ANCONA

Mean BUOY 0.96 0.96 0.96 0.96
Mean SWAN 0.90 0.88 0.89 0.90

Bias 0.06 0.08 0.08 0.06
rmse 0.25 0.25 0.26 0.25

R 0.96 0.96 0.96 0.96
MONOPOLI

Mean BUOY 0.72 0.72 0.72 0.72
Mean SWAN 0.64 0.63 0.63 0.64

Bias 0.08 0.08 0.09 0.08
rmse 0.26 0.26 0.27 0.26

R 0.71 0.70 0.69 0.71

Table 3.5: Statistical indexes calculated for the Peak Period.

Statistical Index Exp 1.1 Exp 1.2 Exp 1.3 Exp 1.4

VENEZIA
Mean BUOY 4.74 4.74 4.74 4.74
Mean SWAN 4.50 4.46 4.45 4.50

Bias 0.24 0.28 0.29 0.24
rmse 2.72 2.72 2.72 2.72

R 0.46 0.47 0.47 0.46
ANCONA

Mean BUOY 4.98 4.98 4.98 4.98
Mean SWAN 4.80 4.77 4.76 4.80

Bias 0.17 0.21 0.22 0.18
rmse 1.16 1.16 1.16 1.16

R 0.82 0.82 0.82 0.82
MONOPOLI

Mean BUOY 5.21 5.21 5.21 5.21
Mean SWAN 4.40 4.39 4.35 4.40

Bias 0.80 0.82 0.86 0.80
rmse 2.12 2.14 2.16 2.13

R 0.36 0.35 0.35 0.36
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Data listed in table 3.4 and 3.5 show that the SWAN numerical model seems
to be quite insensitive to the computational time-step. This can be justi-
fied by the many parametrizations that are used to represent the physical
processes involved in waves generation in the SWAN model code. Not using
some kind of time evolving equations, reduces the sensitivity of the model
results to time step variations.

In addition, it has to be noted that the SWAN insensitivity to time-step
changes can be also due to the coarse spatial grid used, which can not be
able to represent small scale gradient of quantities involved in waves genera-
tion reducing sensibly their changes in time.

Since the simulations results are insensitive to the time steps, for the last
experiments (1.4) we decided to use the time step that requires less compu-
tational time (1800 seconds).

The test 1.4 shows also that the c-theta parameter does not increase the
accuracy of the simulation. Thus, the computational grid used is resolved
enough to properly represent the wave refraction, but too coarse to properly
represent processes involved in wave growth.
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3.1.3 Sensitivity Experiments to the Input Fields (Wind
and Currents)

In this section, the experiments done to test the SWAN sensitivity to differ-
ent input wind fields with and without coupling with the AFS current fields
are described.

Three atmospheric model outputs have been used: the ECMWF forecast
and analysis and the COSMO-ME analysis. For the currents the AFS hourly
current fields have been used.

In table 3.6 the configuration of the model parameters used in this group
of experiments is described while table 3.7 overviews the sensitivity experi-
ments to the input fields.

Table 3.6: Settings parameters used in forcing fields sensitivity experiments.

Parameter Configuration

General Parameters
see 3.2

Computational Mode
see 3.2

Time - step 1800 s
c-theta [c− theta] = 0.5

Geographical-Space Grid
see 3.2

Spectral-Space Grid
see 3.2

Numerics
see 3.2

Initial and Boundary Conditions
see 3.2

Physical Processes: Source and Sinks
see 3.2
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Table 3.7: Description of the six numerical experiments performed to test SWAN sensitivity to wind
and current forcing fields.

Experiment WIND CURRENT
Number field field

Exp. 2.1 ECMWF NO
fcst

Exp. 2.2 ECMWF NO
analysis

Exp. 2.3 COSMO-ME NO
analysis

Exp. 2.4 ECMWF AFS
fcst 1 hr

Exp. 2.5 ECMWF AFS
analysis 1 hr

Exp. 2.6 COSMO-ME AFS
analysis 1 hr

Results are shown in figures 3.12 and 3.13. In picture 3.12, the time series of
the Significant Wave Height computed in the six experiments at each ISPRA
buoy location is shown, while in figure 3.13 the same is done for the Wave
Peak Period.
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In tables 3.8 and 3.9 the statistical indexes calculated from each experiment
are shown for each buoy location, both for Wave Peak Periods and Significant
Wave Heights.

Table 3.8: Statistical indexes calculated for the Significant Wave Height for the 8 days simulated.

Statistical Index Exp 2.1 Exp 2.2 Exp 2.3 Exp 2.4 Exp 2.5 Exp 2.6

VENEZIA
Mean BUOY 0.82 0.82 0.82 0.82 0.82 0.82
Mean SWAN 0.78 0.73 0.80 0.72 0.71 0.78

Bias 0.04 0.09 0.03 0.10 0.11 0.04
rmse 0.24 0.24 0.23 0.24 0.25 0.24

R 0.94 0.96 0.95 0.96 0.96 0.95
ANCONA

Mean BUOY 0.96 0.96 0.96 0.96 0.96 0.96
Mean SWAN 0.90 0.91 1.00 0.90 0.90 1.00

Bias 0.06 0.05 -0.05 0.06 0.06 -0.04
rmse 0.23 0.23 0.26 0.25 0.25 0.24

R 0.97 0.97 0.96 0.96 0.96 0.96
MONOPOLI

Mean BUOY 0.72 0.72 0.72 0.72 0.72 0.72
Mean SWAN 0.60 0.60 0.68 0.64 0.63 0.73

Bias 0.13 0.13 0.03 0.08 0.09 -0.00
rmse 0.27 0.27 0.24 0.26 0.26 0.26

R 0.72 0.71 0.77 0.71 0.70 0.74

Table 3.9: Statistical indexes calculated for the Wave Peak Period for the 8 days simulated.

Statistical Index Exp 2.1 Exp 2.2 Exp 2.3 Exp 2.4 Exp 2.5 Exp 2.6

VENEZIA
Mean BUOY 4.74 4.74 4.74 4.74 4.74 4.74
Mean SWAN 4.86 4.80 4.87 4.50 4.46 4.54

Bias -0.13 -0.06 -0.13 0.24 0.28 0.20
rmse 2.78 2.77 2.75 2.72 2.69 2.69

R 0.44 0.44 0.46 0.46 0.48 0.48
ANCONA

Mean BUOY 4.98 4.98 4.98 4.98 4.98 4.98
Mean SWAN 4.95 4.97 4.77 4.80 4.82 4.64

Bias 0.03 0.01 0.21 0.18 0.16 0.34
rmse 1.19 1.20 1.11 1.16 1.16 1.13

R 0.81 0.81 0.87 0.82 0.82 0.86
MONOPOLI

Mean BUOY 5.21 5.21 5.21 5.21 5.21 5.21
Mean SWAN 4.18 4.17 4.60 4.40 4.39 4.66

Bias 1.02 1.04 0.61 0.80 0.82 0.54
rmse 2.27 2.28 2.18 2.13 2.13 2.17

R 0.32 0.31 0.28 0.36 0.37 0.27
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The rmse and the bias listed in tables 3.8 and 3.9 and the time series plots
3.12 and 3.13 demonstrate that simulations performed using COSMO-ME
wind fields forcing show the lowest errors. This is to be expected due to the
higher temporal and spatial resolution of COSMO-ME fieds.

Concerning to the ECMWF fields, the differences between simulations done
using analysis or forecast fields are not so large because we used only the first
day of forecast for each day.

Looking at Venezia and Ancona buoys results in figures 3.12 and 3.13 and
tables 3.8 and 3.9, using current fields input forcing fields, the accuracy of
the simulations seems to decrease, while for the Monopoli case it increases.

Therefore, the effect of the currents on the waves at Monopoli is larger than
at the North Adriatic probably because they are in general more accurate.
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3.1.4 Sensitivity Experiments to Wave Physical Pro-
cesses

The real strength of third generation wave models is the possibility to choose
which physical process involved in waves generation could be activated to
simulate the wave conditions.

In order to calibrate the model, it is needed to test the different physical
processes configurations to find the best physical setting capable to properly
simulate the environmental dynamics characterizing a particular place.

In this section, the experiments performed to achieve this target are de-
scribed.

The set of experiments is divided into three groups. In the first, all the dif-
ferent SWAN parametrizations able to simulate the Exponential wave growth
by wind and the White-Capping (see paragraphs 2.3.3 and 2.3.3) processes
are tested. In the second group SWAN parametrizations for Bottom Friction
(see paragraph 2.3.3 for a detailed description of the parametrizations) are
investigated. In the third one the Non-Linear Triads (see 2.3.3) are tested.

Exponential Wave Growth and White-Capping

In table 3.10 the parameters of the model configuration used in the first group
of experiments are shown:

Table 3.10: Settings parameters used in Exponential Wind Growth and White-Capping sensitivity
experiments.

Parameter Default configuration

General Parameters
see 3.2

Computational Mode
see 3.6

Geographical-Space Grid
see 3.2

Spectral-Space Grid
see 3.2

Numerics
see 3.2

Initial and Boundary Conditions
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Parameter Default configuration

see 3.2
Forcing fields

Wind ECMWF analysis
Current AFS 1 hr

In table 3.11 the list of experiments to test SWAN sensitivity to Exponential
wave growth by wind and White-Capping physical processes is summarized.

Table 3.11: Description of the five numerical experiments performed to test SWAN sensitivity to
Exponential wave growth by wind and White-Capping physical processes.

Experiment EXPONENTIAL WHITE-CAPPING
Number WAVE GROWTH

Exp. 3.1 KOMEN KOMEN
Exp. 3.2 JANSSEN JANSSEN
Exp. 3.3 WESTH WESTH
Exp. 3.4 JANSSEN KOMEN
Exp. 3.5 WESTH KOMEN

In figures 3.14 and 3.15 the results are shown for the comparison between
the model Significant Wave Height and Wave Peak Period and the ISPRA
time series.
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In tables 3.12 and 3.13 the statistical indexes obtained from each model
simulation are shown for each buoy location, both for Wave Peak Periods
and Significant Wave Heights.

Table 3.12: Statistical indexes calculated for the Significant Height.

Statistical Index Exp 3.1 Exp 3.2 Exp 3.3 Exp 3.4 Exp 3.5

VENEZIA
Mean BUOY 0.82 0.82 0.82 0.82 0.82
Mean SWAN 0.71 0.94 0.62 1.97 0.71

Bias 0.11 -0.12 0.20 -1.15 0.11
rmse 0.25 0.27 0.30 1.26 0.25

R 0.96 0.95 0.96 0.94 0.96
ANCONA

Mean BUOY 0.96 0.96 0.96 0.96 0.96
Mean SWAN 0.90 1.33 0.79 2.61 0.89

Bias 0.06 -0.37 0.17 -1.65 0.07
rmse 0.23 0.47 0.31 1.87 0.25

R 0.96 0.96 0.96 0.95 0.96
MONOPOLI

Mean BUOY 0.72 0.72 0.72 0.72 0.72
Mean SWAN 0.63 0.92 0.56 2.05 0.64

Bias 0.08 -0.20 0.16 -1.33 0.07
rmse 0.26 0.39 0.28 1.54 0.26

R 0.70 0.65 0.74 0.58 0.71

Table 3.13: Statistical indexes calculated for the Peak Period.

Statistical Index Exp 3.1 Exp 3.2 Exp 3.3 Exp 3.4 Exp 3.5

VENEZIA
Mean BUOY 4.74 4.74 4.74 4.74 4.74
Mean SWAN 4.46 3.66 4.04 6.46 4.38

Bias 0.28 1.07 0.70 -1.72 0.36
rmse 2.69 2.85 2.72 3.26 2.67

R 0.48 0.50 0.50 0.42 0.50
ANCONA

Mean BUOY 4.98 4.98 4.98 4.98 4.98
Mean SWAN 4.82 4.49 4.45 6.78 4.78

Bias 0.16 0.49 0.53 -1.80 0.20
rmse 1.16 1.17 1.19 2.36 1.16

R 0.82 0.83 0.84 0.70 0.82
MONOPOLI

Mean BUOY 5.21 5.21 5.21 5.21 5.21
Mean SWAN 4.39 3.86 3.95 6.10 4.34

Bias 0.82 1.34 1.25 -0.90 0.87
rmse 2.13 2.45 2.33 2.14 2.45

R 0.37 0.25 0.37 0.18 0.37
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It is evident that the best combination for the Exponential Wave Growth
and White-Capping energy dissipation parameterizations is the one defined
‘KOMEN’ for both as defined by Komen et al. [59] (see 2.3.3 and 2.3.3 for a
detailed description). The second best combination is the ‘WESTH/KOMEN’,
where the Exponential Wave Growth by Yan [106] and White-Capping by
Komen et al. [59] are used. Hence, for all the next experiments the ‘KOMEN’
combination for Exponential Wave Growth and White-Capping dissipation
is used.
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Bottom Friction

In table 3.14 the model configuration used in the second group of experiments
is shown:

Table 3.14: Default settings parameters used in Bottom Friction sensitivity experiments.

Parameter Default configuration

General Parameters
see 3.2

Computational Mode
see 3.6

Geographical-Space Grid
see 3.2

Spectral-Space Grid
see 3.2

Numeric
see 3.2

Initial and Boundary Conditions
see 3.2

Forcing fields
see 3.10

Phisical Processes: Source and Sink
Exponential KOMEN
wave growth

White-Capping KOMEN

In table 3.15 the list of experiments configurations to test SWAN sensitivity
to Bottom Friction physical process is summarized.

Table 3.15: Description of the three numerical experiments performed to test SWAN sensitivity to
Bottom Friction physical process.

Experiment BOTTOM
Number FRICTION

4.1 JONSWAP
4.2 COLLINS
4.3 MADSEN

In figures 3.16 and 3.17 the results are shown for the time series of the
Significant Wave Height and the Wave Peak Period computed for all the six
experiments at each ISPRA buoy location.
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In tables 3.16 and 3.13 the statistical indexes obtained from the model sim-
ulations are shown for each buoy location, both for Wave Peak Periods and
Significant Wave Heights.

Table 3.16: Statistical indexes calculated for the Significant Height.

Statistical Index Exp 4.1 Exp 4.2 Exp 4.3

VENEZIA
Mean BUOY 0.82 0.82 0.82
Mean SWAN 0.71 0.74 0.70

Bias 0.11 0.08 0.13
rms 0.25 0.22 0.28
R 0.96 0.96 0.96
ANCONA

Mean BUOY 0.96 0.96 0.96
Mean SWAN 0.90 0.90 0.90

Bias 0.06 0.06 0.06
rms 0.25 0.25 0.25
R 0.96 0.96 0.96
MONOPOLI

Mean BUOY 0.72 0.72 0.72
Mean SWAN 0.63 0.63 0.63

Bias 0.09 0.08 0.09
rms 0.26 0.26 0.26
R 0.70 0.70 0.70

Table 3.17: Statistical indexes calculated for the Peak Period.

Statistical Index Exp 4.1 Exp 4.2 Exp 4.3

VENEZIA
Mean BUOY 4.74 4.74 4.74
Mean SWAN 4.46 4.56 4.47

Bias 0.28 0.18 0.27
rms 2.69 2.70 2.70
R 0.48 0.48 0.48
ANCONA

Mean BUOY 4.98 4.98 4.98
Mean SWAN 4.82 4.82 4.82

Bias 0.16 0.16 0.16
rms 1.16 1.16 1.16
R 0.82 0.82 0.82
MONOPOLI

Mean BUOY 5.21 5.21 5.21
Mean SWAN 4.39 4.39 4.39

Bias 0.82 0.82 0.82
rms 2.13 2.12 2.13
R 0.37 0.37 0.37
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The best parameterization of the Bottom Friction physical process is the
one from Collins [19] (see 2.3.3 for a description of the parameterization
method) and, therefore, in the next sensitivity experiments, this configuration
is adopted.

Triad Interactions

In table 3.18 the default model configuration used in the third group of
experiments is shown:

Table 3.18: Default settings parameters used in Non-Linear Triads sensitivity experiments.

Parameter Default configuration

General Parameters
see 3.2

Computational Mode
see 3.6

Geographical-Space Grid
see 3.2

Spectral-Space Grid
see 3.2

Numeric
see 3.2

Initial and Boundary Conditions
see 3.2

Forcing fields
see 3.10

Phisical Processes: Source and Sink
Exponential KOMEN
wave growth

White-Capping KOMEN
Bottom COLLINS
friction

In table 3.19 the list of experiments test SWAN sensitivity to Non-Linear
Triads physical process is summarized.

Table 3.19: Description of the two numerical experiments performed to test SWAN sensitivity to
Non-Linear Triads physical process.

Experiment TRIADS
Number

Exp. 5.1 NO
Exp. 5.2 YES
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In figures 3.18 and 3.19 the results are shown for the comparison between
the model Significant Wave Height and Wave Peak Period and the ISPRA
time series.
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In tables 3.20 and 3.21 the statistical indexes obtained from the model simula-
tions are shown for each buoy location, both for Peak Periods and Significant
Heights.

Table 3.20: Statistical indexes calculated for the Significant Height.

Statistical Index Exp 5.1 Exp 5.2

VENEZIA
Mean BUOY 0.82 0.82
Mean SWAN 0.74 0.74

Bias 0.08 0.08
rms 0.22 0.22
R 0.96 0.96
ANCONA

Mean BUOY 0.96 0.96
Mean SWAN 0.90 0.90

Bias 0.06 0.07
rms 0.25 0.25
R 0.96 0.96
MONOPOLI

Mean BUOY 0.72 0.72
Mean SWAN 0.63 0.63

Bias 0.08 0.08
rms 0.26 0.26
R 0.70 0.70

Table 3.21: Statistical indexes calculated for the Peak Period.

Statistical Index Exp 5.1 Exp 5.2

VENEZIA
Mean BUOY 4.74 4.74
Mean SWAN 4.56 4.56

Bias 0.18 0.18
rms 2.70 2.70
R 0.48 0.48
ANCONA

Mean BUOY 4.98 4.98
Mean SWAN 4.82 4.82

Bias 0.16 0.16
rms 1.16 1.16
R 0.82 0.82
MONOPOLI

Mean BUOY 5.21 5.21
Mean SWAN 4.39 4.39

Bias 0.82 0.82
rms 2.12 2.12
R 0.37 0.37
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The Results confirm that the model simulation is insensitive to the addiction
triad non-Linear interactions. This result can be explained considering that
Non-Linear Triads are a Shallow Water process which becomes important
in areas near the coast, and in our model configuration the resolution of
the spatial computational grid used is too coarse to properly represent the
near-coastal processes.
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3.2 SWAN Coupling with Ocean Relocatable

Model

In this section the experiments performed to test the coupling between SWAN
and NEMO within the SURF relocatable ocean model are described.

The coupling has been performed in order to force the SWAN model with
high resolution current fields provided by the NEMO model and to evaluate
the impact of high resolution currents on the wind-wave model simulations.

The relocatable modelling method focuses on the rapid implementation of
an ocean model nested into a coarser scale model. It aims to be a valuable
tool to be used together with wave modelling in several applications, such as
oil spill monitoring, search and rescue operations, ship routing, ship traffic
monitoring, etc.

3.2.1 SURF Relocatable Model

The SURF (Stuctured Unstructered Relocatable ocean model for Forecast-
ing) model is based on the ocean model NEMO and the wind-wave model
SWAN.

The SURF model work-flow which is shown in figure 3.20.
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Fig. 3.20: Relocatable SURF model work-flow.
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As it can been seen from figure 3.20, a SURF model run is composed of two
step.

First, a NEMO model execution to compute the current fields for the spe-
cific area and period of interest is performed. The work-flow of the NEMO
run is organized as follows:

• Model parameters setup: first, the simulation parameters are de-
fined.

• Horizontal Grid & Vertical Grid Depth: the generation of the
numerical grid is then performed.

• Input Data Requirements: after the model configuration and grid
creation, the procedure for querying the Input Data, which might be
already downloaded in the local database, is activated. Then, the
next automatic step is the data reformat, which generates the forc-
ing, boundary conditions and initial conditions files necessary to run
the model. In this step the bathymetry, the wind forcing fields and
the current fields needed to define boundary and initial conditions are
interpolated on the model grid.

• Model run: the NEMO run starts. This phase involves the model
compilation and its run, together with the data upload in the local
database.

• Model output: during the execution of the main program, output
files are continuously updated given the fixed output frequency. At the
end of simulation, the output files are stored in the directory where the
user is running the model.

After, a SWAN run is done to simulate the wave fields for the same area
and period.

The SWAN simulation work-flow is organized as follows:

• Model parameters setup: in the first step, the model simulation
parameters have to be defined. The horizontal grid resolution has not
to be specified because the horizontal grid is generated by NEMO and
given to SWAN as input.

• Input Data Requirements: after the model configuration, the proce-
dure for querying the Input Data, which might be already downloaded
in the local database, is activated. The SWAN input data are the
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horizontal grid generated by NEMO, the bathymetry and wind forcing
fields interpolated by NEMO on the horizontal grid and the surface
current fields resulting from the NEMO run.

• Initial and Boundaries condition determination: the initial spec-
tra are computed (also for grid points located at boundaries) from the
local wind velocities.

• Model run: this phase involves the model compilation and its run,
together with the data upload in the local database.

• Model output: during the execution of the main program, output
files will be continuously updated given the fixed output frequency. At
the end of simulation the output files will be stored in the directory
where the user is running the model.
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3.2.2 NEMO-SWAN Coupling Experiments

For calibration/validation purposes SURF has been implemented in a sub-
region of the Tyrrhenian Sea. The whole region can be considered in deep
water conditions, and avoiding the necessity of extending the study far away
up to the longest fetches [15].

The spatial grid is a rectangular curvilinear regular one, with horizontal res-

olution of
(

1
40

)◦
both in longitude and in latitude, with the Southern-West

corner located at 9.35◦ East and 41.5◦ North. It consists of 130× 80 points.
The vertical resolution of the SURF model is of about 100 levels.

The geometry of the spatial domain and the horizontal and vertical grids
used are shown in figures 3.21 and 3.22.

Fig. 3.21: Geometry of the spatial computational domain
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Fig. 3.22: Horizontal (on the left) and vertical (on the right) grids

SURF calculated the bathymetry (see figure 3.23) by interpolating the Digital
Bathymetric Data Base Variable resolution (DBDBV) on the horizontal grid
of the model. DBDBV is a digital bathymetric data base that provides ocean
depths at various gridded resolutions. It was developed by the U.S. Naval
Oceanographic Office (NAVOCEANO) to support the generation of bathy-
metric chart products, and to provide bathymetric data to be integrated with
other geophysical and environmental parameters for ocean modeling. Grid
resolutions available include 0.5, 1, 2, and 5 minutes of latitude/longitude.
The Mediterranean Sea including the Adriatic Sea and the Black Sea has a
geographic coverage of 1 minute.

Fig. 3.23: Bathymetry of the computational domain
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The NEMO and SWAN component of SURF have been forced with the high
resolution SKIRON atmospheric input fields, characterized by a time res-
olution of one hour and a 0.025◦ horizontal resolution. SKIRON [96] is a
modeling system developed at the University of Athens from the AM-WFG
[56] [57]. The SKIRON atmospheric input fields have been processed by the
seaoverland algorithm and interpolated on the horizontal computational grid
by SURF, using the bi-linear interpolation method integrated in the NEMO
code.

The integration time step used for the NEMO component of SURF com-
putations is 50 s while for SWAN is 1800 s.

The NEMO component of SURF uses the Mediterranean Forecast System
(hereafter called MFS [73]) output fields as initial conditions. MFS is forced
by ECMWF atmospheric forcing and it produces analysis and forecasts.

In this initial work, closed lateral boundaries conditions are considered for
both NEMO and SWAN.

The experiments performed to couple the SWAN and NEMO models have
been organized as follows.

SWAN simulations started on the 14-02-2012 at 00.00 and ended on the
16-02-2012 at 00.00.

NEMO model simulated three time periods: the first period is between 11-
02-2012 at 00.00 and 16-02-2012 at 00.00, the second between 09-11-2012 at
00.00 and 16-02-2012 at 00.00 and the third one is between 07-11-2012 at
00.00 and 16-02-2012 at 00.00.

These experiments have been performed in order to investigate the sensitiv-
ity to the inizialization time, called spin-up time, of the NEMO relocatable
model.
The spin-up time is defined as the time needed by an ocean model to reach
a state of physical equilibrium under the applied forcing: the results cannot
be trusted until this equilibrium is reached due to spurious noise in the nu-
merical solution [23].

Therefore, adopting this experiment configuration, the SURF sensitivity to
NEMO model spin up of 3, 5 and 7 days has been tested.
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A summary of the computational features of the NEMO and SWAN model
used in these experiments is given in tables 3.22 and 3.23, respectively, while
the list of the experiments is shown in table 3.24.

Table 3.22: NEMO computational setting.

Parameter Configuration/Value

Time Parameters
Computational time step ∆t 50 s

Output frequency ∆t 3600 s
Horizontal Grid

Coordinates spherical
Computational grid curvi-linear grid

Resolution in
(

1
40

)◦
lon-direction

Number of meshes 130
in lon-direction

Resolution in
(

1
40

)◦
lat-direction

Number of meshes 80
in lat-direction

Vertical Grid
Number of meshes 100

in z-direction
Max stretching 101.83 m

level hth
Stretching factor 50.0

hcr
Sub-grid Physical Processes
Avm 1.2× 10−5 m2s−1

Alm −5× 109 m4s−1

AvT 1.2× 10−6 m2s−1

AlT −3× 109 m4s−1

Forcing Input Data
Wind forcing SKIRON analysis

data
Initial and Boundary Conditions

Initial condition MFS field
Lateral boundaries No flux
Bottom boundary 0.001

CD

Table 3.22: SURF computational setting.
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Table 3.23: SWAN computational setting.

Parameter Configuration/Value

General Parameters
Gravitational 9.81ms−2

Acceleration
Water 1025 kgm−3

Density
Wind Drag no cutting off
Coefficient the drag coefficient

Spectral Output based on variance
spectrum

Convection for nautical
wind and wave

direction adopted
Shape of spectral automatic
tail above [fhigh]
Maximum Froude 0.8

number
Time Parameters

Time mode Non-Stationary
Spatial mode Two-Dimensional

Computational time step ∆t 1800 s
Output frequency ∆t 1800 s

Spatial Grid
Coordinates spherical

Computational grid curvi-linear grid
Number of meshes 130

in lon-direction
Number of meshes 80

in lat-direction
Spectral-Space Grid

Spectral direction cover the full
grid circle

Number of meshes in 36
θ space

Lowest discrete 0.04 Hz
freq. used in
calculation

Highest discrete 1.0 Hz
freq. used in
calculation

Number of meshes in 35
frequency space

Forcing Input Data
Wind forcing SKIRON analysis

data
Current forcing SURF 1 hour

data
Numeric

Numerical BSBT
scheme

Max number of iterations 100
per time step

Initial and Boundary Conditions
First time Initial wave-filed computed

Table 3.23: SWAN computational setting.
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Parameter Configuration/Value

step of the from local wind velocities
computation
Each next Initial wave-field read

restart from hotstart file
Physical Processes: Source and Sinks

Linear wave growth Cavaleri-Melanotte formulation
by wind input with [AGROW ] = 0.015, where

[AGROW ] is the prop. coefficient
for linear wave growth term

Exponential wave growth Komen formulation with
by wind input [cds2] = 2.36e− 5, [stpm] = 3.02e− 3

where [cds2] is the coeff.for the
the rate of whitecapping dissipation
and [stpm] is the value of the wave
steepness for a Pierson-Moskowitz

spectrum
Quadruplet fully explicit computation

of the non linear transfer
with DIA algorithm ([iquad] = 2)

Friction COLLINS bottom friction
dissipation

Wave Breaking constant breaker parameter
with [α] = 1 and [γ] = 0.73,
where [α] is prop. coefficient

of the rate of dissipation and [γ]
is the ratio of maximum individual

wave height over depth

Table 3.23: SWAN computational setting.

Table 3.24: Description of the three numerical experiments performed to test SURF-SWAN coupling.

Experiment Number NEMO simulation SWAN simulation
spin-up start-end

6.1 3 days 14-02-2012, 00.00
16-02-2012, 00.00

6.2 5 days 14-02-2012, 00.00
16-02-2012, 00.00

6.3 7 days 14-02-2012, 00.00
16-02-2012, 00.00

Validation of results has been done comparing the Significant Wave Height
and the Wave Peak Period measured by the ISPRA directional buoys located
at Civitavecchia and the SWAN simulations.

The locations of the ISPRA directional buoy are shown in figure 3.24.
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Fig. 3.24: Spatial location of the ISPRA directional buoy placed at Civitavecchia offshore waters.

Three example of the zonal current fields calculated by NEMO on 15-02-2012
at 14.00 with different spin-up times and their differences are shown in figures
3.25 and 3.26, respectively.

The results of the coupling experiments are shown in figures 3.27 and 3.28:
in picture 3.27, the time series of the Significant Wave Height computed in
the three experiments by the SWAN model at the ISPRA Civitavecchia buoy
location is compared with the time series of the Significant Wave Height sam-
pled by the ISPRA buoy, while in figure 3.28 the same is done for the Peak
Period.
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(a) (b)

(c)

Fig. 3.25: Three sample results of the zonal current fields calculated by NEMO on 15-02-2012 at 14.00
with (a) spin-up time of 3 days, (b) spin-up time of 5 days and (c) spin-up time of 7 days.

(a) (b)

Fig. 3.26: Differences between the zonal current fields calculated by NEMO on 15-02-2012 at 14.00
with (a) 3 and 5 days or (b) 5 and 7 days of spin-up times.
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Fig. 3.27: Time series of the Significant Height computed in the three experiments 6.1, 6.2 and 6.3
at the ISPRA Civitavecchia buoy location for the period between 14-02-2012 at 00.00 and 16-02-2012 at
00.00.
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Fig. 3.28: Time series of the Wave Peak Period computed in the three experiments 6.1, 6.2 and 6.3
at the ISPRA Civitavecchia buoy location for the period between 14-02-2012 at 00.00 and 16-02-2012 at
00.00. .

The results evaluated in terms of Statistical indexes are shown in tables 3.25
and 3.26 both for Wave Peak Periods and Significant Wave Heights.
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Table 3.25: Statistical indexes calculated for the Significant Height.

Statistical Index Exp 1.1 Exp 1.2 Exp 1.3

CIVITAVECCHIA
Mean BUOY 0.55 0.55 0.55
Mean SWAN 0.36 0.36 0.36

Bias 0.19 0.19 0.19
rmse 0.24 0.24 0.24

R 0.93 0.93 0.93

Table 3.26: Statistical indexes calculated for the Peak Period.

Statistical Index Exp 1.1 Exp 1.2 Exp 1.3

CIVITAVECCHIA
Mean BUOY 3.55 3.55 3.55
Mean SWAN 2.90 2.88 2.90

Bias 0.65 0.67 0.65
rmse 1.74 1.75 1.75

R 0.53 0.53 0.53

The sensitivity of SWAN results to the NEMO spin-up time is small because
also NEMO currents are not very different (see figure 3.26).

These results are in disagreement with previous studies (De Dominicis et
al. [23] and Simoncelli at al. [94]) that demonstrated the influence of the
spin-up time on the accuracy of the currents simulations performed by a
nested model and this is due to the closed lateral boundary conditions used
by NEMO.
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3.3 SWAN Coupling with the Oil-Spill Model

In this section, the description of the numerical experiments carried out to
couple the SWAN wave model with the MEDSLIK-II oil-spill model is given.

3.3.1 MEDSLIK-II Model

MEDSLIK-II is an oil spill model designed to predict the transport and
weathering of an oil spill or to simulate the movement of a floating object
and its code is a freely available community model which can be downloaded
from http://gnoo.bo.ingv.it/MEDSLIKII.

The oil movement in the sea water is related to advection by the large-scale
flow field and dispersion by turbulent flow components while its concentra-
tion time evolution is due to several weathering processes.

The general equation which describes the evolution of a tracer concentration,
C(~x, t), with units of mass over volume, mixed in the marine environment, is

∂C

∂t
+ ~U · ~∇C = ~∇ · (Ki,j · ~∇C) +

M∑
k=1

rk(~x, C(~x, t), t) (3.5)

where ∂/∂t is the local time-rate-of-change operator, ~U is the sea current
mean field with components (U, V,W ), Ki,j is the diffusivity tensor which
parameterizes the turbulent effects, and rk(C) are the M transformation
rates that modify the tracer concentration by means of physical and chemi-
cal transformation processes.

MEDSLIK-II is a Lagrangian model, which means that the oil slick is repre-
sented by a number N of constituent particles moved by advection from the
hydrodynamics currents and dispersed horizontally by Lagrangian turbulent
diffusion.

In order to describe the oil concentration evolution within a Lagrangian for-
malism some fundamental assumptions have to be made: the constituent
particles do not influence water hydrodynamics and processes, they move
through infinitesimal displacements without inertia and without interacting
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among themselves, while physical and chemical processes act on the entire
slick rather than on the single particles properties. If these assumptions ap-
ply, then it is possible to split the active tracer equation into two component
equations:

∂Cw
∂t

=
M∑
k=1

rk(~x, C(~x, t), t) (3.6)

and
∂C

∂t
= −~U · ~∇Cw + ~∇ · (Ki,j · ~∇Cw) (3.7)

where Cw is the oil concentration solution solely due to the weathering pro-
cesses, while the final time rate of change of C is given by the advection-
diffusion acting on Cw.

Equation 3.6 is solved by MEDSLIK-II considering that the transformation
processes act on the total oil slick volume and, as result, oil slick state vari-
ables are defined. Then, Lagrangian particle formalism is applied to solve
equation 3.7, which means to discretize the oil slick in N particles with asso-
ciated particle state variables (some of which are deduced from the oil slick
state variables defined in the previous step). Finally, the oil concentration
is then computed by assembling the particles together with their associated
properties.

The surface volume VS of the oil-slick is broken into N constituent parti-
cles that are characterized by a particle volume, υ(t), by a particle status
index σ(t) which is set equal to zero if the particle is located on the surface
or equal to one if the oil particle is a subsurface or dispersed one, and by a
particle position vector defined as

~xk(t) = (xk(t), yk(t), zk(t)), k = 1, N (3.8)

The time rate of change of particle positions in the oil tracer grid is given by
nk uncoupled Langevin equations:

d~xk(t)

dt
= Ai,j(~xk, t) +Bp,q(~xk, t)ξ(t) (3.9)

where the tensor Ai,j(~xk, t) is the deterministic part of the flow field, i.e,

the mean field ~U in equation 3.5, while the second term Bp,q(~xk, t)ξ(t) is a
stochastic term representing the diffusion term in equation 3.5.
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It can been shown (see [25] for a rigorous explanation) that, considering
Ai,j(~xk, t) and Bp,q(~xk, t) as diagonal tensors, it is possible to write

d~xk(t) = [ ~UC(xk, yk, 0, t) + ~UW (xk, yk, t) + ~US(xk, yk, t)

+ ~UD(xk, yk, t)]dt+ d~x′k(t) (3.10)

for oil particles located on the surface (i.e., characterized by σ = 0) and,
for particles on the subsurface or dispersed in the water column (i.e., with
σ = 1) ,

d~xk(t) = ~UC(xk, yk, zk, t)dt+ d~x′k(t) (3.11)

where ~UC is the Eulerian current velocity term due to a combination of non-
local wind and buoyancy forcings, mainly coming from operational oceano-
graphic numerical model forecasts or analyses, ~UW is the local wind velocity
correction term (thus the Ekman currents due to local winds [80] [61]), ~US is

the wave-induced current term (Stokes drift velocity), ~UD is the wind drag
correction due to emergent part of the objects at the surface and d~x′k(t) is
the displacement due to the turbulent diffusion.

The local wind correction term ~UW = (UW , VW ) can be parameterized as
a function of wind intensity and angle between winds and currents:

UW = (αWx cos β +Wy sin β) (3.12)

VW = (α−Wx sin β +Wy cos β) (3.13)

where Wx and Wy are the wind zonal and meridional components at 10 m,
respectively, and α and β are two parameters referred to as drift factor and
drift angle.

On the other hand, the Stokes drift velocity ~US is defined as

US = DS cos θ (3.14)

VS = DS sin θ (3.15)
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where θ = arctan(Wx/Wy) and DS is the Stokes drift velocity intensity in
the direction of the wave propagation at the surface defined as

DS

∣∣∣
z=0

= 2

∫ ∞
0

ωk(ω)S(ω)dω (3.16)

where ω is the angular frequency, k is the wave-number and S(ω) is the wave
spectrum and where it has been assumed that wind and waves are aligned
and that waves are generated only by the local wind (thus swell process is
not considered).

The wind drag correction, UD , is a parameterization for the leeway (windage)
of a floating object, defined as the drift associated with the wind force on the
overwater structure of the object and, following [88], can be defined as

~UD =

√
ρaAaCda
ρwAwCdw

~W = γ ~W (3.17)

where ρ, A and Cd are the fluid density, projected areas of the object and
drag coefficient, respectively, and subscripts a and w denote the air and sea-
water environments and ~W is the wind velocity vector.

The turbulent diffusion is parameterized as a random walk scheme given
by the equation

d~x′k(t) =
√

2Ki,jdt~Z (3.18)

where Ki,j is the horizontally isotropic turbulent diffusion diagonal tensor
given by

Ki,j =

∣∣∣∣∣∣
Kh 0 0
0 Kh 0
0 0 Kv

∣∣∣∣∣∣ .
and ~Z is a vector of indipendent random numbers Z1, Z2, Z3 used to model
the Brownian random walk processes chosen for the parametrization of tur-
bulent diffusion.

MEDSLIK-II is also able to take into account adsorption of oil by the coast
should the slick reach it. A complete description of all the model features is
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given in [25] [24].

In order to show the benefit of using SWAN to compute the Stokes’ Drift
correction term in equation 3.28 we have developed the computation of the
Stokes’ Drift from SWAN model output.

3.3.2 Stokes Drift Calculation

Stokes Drift for Random Gravity Waves

The general equation for the Stokes Drift velocity associated to a random
gravity waves field is briefly considered in this paragraph.

Let us consider a statistically stationary, Gaussian, ergodic and horizontally
homogeneous wave field: according to the Linear Theory and the Random
Phase-Amplitude Model, the surface displacement η(~x, t) can be represented
as a superposition of sinusoidal free progressive waves generated by wind in
different times and places:

η(~x, t) =
N∑
n=1

M∑
m=1

an,m cos(Kn cos θmî+Kn sin θmĵ − ωnt+ ϕ
n,m

) (3.19)

where an,m is the amplitude, Kn is the magnitude of the wavenumber vector

(i.e., | ~Kn|), θm is the angle between the x -axis and the direction of wave
propagation and î and ĵ are the fundamental versors in the x and y direc-
tion respectively, ωn is the absolute frequency and ϕn,m is the phase of the
(n,m)th wave component.

The dispersion relationship of the nth harmonic wave components is:

ω2
n = gKn tanh(Knh) (3.20)

where g is the gravity acceleration and h is the total mean water depth de-
fined as h = ζ̄ + hb, where ζ̄(~x, t) is the mean free surface displacement and
hb(~x) is the depth of the bottom with respect to the unperturbed surface
level.
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By applying the Stokes’ method [97] described in 2.1.6 section, the ensemble
mean second-order drift velocity for the wave field 3.19 can be derived (see
[58] for a detailed mathematical derivation) and the result is that the total
mean drift associated to a random gravity waves field is the superposition of
the drifts resulting from each wave component, thus

~US(z) =
N∑
n=1

M∑
m=1

~un,ms =
N∑
n=1

M∑
m=1

a2
n,mωn ~Kn,m

cosh(2| ~Kn,m|(h+ z))

2 sinh2(| ~Kn,m|h)
(3.21)

where ~un,ms is the stokes drift velocity associated to the (n,m)th wave compo-
nent, N and M are the number of the discretized frequencies and directions,
respectively, and the second part of the equation result by applying equation
2.81 to each harmonic component.

Distributing the ~un,ms over the frequency and direction intervals ∆fn and
∆θm for each frequency fn and direction θm and imposing that the two fre-
quency and direction bands ∆fn and ∆θm have to approach to 0, a continuous
function for the total mean drift can be derived as

~US(z) =

∫ ∞
−∞

∫ ∞
0

a2ω ~K
cosh(2| ~K|(h+ z))

2 sinh2(| ~K|h)
dfdθ (3.22)

Considering now that from equation 2.56 the energy associated to a sinusoidal
wave component is

E =
1

2
ρga2 (3.23)

where ρ denotes sea water density at the surface, then it is possible to write

a2 =
2E

ρg
(3.24)

Remembering now the relationship between the energy and frequency-directional
wave spectrum derived in equation 2.104, thus

E = ρgS(f, θ)dfdθ (3.25)

it is possible to write

a2 = 2S(f, θ)dfdθ (3.26)

and, therefore, the general formulation for arbitrary deep water of the stokes
drift velocity associated to a random gravity waves field is

145



~US(z) = 2

∫ ∞
−∞

∫ ∞
0

ω
cosh(2| ~K|(h+ z))

2 sinh2(| ~K|h)
~KS(f, θ)dfdθ (3.27)

and the components of the velocity vector ~US = (US, VS) are

US(z) = 2
∫∞
−∞

∫∞
0
ω cosh(2| ~K|(h+z))

2 sinh2(| ~K|h)
| ~K| cos θS(f, θ)dfdθ

VS(z) = 2
∫∞
−∞

∫∞
0
ω cosh(2| ~K|(h+z))

2 sinh2(| ~K|h)
| ~K| sin θS(f, θ)dfdθ

(3.28)

Assuming that the deep water approximation applies, equation 3.27 become

~US(z) = 2

∫ ∞
−∞

∫ ∞
0

ω ~Ke2|~k|zS(f, θ)dfdθ (3.29)

which can be written as

~US(z) =
16π3

g

∫ ∞
−∞

∫ ∞
0

f 3e
8π2f2z

g S(f, θ)dfdθ (3.30)

remembering that ω = 2πf and | ~K| = ω2/g.

According to Stokes [97], the Stokes’ drift vertical decay rate is twice that one
for the Eulerian velocity components (see section 2.1.6). It implies therefore
that the Stokes’ drift is confined very close to the sea surface.

Hence, considering only the Stokes’ drift on the surface, equations 3.27 and
3.29 can be rewritten as follows:

~US

∣∣∣
z=0

= 2

∫ ∞
−∞

∫ ∞
0

ω
cosh 2| ~K|h
2 sinh2 | ~K|h

~KS(f, θ)dfdθ (3.31)

= 2

∫ ∞
−∞

∫ ∞
0

g| ~K|
ω tanh(2| ~K|h)

~KS(f, θ)dfdθ (3.32)

considering trigonometric equalities, and

~US

∣∣∣
z=0

= 2

∫ ∞
−∞

∫ ∞
0

ω ~KS(f, θ)dfdθ =
16π3

g

∫ ∞
−∞

∫ ∞
0

f 3S(f, θ)dfdθ (3.33)
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respectively.

Stokes Drift Calculation from Spectral Model Output

The Stokes drift velocity calculated by MEDSLIK-II is the mean drift velocity
at the surface assuming that deep water conditions applies. The JONSWAP
frequency spectrum [41] is used and the wave field is in the wind direction.

Therefore, MEDSLIK-II computes the Stokes’ Drift using 3.33 in the fol-
lowing form:

US = 2
( ∫∞

0
ωk(ω)SJ(ω)dω

)
cos θ

VS = 2
( ∫∞

0
ωk(ω)SJ(ω)dω

)
sin θ

(3.34)

where θ is the direction of the wind velocity vector ~W = (Wx,Wy) defined

as θ = arctan
(
Wx

Wy

)
.

In order to improve the accuracy of the stokes drift calculation and, hence,
of the trajectories simulations, we want to calculate the mean drift velocity
using the directional-frequency spectra resulting from SWAN simulations in
equation 3.32 and compare these results with the MEDSLIK-II parameteri-
zation 3.34.

Consider now equation 3.32: a numerical solutions for these equations can be
found writing a code that calculates the module of the wave-number vector
| ~K| for each discretized frequency of the spectral domain and which solves
the double integral in the σ − θ space.

Therefore, in order to numerically solve equation 3.32, the SWAN model
output has been post-processed with the following procedure:

• First, an algorithm to numerically solve the general dispersion relation-
ship for K has been implemented;

• Then, the trapezoidal rule has been implemented to find a numerical
solution of the double integral. This algorithm has been applied to
find the mean wave directions and results have been compared to mean
wave directions calculated by SWAN in order to validate the double
integral solving rule.
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• In the last, the rectangle rule has been implemented too. Then, both
the trapezoidal and the rectangle rules have been used to calculate the
stokes drift velocity and results have been compared with the mean di-
rections calculated by SWAN, considering that the stokes drift direction
is approximately equal to the mean wave direction.

In order to test the above methodology, the SWAN model outputs of the
SURF experiments have been used (see 3.2.2 for a description of the SWAN
computational domain and its computational features).

Wave Number Numerical Computation: according to the Linear The-
ory (see section 2.1), the general relationship which links the angular fre-

quency ω to the wave-number module | ~K| is

ω = g| ~K| tanh | ~K|h (3.35)

where g is the gravitational acceleration and H is the water depth.
Equation 3.35 can be rewritten for | ~K| as

| ~K| tanh | ~K|h =
4π2f 2

g
(3.36)

remembering that ω = 2πf , where f is the frequency expressed in Hz. Equa-
tion 3.36 is a transcendental one and, in order to numerically solve it with a
specified accuracy by an iterative computation, it is useful to rewrite it as

x tanhx = D (3.37)

where x = | ~K|H and D = 4π2f2H
g

.

Following Goda [34], it is a good procedure to first rewrite equation 3.37 as
follows in order to remove the inflection point:

y(x) = x−D cothx (3.38)

Equation 3.38 can be solved using the Newton’s iterative method, which is
based on the following equation (see [83] and [84] for a detailed review of
the Newton’s method applied to solve non-linear equations and non-linear
systems):

148



x(k+1) = x(k) − y(xk)

y′(xk)
= x(k) − xk −D cothxk

1 +D(coth2 xk − 1)
(3.39)

It can been shown that Newton’s method convergence is not ensured for ev-
ery x(k) chosen, but only for each x(k) ∈ I(α), where α is the real zero of the
function studied and I(α) is a small enough around of α (see[83] and [84] for
a rigorous demonstration).

Following Goda [34], the best estimate for the initial value of is x(k) is

x(k) =

{
D, for D ≥ 1

D1/2 for D < 1
(3.40)

In order to validate the implemented code, for some arbitrary chosen wave
period T and the depth H values the the wave-number modulo has been
calculated and results have been compared with that ones listed in Goda
[34]. Some of the results are listed in table 3.27.

Table 3.27: Wave-number modulo values calculated with the Fortran 90 code in Appendix ?? and
given by Goda [34].

Wave Period Water Depth Goda [34] K value
T in seconds h in meters K value

2.00 1.80 5.96 5.96
8.00 75.00 99.81 99.81
14.00 120.00 301.60 301.60

As it can be seen from table 3.27, the algorithm developed, at the second
order of accuracy, exactly reproduces the wave-number values given by Goda
[34], validating it.

Test of the Double Integral Composite Trapezoidal rule: the numer-
ical Composite Trapezoidal rule for two dimensional functions has been im-
plemented to numerically solve the double integral in equation 3.32.

In these experiments the code has been used to solve the equation for the
Mean Wave Directions associated to a random gravity waves field using
SWAN directional frequency variance spectra outputs.
The Mean Wave Direction at a given ocean location is defined as
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〈θ〉 = arctan
(∫ +∞
−∞

∫ +∞
0

sin θS(f, θ)dfdθ∫ +∞
−∞

∫ +∞
0

cos θS(f, θ)dfdθ

)
(3.41)

where S(f, θ) is the directional-frequency variance spectrum.

The validation of the results have been made comparing the calculated values
with that ones provided as outputs from the same simulations by the SWAN
model.

The Composite Trapezoidal rule is one of the many integration techniques de-
veloped to numerically approximate the integral of a limited mono-dimensional
function. It is defined as

∫ b

a

f(x)dx ≈ H

2

m−1∑
k=0

(f(xk) + f(xk+1)) = H
(1

2
f(x0) +

m−1∑
k=1

f(xk) +
1

2
f(xm)

)
(3.42)

where H = (b− a)/m is the discretization step of the interval [a, b] in m+ 1
points (see [83] and [84] for a detailed review of the most important numerical
integration techniques).

This integration technique is able to solve exactly the integral of first de-
gree polinomial functions (see [83] and [84] for the demonstration).

In order to apply the Composite Trapezoidal rule to integrate a bi-dimensional
function, it has to be noted that

∫ b

a

∫ d

c

f(x, y)dxdy =

∫ b

a

[ ∫ d

c

f(x, y)dxdy
]

(3.43)

≈
∫ b

a

n∑
j=0

βjf(x, yj)dx (3.44)

≈
m∑
i=0

n∑
j=0

αiβjf(xi, yj) (3.45)

= QmQnf (3.46)

where x ∈ [a, b], y ∈ [c, d] and Qm and Qn are two arbitrary chosen mono-
dimensional integration techniques with m+1 and n+1 discretization points,
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respectively, and αi, with i = 0...m, and βj, with j = 0...n, weights, respec-
tively [83] and [84].

Therefore, to perform the double integration of a limited bi-dimensional func-
tion, it is needed to integrate before in a dimension and then in the other one.

In figure 3.29 the mean wave direction fields calculated by SWAN and by
the routine are shown for two test cases.

The Composite Trapezoidal rule algorithm developed to perform the double
integration of equation 3.41 reproduces the values of mean wave directions
calculated by SWAN with a good approximation.
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(a)

(b)

Fig. 3.29: (a) Mean wave directions sample field calculated on the 15-02-2012 at 10.30 by SWAN (in
red) and by using the trapezoidal rule (in balck). (b) Mean wave directions sample field calculated on the
15-02-2012 at 03.00 by SWAN (in red) and by using the trapezoidal rule (in balck). .
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Stokes Drift Numerical Solutions: in this last set of experiments, in
order to numerically solve the double integral in equation 3.33, the Compos-
ite Rectangle Rule has been implemented too.

Then, the Trapezoidal composite rule and the iterative algorithm for wave-
number computation have been used to calculate the stokes drift velocity
solving equations 3.36 and 3.32 (Stokes’ Drift for general random gravity
waves fields), while the Rectangle one has been applied to solve equations
2.47 and 3.33 for deep waters approximation.

Results have been compared with the mean wave directions calculated by
SWAN, considering that the stokes drift direction is approximately equal to
the mean wave direction.

The Composite Rectangle rule is the simplest integration technique devel-
oped to numerically approximate the integral of a limited mono-dimensional
function. It is defined as [83] and [84]

∫ b

a

f(x)dx ≈ H
m−1∑
k=0

f(xk) (3.47)

where H = (b− a)/m is the discretization step of the interval [a, b] in m+ 1
points (see [83] and [84]).

As the Composite Trapezoidal rule, this technique is able to solve exactly
the integral of first degree polinomial functions (see [83] and [84] for the
demonstration).

Also the Composite Rectangle rule has been implemented to solve bi-dimensional
integrals.

Two sample results of the experiments are shown in figures 3.30 and 3.31.
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(a) (b)

(c) (d)

Fig. 3.30: (a) Example of Mean wave directions field computed by SWAN (in red) on 15-02-2012
at 01.00 and Stokes drift velocity fields calculated for the same date and time using the Composite
Trapezoidal rule (in blue) and the Composite Rectangle rule (in balck). (b) Differences between mean
wave directions computed by SWAN and the direction of the Stokes drift velocity calculated using the
Composite Trapezoidal rule. The direction of the Stokes drift velocity θS is calculated using the equation
θS = arctan(VS/US), where US and VS are, respectiveely, the zonal and meridional components of the

Stokes drift velocity ~US = (US , VS). (c) Differences between mean wave directions computed by SWAN
and the direction of the Stokes drift velocity calculated using the Composite Rectangle rule. (d) Differences
between the modulo of the Stokes drift velocity calculated using the Composite Trapezoidal rule and that
one computed using the Composite Rectangle rule. The modulo of the Stokes drift vector ~US = (US , VS)

is given by | ~US | =
√
U2
S + V 2

S
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(a) (b)

(c) (d)

Fig. 3.31: (a) Example of Mean wave directions field computed by SWAN (in red) on 15-02-2012
at 12.30 and Stokes drift velocity fields calculated for the same date and time using the Composite
Trapezoidal rule (in blue) and the Composite Rectangle rule (in balck). (b) Differences between mean
wave directions computed by SWAN and the direction of the Stokes drift velocity calculated using the
Composite Trapezoidal rule. The direction of the Stokes drift velocity θS is calculated using the equation
θS = arctan(VS/US), where US and VS are, respectiveely, the zonal and meridional components of the

Stokes drift velocity ~US = (US , VS). (c) Differences between mean wave directions computed by SWAN
and the direction of the Stokes drift velocity calculated using the Composite Rectangle rule. (d) Field of
the differences between the modulo of the Stokes drift velocity calculated using the Composite Trapezoidal
rule and that one computed using the Composite Rectangle rule. The modulo of the Stokes drift vector

~US = (US , VS) is given by | ~US | =
√
U2
S + V 2

S
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Looking at the results, it is possible to say that the Stokes’ Drift velocities
computed by the Composite Trapezoidal rule are meanly in the same direction
of the mean wave directions computed by SWAN, while that ones computed
by using the Composite Rectangle rule significantly diverge from them. The
module of the velocities computed with both the methods is almost the same.
Therefore, in the next experiments, the Composite Trapezoidal rule has been
used in order to solve equation 3.32.
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3.3.3 SWAN-MEDSLI-II Coupling Experiments

In this section, the experiments performed to couple the oil-spill model
MEDSLIK-II with the wind-wave model SWAN are described.

The coupling operation has been performed in order to force the MEDSLIK-II
model with Stokes’ Drift velocity fields calculated from the SWAN directional-
frequency spectra outputs and the algorithms described in Section 3.3.2.

In order to validate the experiments, MEDSLIK-II has been used to sim-
ulate the trajectories of the four I-SPHERE drifters released south-eastward
of the Giglio island during the Costa Concordia emergency.

The drifters are oceanographic instruments used to study the surface cir-
culation and oceanographic dynamics. They are designed to be transported
by ocean currents and these characteristics make them useful tools to validate
hydrodynamic models [5] [44] [63] and oil spill/trajectory models [85] [81] [62].

Oil spill-following surface drifters (i-SPHERE ) [81] are 39.5 cm diameter
spheres designed on the basis of earlier experiments carried out in the late
1980s and early 1990s (see figure 3.32) [23].

The 4 drifters were released the 14 of February 2012 and recovered 24 hrs
later.

As shown in figure 3.33, the buoys had a linear arrangement from north-
east to southwest and an average distance of about 7 km between Giglio and
Giannutri Island.

  

Fig. 3.32: Oil spill-following surface drifters i-SPHERE. )
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Fig. 3.33: Real drifters trajectories (black lines) from 14th February at 9:00 UTC to 15th February at
9:00 UTC (from [23]).
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MEDSLIK-II has been forced using SURF-NEMO current fields. SURF
has been implemented in the same area of the Tyrrhenian Sea chosen for
the NEMO-SWAN coupling experiments (see Section 3.2.2), using the same
computational features. Since the simulations results in Section 3.2.2 have
demonstrated that the NEMO component of the SURF model, in this initial
computational configuration, is insensitive to the spin-up time, for the exper-
iments performed in this Section we have decided to use the NEMO spin-up
time that requires less computational time (spin-up time 3 days).

A summary of the features of the computational domain of the SWAN and
NEMO models implementation in the Costa Concordia area are given in ta-
bles 3.22 and 3.23.

The three models (NEMO, SWAN and MEDSLIK-II) have been forced with
the high resolution SKIRON analysis atmospheric input fields, with a time
resolution of one hour and a 0.025◦ horizontal resolution.

The MEDSLIK-II trajectory simulations were performed using the currents,
the Stokes drift and the wind drag, indicated as UC , US and UD, respectively,
in equation 3.28.
The turbolent diffusion d~x′k(t) of equation 3.28 has been parameterized using
the diffusivity coefficients in equation 3.18 set to zero.
The parameter γ of equation 3.17 for UD has been set equal to 0.01, thus,
UD was about 1% of the wind velocity.
The MEDSLIK-II code has been modified in order to read Stokes drift veloc-
ity fields calculated from a spectral wave model output as described in Section
3.3.2. Therefore, in the configuration developed in this Thesis, MEDSLIK-II
can calculate the Stokes’ drift velocity using parameterized JONSWAP wave
spectra (equation 3.33) or using the SWAN wave spectra.

In table 3.28, a summary of the computational features of the MEDSLIK-II
model used in these experiments is given.
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Table 3.28: MEDSLIK-II computational setting used in coupling experiments.

Parameter Configuration/Value

General features
Simulation mode trajectories

simulation
Drifter 4

simulated
Area of drifter Costa Concordia

released accident area
Time Parameters

Computational time step ∆t 1800 s
Output frequency ∆t 1800 s

Advective Terms
UC provided

as input
US by using JONSWAP parameterization

or
algorithm developed in this Thesis

UD calculated
with γ = 0.01

Turbolent Diffusion
Kh 0
Kv 0

Forcing Input Data
Wind forcing SKIRON

data
Current forcing SURF

data
Stokes drift JONSWAP parametric spectra
forcing data or

SWAN wave energy spectra

Table 3.28: MEDSLIK-II computational setting used in coupling experiments.

Two experiments have been performed and they are organized as follows.

• In the first, SURF-NEMO has been used to simulate current fields
for the period between 11-02-2012 at 00.00 and 15-02-2012 at 00.00
(spin-up time of 3 days). Then, SURF-SWAN has been used to sim-
ulate wind-wave fields for the period between 14-02-2012 at 00.00 and
15-02-2012 at 00.00. After that, SURF-SWAN Directional-frequency
spectra outputs have been provided to the Stokes Drift calculation al-
gorithm developed in this Thesis. Finally, the Stokes’ Drift velocity
fields computed and the SURF-NEMO current fields have been pro-
vided to MEDSLIK-II which has been used to simulate the trajectories
of the four drifters released during the Costa Concordia accident.
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• In the second, SURF-NEMO has been used to simulate current fields
for the period between 11-02-2012 at 00.00 and 15-02-2012 at 00.00
(spin-up time of 3 days). Then, MEDSLIK-II used the SKIRON winds
to calculate the Stokes’ Drift using the JONSWAP parameterization
(MEDSLIK-II original algorithm).

A summary of the configuration of the two coupling experiments is shown in
table 3.29.

Table 3.29: Description of the two numerical experiments performed to test SURF-SWAN-MEDSLIK-
II coupling.

Exp Number SURF-NEMO Stokes Drift MEDSLIK-II
spin-up Computation simulation

Exp. 7.1 3 days by using SURF-SWAN 4 drifters
wave energy spectra trajectories

Exp. 7.2 3 days by using JONSWAP 4 drifters
parameterized spectra trajectories

Two metrics have been used to objectively evaluate the accuracy of the La-
grangian trajectory simulations.

The first is the the separation distance di between the observed and the
simulated trajectories as a function of the simulation time:

di(xs(ti), xo(ti))

where di is the distance at the selected time ti, after a reference time t0,
between the simulated drifter position, xs, and the observed positions, xo.
The acceptable maximum separation between observed and modeled trajec-
tory depends on the particular model application. Generally, an error lower
than 20 km would allow the use of the model forecasts in situations of rapid
response, such as oil spills and search and rescue operations [24]. Generally,
taking a quite conservative limit, it can be considered acceptable a spatial
error of the simulated trajectories of the order of three-four times the hori-
zontal resolution of the Eulerian ocean currents used to force the model [24].

The second metric is the Liu and Weisberg skill score [63]. It is defined
as an average of the separation distances weighted by the lengths of the
observed trajectories:
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s(ti) =

∑ti
t=0 di(xs(t), xo(t))∑ti
t=0 loi(xo(t0), xo(t))

(3.48)

where loi is the length of the observed trajectory at the corresponding time,
ti , after a reference time t0. The s index can be used to define a model skill
score:

ss(ti) =

{
1−s(ti)

n
(s ≤ n)

0 (s > n)
(3.49)

where n is a tolerance threshold. In this work, as suggested by Liu and
Weisberg [63], we used n = 1. It corresponds to a criterion that cumula-
tive separation distance should not be larger than the associated cumulative
length of the drifter trajectory. The higher the ss value, the better the perfor-
mance, with ss = 1 implying a perfect fit between observation and simulation
and with ss = 0 indicating the model simulations have no skill. This skill
score may have some limitations in case of very weak currents and hence
small cumulative distances, that may imply a very large value of s and very
low skill score ss. These limitations may be overcome by setting a proper
tolerance threshold, n, as suggested by Liu and Weisberg [63].

Figure 3.34 shows the real tracks (black lines) of the four drifter released
(a, b, c, and d, respectively) and the simulated MEDSLIK-II trajectories for
the two experiments of table 3.29.

Considering the drifters 1, 2, and 3, both the simulated trajectories by
using JONSWAP parametric frequency energy spectra and SURF-SWAN
directional-frequency output variance spectra have the correct direction re-
spect to the real ones. For the drifter 4 this is not true. Furthermore, all the
simulated drifters are much too slow as compared to reality.

The latter can be reasonably attributed to a low accuracy of the SURF-
NEMO current fields, remembering that current velocity magnitude can be
generally considered of the first order, while Stokes Drift is a second order
effect.

Indeed, from the comparison with the MEDSLIK-II trajectories calculating
by using the currents provided by the relocatable model IRENOM (Inter-
active RElocatable Nested Ocean Model, described in De Dominicis et al.
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[23] and presented in figure 3.34), it is clear that the SURF-NEMO current
velocities are responsible for the lower path traveled by the simulated drifter.

(a) (b)

(c) (d)

Fig. 3.34: Real drifters trajectories (black lines) from 14th February at 9:00 UTC to 15th February
at 9:00 UTC and simulated MEDSLIK-II trajectories using JONSWAP parametric spectra and SURF-
NEMO currents (blu line), SURF-SWAN directional-frequency variance output spectra and SURF-NEMO
currents (red line) or JONSWAP parametric spectra and IRENOM currents (green line). (a) Drifter 1.
(b) Drifter 2. (c) Drifter 3. (d) Drifter 4.

The low accuracy of SURF-NEMO current fields can be reasonably justified
by the closed lateral boundary condition used in this work. In addition, it
has to been considered that the Giannutri island is not represented in the
SURF-NEMO computational domain, while in the IRENOM implementation
of De Dominicis et al. [23] experiments it was, and therefore the intensified
current flow stream demonstrated in [23] can not be calculated by SURF.
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Focusing on the Stokes’ Drift computations, the results show that the Stokes
Drift velocities calculated from the SURF-SWAN directional-frequency out-
put spectra are slower of than the ones computed by using JONSWAP para-
metric frequency spectra and MEDSLIK-II. This is confirmed by figures 3.35,
3.36 and 3.37.

In figure 3.35 the module, as a function of the simulation time, of the Stokes
Drift velocities derived by using SURF-SWAN output spectra (in red) are
compared to the ones obtained by using JONSWAP spectra (in blue), for
the four drifters.

Figures 3.36 and 3.37 show the Separation Distance and the Skill Score ss, as
a function of the simulation time, calculated for the simulations performed
by using JONSWAP spectra (in blu) and SWAN output spectra (in red).
The best results for both the Separation Distance and the Skill Score are
obtained using the JONSWAP spectra (in blu). This is a consequence of
the fact that the Stokes Drift velocities calculated from the SURF-SWAN
directional-frequency output spectra are slower than the one computed by
using the JONSWAP spectra.
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(a) (b)

(c) (d)

Fig. 3.35: Module of the Stokes Drift velocities, as a function of the simulation time, from 14th
February at 9:00 UTC to 15th February at 9:00 UTC by using SURF-SWAN directional-frequency output
spectra (red lines) and by using JONSWAP parametric frequency spectra (blu lines). (a) Drifter 1. (b)
Drifter 2. (c) Drifter 3. (d) Drifter 4.

165



(a) (b)

(c) (d)

Fig. 3.36: Real drifters trajectories (black lines) from 14th February at 9:00 UTC to 15th February
at 9:00 UTC and simulated MEDSLIK-II trajectories using JONSWAP parametric spectra (blu lines) or
SURF-SWAN directional-frequency varinace output spectra (red lines). (a) Drifter 1. (b) Drifter 2. (c)
Drifter 3. (d) Drifter 4.
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(a) (b)

(c) (d)

Fig. 3.37: Real drifters trajectories (black lines) from 14th February at 9:00 UTC to 15th February
at 9:00 UTC and simulated MEDSLIK-II trajectories using JONSWAP parametric spectra (blu lines) or
SURF-SWAN directional-frequency varinace output spectra (red lines). (a) Drifter 1. (b) Drifter 2. (c)
Drifter 3. (d) Drifter 4.
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The significant differences between the velocity module of the two meth-
ods can be explained considering that the JONSWAP frequency spectrum
is a parameterization, which means that its shape and values are computed
from the local wind fields by using empirical statistical formulas (see Section
2.2.3 for the JONSWAP spectra definition). These formulas make no at-
tempt to separate the physical processes involved in wave growth and energy
dissipation. They represent net wave growth from known properties of the
wind field (wind speed and direction, fetch and duration) [77] but they do
not consider, for example, the depth. Since wave growth is affected by the
depth, with additional dissipative processes in play, the deep water curves
like the JONSWAP one will over-estimate the wave growth in shallow water
[77]. In addition, it has been fully demonstrated and accepted by the scien-
tific community (see, for example, [41] [47] [38]) that parametric spectra as
JONSWAP and Pierson-Moskowitz are not able to properly represent wave
spectra developed under rapidly wind variations, overestimating always the
real ones.

This conclusion is supported by figure 3.38, where the Significant Wave
Heights computed by SURF-SWAN for the coordinates that describe the tra-
jectory of the first drifter is compared to the ones computed by MEDSLIK-II
using JOSWAP parameterization.

Fig. 3.38: Significant Wave Height, as a function of the time step and the trajectory coordinates of
the drifter 1, computed by MEDSLIK-II and SWAN.

Therefore, it is possible to conclude that the Stokes Drift velocities calcu-
lated by using the JONSWAP parametric spectra already implemented in
MEDSLIK-II are higher than the ones calculated by using SWAN directional
frequency output spectra due to the JONSWAP spectra overestimation.

In order to support this conclusion, two more experiments have been per-
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formed for the period between 14-02-2012 at 00.00 and 16-02-2012 at 00.00.

The purpose of these experiments was to compare the Significant Wave
Height measured by the ISPRA buoy located at Civitavecchia with the ones
calculated by using the JONSWAP parameterization and the SWAN wave
energy spectra.

In the first one, the significant wave height has been computed using the
JONSWAP spectrum parameterization implemented in MEDSLIK-II.

In the second, the same has been done by using SURF-SWAN directional
frequency spectra.

Results are shown in figure 3.39.

Fig. 3.39: Significant Wave Heights timeseries for the period between 14-02-2012 at 00.00 and 16-
02-2012 at 00.00 sampled by the ISPRA buoy located at Civitavecchia offshore waters and computed by
SURF-SWAN and MEDSLIK-II for the same location.

As figure 3.39 demonstrates, the Significant Wave Heights computed by
MEDSLIK-II are significantly meanly higher than the ones computed by
SWAN, confirming the general overestimation of the JONSWAP wave spec-
tra respect to real ones.
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Chapter 4

Conclusions

The blowing of the wind on the sea surface generates ocean currents due to
turbulent stress and ocean waves, which give rise to wave-induced velocities
that are known as Stokes’ Drift velocities. The Stokes’ Drift transport associ-
ated to a random gravity wave field is a function of the wave Energy Spectra
that statistically fully describe it.

Therefore, in order to perform an accurate numerical simulation of the oil
motion in seawater, a coupling of the oil-spill model with a wave and turbu-
lence current forecasting model is needed. In this Thesis work, the coupling
of the SWAN wind-wave model with MEDSLIK-II oil-spill numerical model
and NEMO relocatable model has been performed and tested.

First, in order to improve the knowledge about the wind-wave model and
its numerical performances, a preliminary sensitivity study of the SWAN
model has been carried out. The Significant Wave Height and the Peak pe-
riod simulated by the SWAN model for the period between 14-02-2012 at
00.00 and 16-02-2012 at 00.00 have been compared with that ones sampled
for the same period by the ISPRA directional buoys located at Venezia, An-
cona and Monopoli.

The experiments performed to test the sensitivity of the SWAN numerical
model to atmospheric and currents input fields have demonstrated the great
influence that the resolution of the wind forcing fields and the accuracy of
the current fields have on the quality of the wave model simulations.
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Numerical tests done to investigate the SWAN sensitivity to computational
time-step variations (60, 600 and 1800 seconds) have showed that the SWAN
numerical model seems to be quiet insensitive to this numerical parameter.
This can be justified by the many parameterizations that are used to repre-
sent the physical processes involved in waves generation in the SWAN model
code. Thus, not using some kind of time evolving equations reduces the sen-
sitivity of the model results to time step variations. Furthermore, it has to
be noted that the SWAN insensitivity to computational time-step changes
can be also due to the too coarse computational grid used in this group of
experiments, which can not be able to represent small scale gradient of quan-
tities involved in waves generation reducing sensibly their changes in time.

Experiments performed to test wave refraction (through the c-theta param-
eter set equal to 0.5) have demonstrated that the computational grid with
horizontal resolution approximately equal to 2.2 km used in sensitivity ex-
periments was resolute enough to properly represent the wave refraction.

The last sensitivity experiments have been performed in order to test and
find the best physical setting able to properly simulate the environmental
dynamics characterizing the Adriatic Sea domain. Results have showed that
the best combination for the Exponential Wave Growth and White-Capping
energy dissipation parameterizations is that one for which the empirical for-
mulations by Komen et al. [59] are used. The best parameterization of the
Bottom Friction physical process is the one from Collins [19]. In addition,
results have showed that the model is insensitive to the using or not of the
Non-Linear Triads, which means that, in our model configuration, the resolu-
tion of the spatial computational grid used is too coarse to properly represent
the near-coastal processes.

Next, using the best SWAN model configuration detected, the coupling be-
tween SWAN and NEMO within the SURF relocatable ocean model has been
performed and tested.

SWAN-NEMO coupling experiments results have showed that the SURF-
SWAN simulations are insensitive to SURF-NEMO current fields obtained
with different spin-up times. This can be justified by the small differences in
the SURF-NEMO current fields and by the fact that in this initial step the
SURF relocatable model has been developed by using closed lateral bound-
ary conditions in SURF-NEMO computations.
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In order to show the benefit of using SWAN to compute the Stokes’ Drift
velocity fields we have developed the computation of the Stokes’ Drift from
SWAN model output. The Newton’s iterative method has been implemented
in order solve the general dispersion relation for surface gravity waves for the
wave-number K. Results have showed that, at the second order of accuracy,
the algorithm developed exactly reproduces the wave-number values given
by Goda [34].

In addition, both the trapezoidal and the rectangle rules have been imple-
mented to calculate the stokes drift velocity given by equations 3.32 and
3.33. Results have been compared with the mean directions calculated by
SWAN, considering that the stokes drift direction is approximately equal to
the mean wave direction and the Composite Trapezoidal rule has showed the
best results.

Finally, the coupling of the oil-spill model MEDSLIK-II with the wind-wave
model SWAN has been performed in order to force the MEDSLIK-II model
with Stokes’ Drift velocity fields calculated from the SWAN directional-
frequency spectra outputs.

In SWAN-MEDSLIK-II coupling experiments, the trajectories of four drifters
have been simulated by using JONSWAP parametric spectra or SWAN out-
put spectra and results have been compared with the real paths traveled
by the drifters. Results showed that the Stokes Drift velocities calculated
from the SWAN directional-frequency output spectra by using the algorithm
developed in this Thesis are slower of than computed by using JONSWAP
parametric frequency spectra and MEDSLIK-II. The significant differences
between the velocity module of the two methods can be explained considering
that the JONSWAP frequency spectrum is a parameterization. This means
that its shape is computed by using empirical statistical formulas which make
no attempt to separate the physical processes involved in wave growth and
energy dissipation but represent net wave growth from known properties of
the wind field (wind speed and direction, fetch and duration). It has been
fully demonstrated and accepted by the scientific community that parametric
spectra as JONSWAP and Pierson-Moskowitz are not able to properly rep-
resent wave spectra developed under rapidly wind variations, overestimating
always the real ones and our experiments have demonstrated this overesti-
mation.

The lower accuracy of MEDSLIK-II simulated trajectories obtained by using
SWAN directional-frequency output spectra can be justified by considering
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that, in this work, the SWAN model has not been nested in a coarser wave
model and, therefore, the swell, which is a fundamental component of wave
energy spectra, has not been considered. In addition, nowdays, according
to [98], third generation wave models are able to properly simulate integral
wave parameters but the accuracy of the one- and bi-dimensional wave en-
ergy spectra simulated is still much low.

Therefore, this work is a first fundamental attempt to solve the problem
linked to the Stokes’ Drift by using wind wave models which can improve the
accuracy of its computation, but much work has still to be done.

Future improvements can be the nesting of the SWAN model in a coarser
wind-wave model in order to consider the swell component and the develop-
ment of some different numerical schemes able to solve with more accuracy
the computation of the Stokes’ Drift from wave energy spectra.
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[12] D. Bruciaferri, S. Falchetti, F. Trotta, L. Giacomelli, and M. Za-
vatarelli. Report on the characteristics of the relocatable wind-wave
model swan. Progetto Tessa, Attivita’ 1.3, Dipartimento di Fisica
e Astronomia dell’Universita’ di Bologna, Laboratorio SINCEM, via
S.Alberto 163, 48100 Ravenna, 01-07-2013.

[13] P. Carracedo, S. Torres-Lopez, M. Barreiro, P. Montero, C. F. Balseiro,
E. Penabad, P.C. Leitao, and V. Perez-Munuzuri. Improvement of
pollutant drift forecast system applied to the prestige oil spills in galicia
coast (nw of spain): Development of an operational system. Mar.
Pollut. Bullet., 53(5):350–360, 2006.

[14] S. Castanedo, R. Medina, I. J. Losada, C. Vidal, F. J. Mndez, A. Os-
orio, J.A. Juanes, and A. Puente. The prestige oil spill in cantabria
(bay of biscay). part i: operational forecasting system for quick re-
sponse, risk assessment, and protection of natural resources. Journal
of Coastal Research, pages 1474–1489, 2006.

[15] L. Cavaleri, P.L De Filippi, G.F Grancini, G.L Ioveniti, and R. Tosi. Ex-
treme wave conditions in the tyrrhenian sea. Ocean Engng, 13(2):157–
180, 1986.

[16] L. Cavaleri and P. Malanotte Rizzoli. Wind wave prediction in shal-
low water: Theory and applications. Journal of Geophysical Research:
Oceans, 86:10961âĂŞ10973, 1981.
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[80] J. F. Price, R. A. Weller, and R. R. Schudlich. Wind-driven ocean
currents and ekman transport. Science, 238:1534–1538, 1987.

[81] J. M. Price, M. Reed, W. R. Howard, M. K.and Johnson, Z. G. Ji, C. F.
Marshall, N. L. Guinasso, and G. B. Rainey. Preliminary assessment of
an oil-spill trajectory model using satellite-tracked, oil-spill-simulating
drifters. Environ. Model. Softw., 21:258–270, 2006.

[82] R. Proctor, A. J. Elliot, and R. A. Flather. Forecast and hindcast
simulations of the braer oil spill. Mar. Pollut. Bullet., 28(4):219–229,
1994.

[83] A. Quarteroni and F. Saleri. Calcolo Scientifico - Esercizi e problemi
risolti con - MATLAB e Octave - 4a ed. Springer-Verlag Italia, Milano,
2008.

[84] A. Quarteroni, F. Saleri, and R. Sacco. Matematica Numerica - 3a ed.
Springer-Verlag Italia, Milano, 2008.

[85] C. Reed, M. Turner and A. Odulo. The role of wind and emulsification
in modelling oil spill and surface drifter trajectories. Spill. Sci. Technol.
B., 1:143âĂŞ157, 1994.
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Appendix A

Potential Velocity

In order to define the concept of Potential Velocity it is needed before to
remind the Line Integral definition.

A.1 Line Integral

Let us consider an x-z plane and two points P0 and P1 and a vector ~a(x, z)
defined over it as in figure A.1.

Fig. A.1: x-z plane, two points P0 and P1, a vector ~a and path C1 and C2 defined over it (modified
from [26]).
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Let’s consider now the integral from P0 to P1 of the projection of the vector
~a on the contour line C1 denoting it as F:

F ≡
∮
C1(P0,P1)

~a · ~dl (A.1)

If the integral from P0 to P1 is calculated on the contour C2 rather than on
C1, a different value of F will be result.

But, if equation A.1 is rewritten as

F ≡
∮
C1(P0,P1)

dF (A.2)

where dF is the exact differential of F , then

F = F (P1)− F (P0) (A.3)

that is, F is only a function of the end points of the integration. Therefore,
if we require that

~a · ~dl = dF (A.4)

independence of path is ensured.

For two dimensions, ~a = (ax, az) and ~dl = dxî+ dzk̂ and

~a · ~dl = axdx+ azdz (A.5)

while the total differential of F is

dF =
∂F

∂x
dx+

∂F

∂z
dz = ~∇F · ~dl (A.6)

Hence, the condition of independence of path A.4 become

axdx+ azdz =
∂F

∂x
dx+

∂F

∂z
dz (A.7)
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which means

ax =
∂F

∂x
, az =

∂F

∂z
, (A.8)

or

~a = ~∇F (A.9)

Then, it follows that

∂ax
∂x
− ∂az

∂z
= 0 (A.10)

or, in three dimensions,

~∇× ~a = 0 (A.11)

Therefore, in summary, independence of path of the line integral requires
that the curl of ~a must be zero.

A.2 Potential Velocity

Instead of the vector ~a, let us consider the vector velocity ~u given by

~u(~x, t) = uî+ vĵ + wk̂ (A.12)

and let’s define φ as the value of the line integral of ~u

φ =

∮
C1(P0,P1)

~u · ~dl (A.13)

The quantity ~u · ~dl is a measure of the fluid velocity in the direction of the
contour at each point.

For the value of φ to be independent of path the terms in the integral must
be an exact differential dφ, which means that
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u =
∂φ

∂x
(A.14)

v =
∂φ

∂y
(A.15)

z =
∂φ

∂z
(A.16)

and therefore that the curl of ~u (which is the physical quantity vorticity ~ξ)
must be zero, that is

~ξ = ~∇× ~u =
(∂w
∂y
− ∂v

∂z

)
î+
(∂u
∂z
− ∂w

∂x

)
ĵ +

(∂v
∂x
− ∂u

∂y

)
k̂ = 0 (A.17)

If this condition apply, then it is possible to write

~u = ~∇φ (A.18)

that is, we can express the vector quantity ~u by the gradient of the scalar
function φ for a flow with no vorticity.
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Appendix B

Kelvin Theorem

The Kelvin Circulation theorem states: ‘In an inviscid, barotropic flow with
conservative body forces, the Circulation around a closed curve moving with
the fluid remains constant with time’ [60].

Let us consider a moving closed curve C and the velocity vector ~u defined
over it as in figure A.1.

Fig. B.1: x-z plane, two points P0 and P1, a vector ~a and path C1 and C2 defined over it (modified
from [26]).

The physical quantity Circulation Γ for the close curve C is defined as

Γ =

∮
C

~u · d~s (B.1)

where d~s is the infinitesimal vector displacement associated to each point
composing C.
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According to Stokes’ Theorem, it is possible to write

Γ =

∮
C

~u · d~s =

∫ ∫
A

~∇× ~u · d ~A (B.2)

where A is the surface closed by the curve C (see figure B.1).

Then, it is possible to relate the Circulation Γ with the vorticity ξ (for the
definition of vorticity see A) writing

Γ =

∫ ∫
A

~ξ · d ~A =

∫ ∫
A

|~ξ| cos θ| ~A| (B.3)

where θ is the angle between the vorticity vector ~ξ and the vector ~n normal
to the infinitesimal surface dA (see figure B.1.

The vorticity is therefore the circulation per unit area

[ξ] =
[Γ

A

]
(B.4)

To derive the Kelvin Theorem, let us consider that from equation B.1 it is
possible to write

D

Dt
(dΓ) =

D

Dt
(~u · d~s) (B.5)

=
D~u

Dt
· d~s+ ~u · D

Dt
(d~s) (B.6)

=
D~u

Dt
· d~s+ ~u · d~u (B.7)

Now, integrating between the points 1 and 2 (see figure B.1), it will be

D

Dt
(Γ1,2) =

D

Dt

∫ 2

1

~u · d~s (B.8)

=

∫ 2

1

D~u

Dt
· d~s+

~u2

2

∣∣∣2
1

(B.9)

190



If the point 1 is equal to the point 2, i.e., 1 = 2, then

lim
1→2

D

Dt
(Γ1,2) =

∮
D~u

Dt
· d~s (B.10)

Consider now a not rotating, inviscid (i.e., ~∇ · ~u = 0) fluid with constant
density ρ0. Then, it is possible to write

D~u

Dt
= −~∇

( p
ρ0

+ ϕ
)

(B.11)

where ~∇ϕ = g.

Substituting equation B.11 into B.10 and integrating between the points 1
and 2 with the points 1 = 2 we obtain

lim
1→2

D

Dt
(Γ1,2) = 0 (B.12)

which means that the circulation Γ is constant in time if calculated around
a closed curve moving with the fluid.
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Appendix C

Stochastic Processes

This brief description of the Stochastic Processes theory is carried out fol-
lowing [103].

A Stochastic Process is a family of time indexed random variables Z(s, t),
where s belongs to a sample-space and t belongs to an index set.

For a fixed t, Z(s, t) is a random variable.

For a given s, Z(s, t), as a function of t, is called a sample function or
realization.

The population that consists of all the possible realizations is called the
ensemble in stochastic processes and time series analysis.

Thus, a time series is a realization or sample function from a certain stochas-
tic process.

With proper understanding that a stochastic process Z(s, t) is a set of time
idexed random variables defined on a sample space, the variable s is usually
suppressed and it is simply written Z(s, t) as Z(t) or Zt, just as random
variables are denoted by X rather than by X(s).

Stationary Stochastic Processes: Consider a finite set of random vari-
ables {Zt1 , Zt2 , ..., Ztn} from a stochastic process {Z(t) : t = 0, 1, 2, ...}. The
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n-dimensional probability distribution function associated to the stochastic
process is defined by

FZt1 ,...,Ztn (x1, ..., xn) = Pr{s : Zt1 ≤ x1, ..., Ztn ≤ xn} (C.1)

A process is said to be first-order Stationary in distribution if its one-dimensional
distribution function is time invariant, i.e., if

FZt1 (x1) = FZt1+k(x1) (C.2)

for any integers t1, k and t1 + k. In general a process is said to be nth-order
Stationary in distribution if

FZt1 ,...,Ztn (x1, ..., xn) = FZt1+k,...,Ztn+k
(x1, ..., xn) (C.3)

for any n-tuple (t1, ..., tn), and k of integers.

A process is said to be Strictly Stationary if equation C.3 is true for any
n.

The mean function of the process {Z(t) : t = 0, 1, 2, ...} is defined as

µt = E(Zt) (C.4)

where the subscript •t means that the mean is related to the generic Zt
random variable. Similarly, the variance function of the process is

σ2
t = E(Zt − µt)2 (C.5)

and the covariance and correlation function are, respectively,

γ(t1, t2) = E(Zt1 − µt1)(Zt2 − µt2) (C.6)

ρ(t1, t2) =
γ(t1, t2)√
σ2
t1

√
σ2
t2

(C.7)

For a strictly stationary process, since the distribution function is the same
for all t, the mean function µt = µ and the variance function σ2

t = σ2 are a
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constant, provided that E(|ZT |) <∞ and E(|Z2
t | <∞). Furthermore, since

FZt1 ,Zt2 = FZt1+k,Zt2+k for any integers t and k, we have, letting t1 = t − k
and t2 = t,

γ(t1, t2) = γ(t− k, t) = γ(t, t+ k) (C.8)

and

ρ(t1, t2) = ρ(t− k, t) = ρ(t, t+ k) (C.9)

Therefore, for a strictly stationary process with the first two moments finite,
the covariance and the correlation between Zt and Zt+k depend only on the
time lag k.

The Strictly Stationarity is a strong condition, that usually does not apply
to real processes. Thus, in time series analysis, a weaker sense of stationarity
in terms of the moments of the process is used.

A process is said to be nth-order Weakly Stationary if all its joint moments
up to order n exist and are time invariant. Sometimes, the terms stationary
in the wide sense or Covariance Stationary are also used to describe a second-
order weakly stationary process, which has constant mean and variance, with
the covariance and the correlation being functions of the time difference alone.

Therfore, the stationarity of a process greatly simplifies the description, since
only the statistical characteristics for one moment in time are required (in-
cluding the relationships with the random variables at all time intervals).

As we have seen, for a stationary process {Zt} the mean E(Zt) = µ and vari-
ance V ar(Zt) = E(Zt − µ)2 = σ2 are constant and covariances Cov(Zt, Z, s)
are functions only of the time difference k = |t− s|. Hence, it is possible to
write

γk = Cov(zt, Zt + k) = E(Zt − µ)(Zt+k − µ) (C.10)

and the correlation between Zt and Zt+k as

ρk =
Cov(Zt, Zt+k)√

V ar(Zt)
√
V ar(Zt+k)

=
γk
γ0

(C.11)
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where V ar(Zt) = V ar(Zt+k) = γ0. As functions of k, γk is called autoco-
variance function and ρk is called the autocorrelation function in time series
analysis because they represent the covariance and the correlation between
Zt and Zt+k from the same process, separated only by k time lags. It can be
showed that the autocovariance function and the the autocorrelation function
of stationary processes have the following properties:

1. γ0 = V ar(Zt); ρ0 = 1.

2. |γk| ≤ γ0; |ρ0| ≤ 1.

3. γk = γ−k; ρk = ρ−k.

Gaussian Stochastic Processes: If all (joint) probability density func-
tions of a process (stationary or not) are Gaussian, the process is called a
Gaussian process.

A stationary, Gaussian process is even simpler to describe: only the mean
and the covariances for one moment in time are required (because they are
identical at all other times). The covariance is only a function of the time
interval k, thus

γ(t1, t2) = γ(t− k, t) = γ(t, t+ k) = γk (C.12)

Ergodic Stochastic Processes: A stationary time series is characterized
by its means µ, variance σ2 and autocorrelation ρk. The exact values of these
parameters can be calculated if the ensemble of all the possible realizations
is known. Otherwise, they can be estimated if multiple independent realiza-
tions are available. In most application, time series constitute only a single
realization, which makes it impossible to calculate the ensemble average.

With only a single realization, a natural estimator for the mean µ = E(Zt)
of a stationary process is the sample mean

Z̄ =
1

n

n∑
t=1

Zt (C.13)

which is the time average of n observations. If Zt is a continuous random
variable, it follows that
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Z̄ =
1

T

∫ T

t0=0

Zt (C.14)

where T is the duration of the process.

Z̄ is an unbiased estimtor fot µ. Indeed

E(Z̄) =
1

n

n∑
t=1

E(Zt) =
1

n
· nµ = µ (C.15)

A stationary process is said to be Ergodic for the mean if it is true that

lim
n→∞

1

n

n∑
t=1

Zt = µ (C.16)

or, for continuous random variables,

lim
n→∞

1

T

∫ T

t0=0

Zt = µ (C.17)
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