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Abstract

This work aims to evaluate whether it is possible to detect plastic on the sea surface

with the use of satellite images. High resolution multispectral optical data from our study

area were obtained from the European Space Agency under the Copernicus program. The

study area is the Po River Delta, one of the largest river deltas in the Mediterranean,

located in the Veneto region of Emilia Romagna which flows into the northern Adriatic

Sea after completing its course which starts from Monviso and crosses the entire Plain.

Padana. Floating aggregations were detected using an optimized algorithm (floating

debris index). An algorithm that exploits the difference between NIR and the base

reflectance of NIR. After processing the scanned images, the searched information is

extracted. Macroplastics are often mixed with natural materials such as algae or foam.

Two indices are used to try to classify the different materials: a normalized differential

vegetation index and the floating debris index. However, this process is not always linear.

Clouds and rough seas can compromise data and macroplastics move fast. To validate

the functioning of the algorithm used, a bibliographic search was carried out, from which

information was obtained in which there was certainty of the presence of macroplastics

in situ. And thanks to these studies, we were able to understand if the algorithm works

and to what degree of accuracy. In particular, satellite images were collected from the

MARIDA dataset (Kikaki et al. 2020) and from the following studies: Biermann et al.

2020 and Topouzelis et al 2019. Among the most important findings is that we have

shown that aggregate plastic spots can be detected by satellites.
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Chapter 1

Introduction

Plastic has now become an omnipresent material in our life and in our economy.

Plastic is used for a wide range of purposes due to its affordability, versatility, strength,

and light weight. However, we are unable to properly and efficiently recycle all the plas-

tic we continue to use. Worldwide, it is estimated that between 4 and 12 million tons

of plastic enter the oceans each year, mainly from coastal inputs (Boucher and Friot,

2017; Jambeck et al., 2015; Neufeld et al., 2016). Plastic pollution is an emerging en-

vironmental risk affecting human health, livelihoods and ecosystems (van Emmerik &

Schwarz, 2020). Rivers carry most of the plastic in the oceans and are also (temporary)

reservoirs of plastic cargoes (Meijer, van Emmerik, van der Ent, Schmidt, & Lebreton,

2021). Plastic is nowadays one of the main sources of environmental pollution, particu-

larly in the seas. Taking into account the plastic balance it results that every year 4.8 -

12.7 million tons of macroplastics waste observed at sea enter the sea (Lebreton, et al.,

2017; Meijer, van Emmerik, van der Ent, Schmidt, & Lebreton, 2021). Currently, how-

ever, direct monitoring of rivers is practically absent. The only exception is monitoring

through physical sampling using trawl nets and nets, visual counting from bridges or

river banks or techniques based on images obtained through the use of cameras or un-

manned aerial vehicles (UAVs) ( Castro-Jiménez, GonzálezFernández, Fornier, Schmidt,

& Sempéré, 2019; Roebroek, van Emmerik, González, & Laufkötter, 2022). These mon-

itoring techniques are often labor intensive and therefore difficult to scale at the river

basin level, continental or global. As a result, their geographic coverage is limited and

data is not collected consistently over time and space. The use of these techniques has

identified a plastic flow of many orders lower than that hypothesized by the empirical

models mentioned above. There is therefore an important inconsistency in the mass

balance of plastic. In any case, the quantity of material that arrives annually in the

oceans is very high and, for this reason, the possibility of monitoring and quantifying

these flows of plastic material exiting the watercourses through the use of of satellite
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data, whose measurement capacity in this area remains currently minimally explored.

Hence, direct monitoring of macroplastics in rivers by satellite would help quantify and

explore this issue. The reasons that prompted me to tackle this issue derive from the

responsibility I feel to help and preserve the marine environment, a precious treasure to

be safeguarded. Contributing to the preservation of nature is a great satisfaction. This

paper is organized as follows: chapter 1 presents an introduction to the history of the

production of plastic materials over the years; post-use management, where they end up

and what are its effects on human health and the environment; recalls the fundamental

concepts of remote sensing, considering it useful to provide a general framework for this

discipline. Chapter 2 describes the different softwares used for viewing and processing

satellite data. Chapter 3 describes the elaboration put in place to verify the effectiveness

of the methodology used. Chapter 4 describes the application of the model in the waters

leaving the river Po. The thesis ends with a discussion on the opportunities and limits

of such applications in the future.

1.0.1 The role of plastic pollution for the healthy ocean

In just a few decades, plastics have radically changed economy and society, becom-

ing an essential element in the modern life. Combining excellent functional properties,

such as low weight, high strength, wide application range, easy processability on an in-

dustrial scale, with low cost, these materials are omnipresent and have outgrown most

manmade materials (European Commission, 2019; Geyer et al., 2017).

Figure 1.1: Production of plastics in Europe and worldwide from 1950 to 2015 (MMT)

(Statistics 2017)

Commercial production of plastics started around 1950’s, when the innovations in



13

material field dictated by military needs to find substitutes for natural not available

products, invade the civil world. Since this moment, plastics production has enjoyed

exceptional growth and, between 1950 and 2015, an estimated 8.3 billion tonnes of plas-

tics were produced, of which 6.3 billion tonnes are considered as waste (Geyer et al.,

2017). In 2018 global plastics production reached 359 million tonnes (figure 2.1) with

61.8 million tonnes generated in Europe alone (PlasticsEurope— The Facts 2019). At

the present rate of growth, worldwide plastics production is estimated to double within

the next 20 years (Lebreton and Andrady, 2019). The image shows the projection up

to 2050 of the current global trends in waste management (fig. 2.2), 9000 Mt of plastic

waste will have been recycled, 12,000 Mt incinerated and 12,000 Mt discarded in landfills

or in the environment.(source: Geyer et al., 2017)

Figure 1.2: Cumulative plastic waste generation and disposal (in million metric tons).

Solid lines show historical data from 1950 to 2015; dashed lines show projections of

historical trends to 2050.

The marine environment represents a natural resource of vital importance for the

planet. Marine and ocean ecosystems are home to vast biodiversity, and yet human

well-being is linked strictly to the sea and its resources, man has altered its balance

over the last few centuries. Fishing, pollution, deep sea exploration for hydrocarbons,

ocean acidification and warming of ocean temperatures accompanied by sea level rise as

a consequence of glacier melting (IPCC 2004) are important examples referring to the

pressure that humans exert on marine environments, which determine negative ecological

and socio-economic repercussions.

During the recent decades the presence of anthropogenic waste, which represents
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one of the main sources of pollution of the oceans, has been identified as one of the most

serious environmental problems of global interest. The “Marine Litter” is defined as

“any solid material discarded, manufactured or transformed, disposed of or abandoned

in a marine or coastal environment”. It consists of objects, often disposable, used by

people and deliberately discarded in rivers, at sea, on beaches, transported by rivers,

wastewater, rainwater or winds, or those accidentally lost (UNEP, 2009).

The presence of litter in the sea was first mentioned in the scientific literature in

1960, and the numerous researches that followed stated a steady increase in the amount

of debris in ocean ecosystems. Several studies have shown that the main material of

waste is plastic, associated with a continuous increase in annual global production of 299

million tons (PlasticsEurope, 2015).

It is well established that marine litter and in particular plastics affects marine

organisms and habitats. Species and ecosystems can be exposed to marine environmen-

tal plastic litter via a variety of exposure pathways including ingestion, entanglement,

smothering, and the rafting and introduction of invasive species. (John S.Woods 2019

et.al.) Each years, millions of animals that live in the oceans are debilitated mutilated

and killed by marine litter (Butterworth et. Al., 2012). Marine litter has been demon-

strated to have deleterious impact on individuals, with direct lethal or sublethal effects.

It seems inevitable that entanglement and ingestion by/of marine debris will alter the

biological and ecological performance of individuals, compromising and the individual’s

ability to capture food, digest food, sense hunger, escape from predators, and to re-

produce, as well as decreasing body condition and compromising locomotion, including

migration (CBD 2012). With the transport of floating plastic there is also a poten-

tial problem that is often overlooked: the transport and introduction of invasive species

(NOAA, 2015). Biofilms of algae, bacteria and cyanobacteria can colonize floating de-

bris and thrive in the marine environment. Bio-foulers including barnacles, mussels and

macroalgae can attach to surfaces of large debris and travel.
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Figure 1.3: The image portrays an example of the interaction between marine vertebrates

and plastic waste abandoned in the environment (www.oggiscienza.it)

Figure 1.4: The image portrays an example of interaction between marine vertebrates

and plastic waste abandoned in the environment (www.greenme.it)

In 2012, the Secretariat of the Convention on Biological Diversity (SCBD) found

the majority of reported marine debris pollution (MDP) entanglement and ingestion

cases were caused by plastic debris (figure 2.6)
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Figure 1.5: Reported number of entanglements / ingestion by taxonomic group. Charts

show total number of individuals (a.), Total number of species (b.), And total papers

involving marine debris entanglement / ingestion (SCBD, 2012).

Just over a decade ago, the number of marine species known to be impacted by

anthropogenic litter was estimated at around 260 species (Derraik, 2002). Now, the

number of marine species with reports of fatal entanglement in and ingestion of marine

debris has risen to nearly 700, and continues to increase (Gall and Thompson, 2015)
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Figure 1.6: Reported incidents of entrapment / ingestion of marine debris by decade

(SCBD, 2012)

.

1.0.2 Overview of detection capabilities and methodologies

Remote sensing

Remote sensing can be considered as the set of techniques, tools and interpretative

means that allow you to extend the perceptive capabilities of the human eye by providing

the observer with both qualitative and quantitative information on objects placed at a

distance.

Remote sensing measures electromagnetic energy coming from the surfaces in ques-

tion, that is, it quantifies the alterations that the object imposes on the radiation, or its

characteristics of intensity, frequency, and polarization. Furthermore, without disturbing

the observed object, it has the advantage of obtaining information:

1. Synoptics that is, a high spatial coverage and instant observation of large areas are

obtained;

2. Dinamics as it is possible to acquire data at different times in the same area of

interest;

3. Homogeneous as there is consistency of the data.
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Figure 1.7: Caption

The reactions that occur inside the sun give rise, in accordance with Plank’s black

body law, to a complex spectrum of electromagnetic energy, which reaches the earth at-

tenuated by the phenomena of reflection, diffusion and absorption due to the atmosphere.

The electromagnetic spectrum is defined as the continuous set of waves electromagnetic

ordered according to their frequency, length or wave number. By convention, the electro-

magnetic spectrum has been divided, according to the wavelength, into spectral regions

or bands, starting from the shorter wavelengths (gamma rays) up to radio waves. The

visible region (between 0.4 µm and 0.7 µm) includes the wavelengths perceived by the hu-

man eye and is divided into colors. The infrared region (between 0.7 µm and 1 mm) can

be divided, as the wavelength increases, into Near IR (near infrared), Mid IR (medium

infrared) and Far IR (far infrared). In Figure 3.3 the regions of the spectrum are shown

electromagnetic.
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Figure 1.8: Electromagnetic spectrum

The electromagnetic radiation reflected, absorbed and transmitted by any object

varies with the variation of the wavelength. In remote sensing, the reflectance term indi-

cates the percentage of incident radiant energy that is reflected by a body and depends

on the type of surface, the nature and the material of which it is composed. For each

surface, therefore, a graph of the spectral signature or spectral response, characteristic

of the surface itself, can be constructed, which highlights its reflection capabilities as a

function of the wavelength of the incident radiation (Figure 3.4).

Figure 1.9: comparison between the spectral signatures of different types of surfaces.

Source: http://www.alspergis.altervista.org/lezione/05.html

Each type of surface is therefore characterized by its own average spectral signa-

ture with a particular reflectance trend, with maximum and minimum values located in

specific wavelength ranges.
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Through remote sensing it is possible to study the electromagnetic radiation re-

flected or emitted by an object and the tools used to detect and then analyze this

radiation are the remote sensors (figure 3.5)

Figure 1.10: Remote sensors interception of reflected incident radiation. Source:

https://www.docenti.unina.it/webdocenti-be/allegati/materiale-didattico/562052

These can be placed on land platforms, balloons, air and space vehicles. The

distance between the shooting sensor and the investigated surfaces can vary from a few

meters from the ground level (Proximal sensing) to a few kilometers (Remote sensing) in

observations by air, up to distances of hundreds or thousands of kilometers, in the case

of satellite platforms. The sensors are divided into passive and active. Passive sensors

are those that detect the energy naturally reflected (solar) or that emitted (thermal) by

the surface of the objects while the sensors that record the spectral responses to a source

of artificial radiation coming from the instrument itself are active.

The quality of a sensor is defined by the radiometric resolution, by the geometric

resolution, from the spectral and temporal resolution. The radiometric resolution indi-

cates the sensitivity of the detector, of a certain sensor, in perceiving and encoding in

signal the differences in radiant flux, reflected or emitted, from the surfaces analyzed. It

is measured in bits and represents the number of levels into which the original signal can

be broken down.

The geometric resolution indicates the dimensions of the elementary area on the

ground of which the electromagnetic energy is detected and measured in meters. The

spectral resolution is determined by the bandwidth (wavelength range) that the instru-

ment is able to discriminate. Basically there are two types of sensors: multispectral

and hyperspectral; the former record the image in a limited number of distinct spectral

bands (usually less than ten), the seconds acquire the signal in numerous narrow and
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close wavelength intervals, allowing to obtain a detailed spectral response of the various

objects examined.

To allow accurate identification of objects, the spectral resolution of the sensor

must be as comparable as possible with the spectral signature of the object itself. The

time resolution indicates the time necessary for a sensor to make two consecutive shots

of the same area.

The radiation recorded by the sensors is processed into a digital image. The dig-

ital image is a two-dimensional function defined by a regular grid pattern (geometric

resolution) and the values it can assume belong to a positive integer range (radiometric

resolution). It is therefore constituted by a set of discrete elements organized in rows and

columns (matrix): to each of these elements, called pixels (picture element), is associ-

ated with a positive integer, digital number (DN), which represents the average radiance

measured over a small area (resolution unit cell).

Figure 1.11: digital image with particular of the Pixel and Digital number that the make

up. Source: google

Before being used, the images obtained from the remote sensors must be subjected

to a pre-processing (image processing) in order to correct the ”noise” present in the same

due to the distortions and errors introduced during the acquisition phase.

The fundamental corrections, aimed at obtaining a representation, as faithful as

possible, are the geometric and radiometric ones. The geometric correction eliminates

the effects related to the characteristics of the system (sensor, platform, ground), elim-

inating errors in the localization of the pixels, placing them in their correct position

within the image. Radiometric correction includes system corrections and atmospheric

corrections. The former allow to cancel the shooting distortions and to calibrate the
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sensors. The atmospheric corrections are used to eliminate the error determined by the

layer of atmosphere interposed between the sensor and the investigated area, in fact,

not all solar radiation reflected from the earth’s surface reaches the sensors, since the

atmosphere functions as a selective filter at different lengths wave.

The classification of remotely sensed images, through the spectral information,

represented by digital numbers in one or more bands, is the most used procedure to assign

all the pixels of an image to certain classes (water, forest, dry ground, wet ground, etc.).

The image thus classified is composed of a mosaic of pixels, each of which belongs to a

class, and essentially constitutes a thematic map of the starting image. When it comes to

classes, it is appropriate to distinguish between information classes and spectral classes.

The first are the types of interest that we try to identify in the image. The latter, on the

other hand, are groups of uniform or very similar pixels, in the different spectral bands.

The goal is to associate the spectral classes with the information classes of interest.

The classification methods can be divided into guided (Supervised classification)

and non (Unsupervised classification).

The uncontrolled technique does not require prior knowledge of the elements to be

discriminated, but is based only on the pixel values of the image, aggregating the data

in clusters (continuous set of pixels assigned to the same class).

The guided procedure exploits the a priori definition of the thematic classes (end-

member) of interest: the identification on the image of some sample areas, representative

of the categories of interest (ROI: Region Of Interest), allows to determine the relative

statistical parameters to the thematic classes chosen according to the pixel values be-

longing to the sample areas. In this way, the typical spectra of each class are identified

(training sites) with which the classification of the entire scene is performed, comparing

the image pixels and the spectral responses of the classes of interest, according to the

similarity criterion adopted (classification algorithm).

A very delicate phase in the production of thematic maps obtained from remote

sensing data is represented by the quality control of the classification, as it must provide

an index of map accuracy. From the literature it was possible to ascertain that among the

verification procedures the use of the ”confusion matrix” (Congalton, 1991; Stehman et

al., 1998; Foody, 2002) or ”contingency matrix”, which compares the membership class

observed with the assignment category in the classified image. Not all remote sensing

works report an assessment on the quality of the classification (Lucas et al., 2008; Asner

et al., 2008); when this estimate is present, it appears to be very variable, especially

depending on the application being studied.
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1.0.3 Objectives of the thesis

Although marine plastic is a global problem, the Mediterranean Sea has been iden-

tified as one of the most polluted areas (van Sebille et al., 2015). This is worrying

because the Mediterranean Sea is a hotspot for marine biodiversity and is home to 4%

to 18% of the world’s marine species (Bianchi and Morri, 2000). Research into plastic

detection can be very useful work to help answer key questions about sources, paths, and

trends and aid subsequent remediation actions. Because, if not removed, macroplastics

can damage marine life by entrapment or ingestion, but they inevitably fragment and

degrade into microplastics. Satellites that collect optical data offer a unique perspective

from which to observe the problem of plastic waste in the marine environment, but few

studies have successfully demonstrated their use for this purpose. This study aims to use

satellite data for the identification of plastics, evaluate the functioning of the algorithm

used and identify the oceanographic, climatic and meteorological conditions that can

lead to possible accumulations of debris in the Mediterranean. The study examines the

area of the Po Delta, the largest freshwater contribution of the Adriatic Sea. Rivers are

the main route for anthropogenic waste (Lebreton et al., 2017; Schmidt et al., 2017). In

this context, the study of the Po delta offers the opportunity to identify and evaluate

a possible source of debris probably linked to the presence of adjacent cities, industrial

settlements, and not least to the size of the surrounding population.

The objectives of the paper are the reproduction / validation of the satellite detec-

tion method and subsequently we will try to develop the first maps of Sentinel 2 plastic

debris in the Po Valley.



Chapter 2

Analysis methods

2.1 Description of analysis software

Data acquisition

The images were downloaded through the Copernicus Open Access Hub program

funded by the European Commission. Thanks to this program we have access to high

resolution satellite data from a series of sensors. This data is available and completely

free. Copernicus is currently the most ambitious Earth observation program in the world

and consists of different systems (satellites, ground stations, air and marine sensors) that

acquire data on Earth, as reported on the ESA website.

This program provides accurate, timely and easily accessible information to im-

prove environmental management, understand and mitigate the effects of climate change

and ensure civil safety. The program is coordinated and managed by the European Com-

mission, while the development of the infrastructures takes place under the control of

ESA as regards the space components. The thematic areas in which the services related

to the Copernicus program are inserted are six:

• territory

• sea

• atmosphere

• climate change

• emergency management

• safety

24
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These services support an infinite number of applications that include environmen-

tal protection, urban area management, land use planning, agriculture, forest manage-

ment, fishing, transport, sustainable development, civil protection and tourism.

In this thesis the use of Sentinel data is aimed at the study of marine waters, for

which particular attention should be paid to the theme of Copernicus marine services

(CMEMS), which provides periodic and systematic reference information on the physical

and biogeochemical state, on the variability and on the dynamics of oceanic and marine

ecosystems for all the oceans of the world and the seas of the European region.

The next paragraph will be entirely dedicated to the description of the Sentinel

project and the satellites, with particular attention to the Sentinel 1 and Sentinel 2

satellites, whose images will be used and analyzed in this thesis.

The data were downloaded free of charge from the special ESA servers and are

available at the web address https://scihub.copernicus.eu/ which presents itself with the

following interface.

Figure 2.1: Copernicus open access hub

In this portal it is possible to select the area of interest (yellow rectangle) and carry

out an advanced search thanks to the window on the left of the screen (figure 4.3) from

which it is possible to choose the mission, the acquisition period, cloud cover..
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Figure 2.2: Advanced search

The Copernicus program has always used data from various space missions for

its purposes. The primary purpose of the Sentinel satellites is to support the oper-

ational needs of the Global Monitoring for Environmental Security (GMES) program

(Malenowsky et al., 2012).

Sentinel-2

The data used in this thesis come from sentinel-2A and 2B satellites. The Sentinel-

2 mission consists of two multispectral platforms, the first Sentinel-2A was launched

into orbit on June 23, 2015, while the second launch took place on March 7, 2017.

The Sentinel-2 mission provides multi-spectral images (13 bands) with high and medium

spatial resolution depending on the specific band.

The satellites weigh approximately 1200 kg and are designed for a useful life of

approximately 7 years, although the batteries and propellants have been charged for 12

years of operation, including the instrument’s end-of-life orbital maneuvers.
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Figure 2.3: Sentinel model 2, source: wikipedia

The MSI (Multispectral INstrument) sensors mounted on the platform work pas-

sively, the incident light rays are divided and filtered on separate focal planes, one for

the visible bands (VIS), one for the near infrared band (NearInfraredNIR) and one for

“short wave” infrared (Short Wave Infrared SWIR). A special mechanism, a sort of shut-

ter, prevents the sensors from being hit by rays coming directly from the sun, the same

mechanism also functions as a calibration tool by collecting the sun’s rays after reflection

through a diffuser.

The two satellites operate on the same orbit inclined at 98.62 ° (with respect to

the equator), sun-synchronous, at an average elevation of 786 km, out of phase by 180

°. The choice of the sun-synchronous orbit was made because in this way the impact of

shading on the ground is minimized.

The orbit is kept stable by a dedicated propulsion system and through the mea-

surements of a dual-frequency GNSS receiver. They are designed so that the revisitation

frequency is 5 days at the equator (2-3 days at medium latitudes) in the same grip con-

ditions, this value decreases if we refer to different grip conditions, due to the lateral

overlap of the acquisitions.

Sentinel-2 satellites are both equipped with a multispectral device (MSI) capable

of receiving information on 13 spectral bands at different spatial resolutions, as shown

in the following table (four bands at 10 metres, six bands at 20 metres and three bands

at 60 metres spatial resolution.)
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Figure 2.4

The Multi-Spectral Instruments (MSI) aboard Sentinel-2A and 2B work passively,

and optical data is acquired along the orbital path at high spatial resolution over land

and adjoining coastal waters.

Sentinel-2 Multi-Spectral Instrument (MSI) products consist of a series of n gran-

ules each of which consists of 13 images (1 per spectral band) in JPEG-2000 format,

divided between 3 preset spatial resolutions of 10m, 20m and 60m (see Figure 2.3).

• In products with ortho-photographic / cartographic correction (i.e. 1C e 2A) each

granule, called tile in this specific case, covers an area of 100Km2 in UTM /WGS84

projectioN. These types of products are associated with meta-data for georeferenc-

ing.

• In level 0, 1A and 1B products, each grain consists of an image which covers an

area of 25Km2. Furthermore, level 0 and 1B products are not available to the

public as they consist of raw images and therefore difficult to use.

Figure 2.5: Spectral bands made available in MSI products (VNIR: Visible and Near

Infra-Red, SWIR: Short Wave Infra-Red)
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Figure 2.6: The Universal Transverse Mercator (UTM) system divides the earth’s surface

into 60 distinct time zones. Each spindle has a vertical width of longitude 6◦ and is

divided into 20 bands each having a horizontal width of latitude 8◦, thus generating

1200 UTM zones. The zones are marked with a number ranging from 1 to 60 (indicating

the time zone) and a letter ranging from C to X (indicating the band).

• Level 0 products: These products consist of images compressed in ISP format.

Inside they are composed of meta-data describing the product, data for the con-

sistency of the compressed image and data necessary for the subsequent levels

(for example the data for the processing of the geometric model, correlation data,

thermal data, ephemeral(?) data and positional data).

• Level 1A products: These products are obtained by decompressing the images

provided by level 0 products, on which the geometric model is then developed to

map the position of all the pixels present in the image. The coordinates of the

pixels in these packets are referred to their hypothetical center.

• Level 1B products: For level 1A products, to be qualified at level 1B, radiometric

image correction must be applied in terms of correction of the reflection coefficient

at Top of Atmosphere (TOA) and sensor geometry. Radiometric correction consists

in: correction of dark signals, inhomogeneity of pixels, correction of defective pixels

by interpolating them with neighboring pixels, restoration of high resolution bands.

In addition, this type of product contains the geometric patterns perfected to

produce level 1C images.

• Level 1C products: This level of products are generated from 1B images using
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Digital Elevation (DEM) models to project the image into a cartographic / ortho-

photographic reference system. The radiometric measurements for each pixel are

provided in the form of the Top of Atmosphere reflection coefficient, together with

the parameters to transform these values into radiance. These products are sampled

with a constant Ground Sampling Distance (GSD) of 10m, 20m or 60m depending

on the spectral bands to which they are related. In this case the coordinates of

each pixel are referred to the edge in top left of the pixel. Level 1C products also

contain land-related masks, water, clouds, and ECWF (total values of ozone and

water vapor, level mean atmospheric pressure at sea level).

• Level 2A products: Level 2A products provide images with a correct reflection

coefficient at Bottom of Atmosphere and with correction of clouds and water vapor

through the use of masks made available by level 1C products from which they are

derived.

Level 1C products were downloaded for this study.

Atmospheric correction

Atmospheric correction represents one of the most critical issues in the pre-processing

of satellite images.

The electromagnetic waves that reach the ground interact with the earth’s atmo-

sphere, and in particular with gases (carbon dioxide, oxygen, ozone, etc.), water vapor

and the fine dust found in it. This interaction depends both on the length of the path

that the wave takes before reaching the sensor, and on the atmospheric conditions at the

time of observation. The processes of radiative interaction in the atmosphere of main

interest for the purposes of remote sensing are scattering and absorption.

The scattering phenomenon occurs through the interaction of fine or gaseous par-

ticles in the atmosphere with electromagnetic radiation, which produces the diffusion of

the electromagnetic waves themselves. The scattering effect, as regards the acquisition

of remote sensing images, results in a lower contrast of the objects on the ground.

The atmospheric correction models take into account the radiative transfer pro-

cesses briefly described and can be applied to remotely sensed data to reduce or remove

their effects.

The inherent optical properties (IOPs) of floating materials can be leveraged for

detection in Sentinel-2 imagery if NIR to SWIR wavelengths are conserved during the

atmospheric correction process16.

Ocean and atmospheric components (scattering and absorption) were subtracted

from surface reflectance values using ACOLITE (Atmospheric Correction for OLI lite
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version 20181210.0).

Output for surface reflectance (rhos, ((ρs )s) was computed using ACOLITE and

visualised in the Sentinel Application Platform (SNAP) for further processing.

2.1.1 Sentinel Application Platform (SNAP)

SNAP version 8.0 software was used to analyze the images, which was created

specifically for Sentinel image processing and analysis.

ESA-SNAP 8.0

SNAP is a software for the processing of satellite images produced and distributed

free of charge from ESA, was created with the specific intent of treating the images

coming from Sentinel platforms.

Figure 2.7: SNAP 8.0 interface

The graphical interface shows a main menu bar in the windows all the possible

operations that can be performed on the images are collected:

• Analysis, allows you to choose options for statistical analysis of the image, display

of scatter plots or histograms.

• Layer, contains functions with which you can create different levels on the image

by superimposing pointers, grids or other

• Vector, this window gives the possibility to create vector files on the image.
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• Raster, allows you to choose functions for image analysis or theirs treatment, it

is possible to perform cut-outs, resampling, re-projection operations of the image,

mosaic, textureanalysis and classification.

• Optical, contains functions that allow the pre-processing of optical data and the

extraction of some indices such as NDVI.

• Radar, allows you to perform all operations on the radar images, from calibration

to geometric corrections up to interferometric applications

2.1.2 Floating debris index

At 10 m × 10 m, the highest spatial resolution of the Sentinel-2 multi-spectral

instrument, individual debris elements are likely to be below detectable limits until they

are patched together. To improve the detection of floating spots on the ocean surface in

Sentinel-2 images, Lauren Biermann et. by 2020 they developed a floating debris index

(FDI) using four of the twelve MSI bands (table 4.7)

Figure 2.8: The selected bands for detecting floating debris are highlighted in bold.

(Biermann et al. 2020)

This debris detection index takes advantage of the difference between NIR and the
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base reflectance of NIR. This baseline is derived from linear interpolation between the

RE2 and SWIR1 bands flanked by NIR:

Figure 2.9: FDI index (Biermann et al. 2020)

The subtraction of a baseline from the NIR reflectance serves to minimise sensitivity

to changes in atmosphere and observation (aerosol type and thickness, solar/viewing

angle, and glint), allowing for detection of floating objects through thin cloud or haze

(Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote

Sensing of Environment 113, 2118–2129 (2009).

Simultaneously, applied a Normalised Difference Vegetation Index (NDVI) to seg-

regate floating vegetation from other materials.

2.1.3 Normalised Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is a simple graphic indicator

that can be used to analyze the measurements obtained by remote sensing, typically but

not necessarily from a special satellite, and to evaluate if the observed area contains any

living vegetation (wiikipedia).

The NDVI is based on the fact that vegetation, including algae, show an increase

in reflectance spectra at around 700 nm( Hu, C. A novel ocean color index to detect

floating algae in the global oceans. Remote Sensing of Environment 113, 2118–2129

(2009), Liu, D., Keesing, J. K., Xing, Q. e Shi, P. World’s largest macroalgal bloom

caused by expansion of seaweed aquaculture in china. Marine Pollution Bulletin 58,

888–895 (2009)). The difference between reflectance values in the NIR and red serves as

a measure of photosynthetic capacity and / or density of vegetation. High NDVI values

indicate dense patches of floating vegetation and / or high photosynthetic activity, while

water generates low to negative NDVI values (no units).
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2.2

Figure 2.10: NDVI index

Principle of the study

In contrast to clear water, which is typically efficient at absorbing light from near

infrared (NIR) to short wave infrared (SWIR), floating materials including macroalgae

and macroplastics are reflected in NIR(LonnekeGoddijn-Murphy et al. 2018; Chuan-

minHu et al. 2015...

By exploiting these spectral properties, aggregate materials floating on the ocean’s

surface are visible from space. Topouzel et al. 21 demonstrated this with plastic targets

deployed off the coast of Mytilene in Greece. Spectra measured by drone cameras and

the MSI Sentinel-2 confirmed that floating rafts made up of plastic bottles, bags and

fishing nets were constantly reflecting light into the NIR. The intensity of the reflectance

appeared to depend primarily on the proportion of floating plastic within the pixels.

Consequently, once water makes up more than 50-70% of a given pixel, we see poor

reflectance in NIR (Topouzelis et al. 2019). In the pixels filled with at least 30% of

bottles or bags, or 50% of fishing net, the reflectance and absorption characteristics of

the floating plastics can be observed.

Individual pieces of marine litter will likely stay below detectable limits until a

front, vortex, or other understair feature pulls more objects into a larger area. In the

ocean, natural and man-made materials tend to be aggregated together; generating stains

of mixed objects including natural sources of debris and waste dominated by macroplas-

tics13,25,26,27,28. Once aggregated into sufficiently large patches of various shapes and

sizes, detection by Sentinel-2 is possible.

With regard to the aggregations of macroplastics in the Mediterranean, the situ-

ation is a little different. Mansu et. al (2015) was the first study to demonstrate that

space-time variability in the circulation of the Mediterranean hinders the formation of

stable retention areas at the basin scale. They used a simulation model with an initial

homogeneous distribution of virtual particles in order to evaluate waste accumulation

patterns across the entire Mediterranean basin. It identified three temporary patterns

of potential accumulation, two in the northwestern sub-basin and one in the central sub-

basin. It also highlighted important coastal features such as the more polluted coast,
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where most of the debris ran aground (located in the southeastern Levantine sub-basin,

but also between Tunisia and Syria) and, conversely, a rather low coastal impact in the

western part of the Mediterranean. .

In a more recent article, Zambianchi et al. (2017) used the largest available set

of Lagrangian historical data collected in the Mediterranean basin, together with two

different initial virtual particle deployments (homogeneous and coastal distributions) to

build a Markov chain model. That study found a long-term accumulation pattern in the

southern and southeastern Levantine sub-basin that was similar to that encountered in

the global ocean. Contrary to Mansu et al. (2015), the study did not consider stranding,

but only superficial circulation, which could explain the discrepancy between the two

studies on the existence of long-term accumulation patterns.

Finally, Liubartseva et al. (2018) performed more sophisticated models to study

the distribution of plastic debris in all marine compartments: on the sea surface, on the

coasts and on the seabed. This study concluded that long-term accumulation patterns

could not be found in the Mediterranean Sea due to general dissipative behavior on

the basin. On the contrary, they identified several patterns of temporary accumulation,

namely the Cilician sub-basin (northeastern Levantine), the Catalan Sea, the Po delta

region and the Venice lagoon, all associated with high stranding rates.

Despite the few studies mentioned above, the modeling of plastic waste transport

at sea is still in its infancy, which results in insufficient knowledge of the issue. Also,

different tracking patterns, resolutions, or model configurations can sometimes lead to

conflicting results.
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Figure 2.11: Spectral signatures derived from the mean spectra of deployed plastic tar-

gets (black line with error bars), seaweed representing floating vascular plants (green),

seawater from all test sites (dashed blue line), rafted timber and wood representing non-

photosynthetic plant materials (red), pumice representing non-plant debris (light grey),

and spume representing sea foam, bubbles and froth (gold line). The x-axis shows the

span of Sentinel-2 MSI bands from visible blue light at 490 nm, to short-wave infrared

light at 1610 nm. The left-hand y-axis shows remote sensing reflectance (unitless) from

Sentinel-2 for seawater, seaweed, sea foam and the plastic targets. Remote sensing re-

flectance (unitless) of timber and pumice was substantially higher. These were shifted

lower to illustrate relative spectral shapes of all materials, and the corresponding re-

flectances are shown on the right hand y-axis in grey. (Biermann et al. 2020)

For remote sensing applications, spectral analysis refers to extraction of qualitative

and quantitative information from the reflectance spectra of a given pixel, based on

wavelength-dependent reflectance properties29. Classes of objects are therefore likely to

have recognisable spectral features and characteristics, or spectral ’signatures’30. Based

on absorption and reflectance patterns across 10 of the 12 Sentinel-2 MSI bands (from 490

nm to 1610 nm), we generated spectral signatures of detected seaweed, spume, timber,

macroplastics and seawater. These proved key for identification of materials in mixed

aggregations (Fig. 4.12) .

As illustrated in Fig. 4.12, clear water is efficient at absorbing light in the near

infrared (NIR). For the Sentinel-2 MSI this corresponds to a central wavelength at ap-

proximately 833 nm. Floating plastics and plants, on the other hand, both reflect at

these wavelengths. The intensity of this reflectance signal in the NIR is dependent on

how much each pixel is filled by material on subpixel scales21. Plastic shows a reflectance
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peak primarily in the NIR, while seaweed reflects light in the green (560 nm) and red

edge (700–780 nm) bands too. Seaweed also appears to absorb SWIR light, relative to

mean spectra of ocean water and plastic at 1610 nm, but variability here might be due

to the atmospheric correction process. Timber shows a reflectance peak in the NIR,

and also reflects relatively strongly in the red and SWIR. Pumice is noticeably bright

across the optical range, reflecting in the red, red edge and SWIR, and absorbing in

the NIR at approximately 833 nm. Finally, spume, which is likely to be composed of

decomposing organic detritus (phytoplankton and algae, zooplankton, vascular plants),

shows highest reflectance peaks in the green and red visible bands and a smaller peak in

the NIR.(Biermann et al. 2020)

Classification of floating debris

The detected materials were analysed within a two-variable feature space by lever-

aging FDI values against another band ratio, the Normalised Difference Vegetation Index

(NDVI). The combination of these two band ratios provide a simplified way to analyse

data while keeping most of the information content of the 6 spectral bands of the MSI

sensor.

Using NDVI alone, the grouped plastics were distinguishable from seawater, sea-

weed, woody materials, sea foam and pumice (Fig. 4.12a). On the other hand, FDI

values are primarily dependent on how much material composes a given pixel (Fig.

4.12b). When FDI and NDVI are examined together, however, materials show distinct

clustering (Fig. 4.12c). (Biermann et al. 2020) The values that must be respected to

have a pixel classified as plastic are shown in table 3.2. (Values indicated by the study

by Biermann et al. 2020)
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Figure 2.12: Classifying known floating materials in the marine environment. Using

NDVI alone (a), we see that clear seawater (blue), wood (dark grey), spume (gold) and

pumice (light grey) occupy distinct NDVI ranges that do not overlap with the combined

(grouped) plastics. (Biermann et al. 2020)



Chapter 3

Reproduction/validation of the

marine plastic debris detection

methods

The experimentation described in this chapter aims to verify the effectiveness of

satellite data and spectral analysis techniques currently available in the recognition of

plastic waste dispersed on the surface of the water. Specifically, the interest is aimed at

identifying floating macro-plastics that are transported to the Po delta exit.

The results recently obtained by Biermann et al. (2020), Topouzelis et al. (2019), &

kikaki et al. (2022), through a marine and coastal experimentation using images provided

by the Sentinel 2 satellite (https://sentinel.esa.int/web/sentinel/home) demonstrate how

the distinction between water, plastic and vegetation is possible especially considering

the different reflectance peaks characteristic of the three materials in the wavelength of

840 nm, which corresponds to the near infrared (Figure 2.11). This study provides a

first scientific basis that inspired the present experimentation.

The validation phase is based on ground truth data provided by the following

studies: Biermann et. al 2020, Kikaki et al 2020. and Topouzel et al 2019. Biermann’s

data were used to verify the generic functioning of the methodology that will be used.

Unlike the data from Kikaki and Topouzelis which were used to quantify the functioning

of the technique and methodology used.

Kikaki’s studio offers positioning of plastic with geographic coordinates. It must be

considered that geographic coordinates are subject to errors since the measurement oper-

ations are all inevitably influenced by many factors. The study conducted by Topouzelis

is a controlled experiment which consists in the positioning of three targets off the

Tsamakia beach, and also in this case we know the exact position of the targets.

We studied the single pixels related to the remote sensing of artificial plastic tar-
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gets floating on the sea surface with Sentinel-2 (Topouzelis 2019) and the single pixels

indicated by the study of Kikaki 2022 (Marida). Trying to validate the range of values

provided by Biermann (table 3.1) and the functioning of the algorithms.

Range of values

NDVI 0.015 - 0.25

FDI 0.018 - 0.065

Table 3.1: Biermann range of pixel values

Figure 3.2 shows the satellite data used in this study for the validation process,

with related information such as: source of reported data (i.e. basic truth and indicated

by literature), as well as corresponding date and place, if available. The corresponding

S2 tiles are also included for each area.
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3.0.1 The Biermann case

Biermann et al. 2020 featured case studies from four countries, selected on the

basis of literature, news articles and / or posts on marine litter (representing an acute

or persistent problem). The sites are: the coastal waters off Accra (Ghana), the Gulf

Islands of British Columbia (Canada), Da Nang (Vietnam) and the east coast of Scotland

(United Kingdom); all sites are detailed in Table 3.1. In our initial phase, we replicated

Biermann’s studies, starting with Ghana, which boasts a coastline that extends for about

550 km, facing the Gulf of Guinea (Figures 3.2 and 3.3). Applying the two algorithms

used to Sentinel-2 data acquired on October 31, 2018, groups of bright pixels were

detected along a front that traces the coast. The materials were aggregated into floating

patches that ranged from about 200m to 6km offshore and appeared to be dominated by

macroalgae or foam, with a number of pixels that appeared to be made up of plastic.

Figure 3.1: Image representing FDI-NDVI-RGB. Satellite image of the Accra,

Ghana on 31 October 2018. Tile:30NZM. Time of acquisition 10:11:39, time

of processing 13:56:33. Image was captured by Sentinel-2 B multispectral

instrument (a) FDI (Floating Debris Index). In red all the pixels that assume the

values included in the FDI range, (b)NDVI (Normalized Difference Vegetation Index).

In yellow all the pixels that assume the values included in the NDVI range, (c) True

color R (590-670) nm, G (500-590) nm, B (455-515)
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Figure 3.2: Image representing FDI-NDVI-RGB. Satellite image of the Accra,

Ghana on 31 October 2018. Tile:30NYM. Time of acquisition 10:11:39, time

of processing 13:56:33. Image was captured by Sentinel-2 B multispectral

instrument (a) FDI (Floating Debris Index). In red all the pixels that assume the

values included in the FDI range, (b)NDVI (Normalized Difference Vegetation Index).

In yellow all the pixels that assume the values included in the NDVI range, (c) True

color R (590-670) nm, G (500-590) nm, B (455-515)

Figure 3.3 depicts the Gulf Islands water zone in the Strait of Georgia in British

Columbia (Canada). Applying the FDI allowed for detection of floating debris south

of Gabriola Island, which is part of the Gulf Islands in the Strait of Georgia in British

Columbia (Canada). In an image collected on the 18th of July 2018, bay-scale circulation

appeared to entrain debris from the nearby marina, as well as woody material from timber

rafting docks. A number of pixels within the detected aggregations have FDI and NDVI

corresponding to the values indicated by the Biermann study for the identification of

plastic.
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Figure 3.3: Image representing FDI-NDVI-RGB. Satellite image of the Gulf

Islands, Canada on 18 July 2018. Tile:30UDV. Time of acquisition 19:19:49,

time of processing 22:37:20. Image was captured by Sentinel-2 B multispec-

tral instrument (a) FDI (Floating Debris Index). In red all the pixels that assume the

values included in the FDI range, (b)NDVI (Normalized Difference Vegetation Index).

In yellow all the pixels that assume the values included in the NDVI range, (c) True

color R (590-670) nm, G (500-590) nm, B (455-515)

Figure 3.4 shows off the Scottish coast. In an image captured on April 20, 2018,

the FDI application highlighted bright pixels along the edge of a strong southeastern

front on the island of May. Most of the pixels appeared to be foam and algae. However,

a number of pixels within the detected aggregations have FDI and NDVI corresponding

to the values indicated by the Biermann study for the identification of plastic.
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Figure 3.4: Image representing FDI-NDVI-RGB. Satellite image of the Scot-

land, UK on 20 April 2018. Tile:30VWH. Time of acquisition 11:21:21, time

of processing 11:44:17. Image was captured by Sentinel-2 B multispectral

instrument (a) FDI (Floating Debris Index). In red all the pixels that assume the

values included in the FDI range, (b)NDVI (Normalized Difference Vegetation Index).

In yellow all the pixels that assume the values included in the NDVI range, (c) True

color R (590-670) nm, G (500-590) nm, B (455-515)

The 23-11-19 image of Vietnam in Asia, used by Biermann’s studio after careful

research, was not found.

Now, we will run tests of Biermann’s study on different sites, to check the efficiency

of the method. Each site we will use as a test has the presence of plastic, as we will

analyze places where plastic (artificial) targets have been placed or places where the

presence of plastic has been verified and measured in situ.
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3.0.2 The Topouzelis case

Topouzel et.al.2019 led a project called ”Plastic Litter Project 2018: Drone Map-

ping and Satellite Testing for Marine Plastic on the Aegean Sea” to explore the feasibility

of detecting plastic in the aquatic environment using geoinformation acquired from un-

manned aerial systems (UAS) and open access satellite missions. The experiment was

conducted on 6 and 7 June 2018 near Tsamakia beach in Mytilene on the island of

Lesbos, Greece.

A series of three plastic floating artificial targets (consisting of 100 m2 of PET-1

1.5 liter water bottles, LDPE plastic bags and fishing ghost nets) have been set up for

remote sensing in nearby waters Tsamakia beach in Mytilene on the island of Lesbos,

Greece. So in this case we know the exact position of the pixel in which we have the

presence of the plastic.

The image has been downloaded and processed for the validation process.
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Figure 3.5: Image representing FDI-NDVI-RGB. Satellite image of Mytilene,

Greece on 7 June 2018. Tile:35SMD. Time of acquisition 08:56:01, time

of processing 11:05:13. Image was captured by Sentinel-2 B multispectral

instrument (a) FDI (Floating Debris Index). In red all the pixels that assume the

values included in the FDI range, (b)NDVI (Normalized Difference Vegetation Index).

In yellow all the pixels that assume the values included in the NDVI range, (c) True

color R (590-670) nm, G (500-590) nm, B (455-515)

3.0.3 The Marida case

Kikaki et al.2020 introduced the Marine Debris Archive (MARIDA), established on

the basis of multispectral data from the Sentinel-2 satellite. Provides annotations (geo-

referenced polygons / pixels) from verified events of plastic debris in different geographic

regions of the world, during different seasons, years and sea state conditions. The data

taken into consideration by the Marida dataset are the sites where the exact coordinates

of the position of the plastic aggregates were provided.

Figure 3.6 shows the Guatemala area, in an image captured on September 18, 2020.

(tile:16PCC).
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Figure 3.6: Image representing FDI-NDVI-RGB. Satellite image of Guatemala

on 18 september 2020. Tile:16PCC. Time of acquisition 16:08:39, time of

processing 19:45:32. Image was captured by Sentinel-2 B multispectral in-

strument (a) FDI (Floating Debris Index). In red all the pixels that assume the values

included in the FDI range, (b)NDVI (Normalized Difference Vegetation Index). In yel-

low all the pixels that assume the values included in the NDVI range, (c) True color R

(590-670) nm, G (500-590) nm, B (455-515)

The presence of a front is clearly visible in the RGB image. After applying the

algorithms used and going to the geographical coordinates indicated by Marida where

they reported the presence of plastic, the values confirmed this hypothesis.
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Figure 3.7: Image representing FDI-NDVI-RGB. Satellite image of C.America,

Guatemala on 16 June 2018. Tile:16PCC. Time of acquisition 16:09:01, time

of processing 21:19:42. Image was captured by Sentinel-2 B multispectral

instrument (a) FDI (Floating Debris Index). In red all the pixels that assume the

values included in the FDI range, (b)NDVI (Normalized Difference Vegetation Index).

In yellow all the pixels that assume the values included in the NDVI range, (c) True

color R (590-670) nm, G (500-590) nm, B (455-515)

Figure 3.7 shows the area of Central America, Guatemala captured on 16 June

2018. By applying the algorithms to the sentinel-2 satellite data, no bright pixels were

detected in the coordinates indicated by Marida’s study. The NDVI and FDI values do

not appear to indicate the presence of plastic.
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Figure 3.8: Image representing FDI-NDVI-RGB. Satellite image of

C.America/Honduras on 18 September 2020. Tile:16PDC. Time of acquisi-

tion 16:08:39, time of processing 19:45:32. Image was captured by Sentinel-2

B multispectral instrument (a) FDI (Floating Debris Index). In red all the pixels

that assume the values included in the FDI range, (b)NDVI (Normalized Difference Veg-

etation Index). In yellow all the pixels that assume the values included in the NDVI

range, (c) True color R (590-670) nm, G (500-590) nm, B (455-515)

Figure 3.8 shows the C.America, Honduras captured on 18 September 2020. By

applying the algorithms to sentinel-2 satellite data,no plastic was detected in the coor-

dinates indicated by Marida’s study. But just below the indicated coordinates there is a

front of bright pixels some of which would indicate the presence of plastic.
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Figure 3.9: Image representing FDI-NDVI-RGB. Satellite image of

C.America/Honduras on 23 September 2020. Tile:16QED. Time of acquisi-

tion 16:10:11 , time of processing 20:11:18. Image was captured by Sentinel-2

B multispectral instrument (a) FDI (Floating Debris Index). In red all the pixels

that assume the values included in the FDI range, (b)NDVI (Normalized Difference Veg-

etation Index). In yellow all the pixels that assume the values included in the NDVI

range, (c) True color R (590-670) nm, G (500-590) nm, B (455-515)

Figure 3.9 show satellite image of C.America, Honduras on 23 September 2020. By

applying the algorithms to the sentinel-2 satellite data, no groups of bright pixels were

detected in the coordinates indicated by Marida’s study.
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Figure 3.10: Image representing FDI-NDVI-RGB. Satellite image of

C.America/Honduras on 29 November 2015. Tile:16PEC. Time of acquisi-

tion 16:16:22, time of processing 16:26:44. Image was captured by Sentinel-2

B multispectral instrument (a) FDI (Floating Debris Index). In red all the pixels

that assume the values included in the FDI range, (b)NDVI (Normalized Difference Veg-

etation Index). In yellow all the pixels that assume the values included in the NDVI

range, (c) True color R (590-670) nm, G (500-590) nm, B (455-515)

Figure 3.10 shows the satellite image of C.America,Honduras on 29 November 2015.

By applying the algorithms to the sentinel-2 satellite data, no groups of bright pixels

were detected in the coordinates indicated by Marida’s study.
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Figure 3.11: Image representing FDI-NDVI-RGB. Satellite image of

Asia,Indonesia on 4 March 2018. Tile:50LLR. Time of acquisition 02:15:59,

time of processing 05:50:41. Image was captured by Sentinel-2 B multispec-

tral instrument (a) FDI (Floating Debris Index). In red all the pixels that assume the

values included in the FDI range, (b)NDVI (Normalized Difference Vegetation Index).

In yellow all the pixels that assume the values included in the NDVI range, (c) True

color R (590-670) nm, G (500-590) nm, B (455-515)

Figure 3.10 shows the satellite image of C.America,Honduras on 4 March 2018. By

applying the algorithms to the sentinel-2 satellite data, no groups of bright pixels were

detected in the coordinates indicated by Marida’s study.
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Regarding the analysis of the targets of the Topouzelis study, for the resolution

of the image, the targets are composed of 4 pixels and have a percentage of pixels of

coverage of the floating plastic targets determined in the true color images captured by

the Sony A5100 and the corresponding pixel spectra from Sentinel-2 images. Figure 3.14

(source Topouzelis et.al. 2019)

Figure 3.12: Percentage pixel coverage of the floating plastic targets

The image was viewed and analyzed via SNAP and Table 3.2 was created by taking

the pixels following the legend presented in Figure 3.13.

Figure 3.13: Pixel detection legend and methodology
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Target 1 NDVI FDI Percentage pixel coverage

1° pixel 0,13929 0,03068 34%

2° pixel 0,2216 0,02315 29%

3° pixel -0,05135 0,00974 18%

4° pixel 0,135 0,00794 15%

Target 2

1° pixel -0,01612 0,01256 12%

2° pixel 0,0441 0,00702 3%

3° pixel -0,21888 0,01239 55%

4° pixel 0,04441 0,00702 34%

Target 3

1° pixel 0,26713 0,01043 23%

2° pixel 0,19043 0,00592 8%

3° pixel 0,28168 0,01516 50%

4° pixel 0,21198 0,00892 19%

Table 3.3: NDVI and FDI values of the three targets. In green the values of both

algorithms that fall within the range and are consequently classified as plastic. In yellow

the values that only for one of the two algorithms fall within the range. The last column

indicates the % coverage of the target within the pixel.

We can state that two out of twelve pixels appear to belong to the range on both

NDVI and FDI simultaneously, confirming Biermann’s hypothesis, five pixels fall within

the NDVI range only while all the others have values that do not belong to the range

(the values are shown in table 3.3).

After analyzing the 6 images of Marida since three were not obtained due to in-

ensistance on Copernicus, only one gave a positive response to the presence of plastic

(15,836206 ° N, 88.022087 ° W). The NDVI and FDI values are shown in Table 3.4. But

this result is possible that it was obtained not due to an incorrect functioning of the

algorithms or an error in the ranges of NDVI and FDI considered, but probably, the

coordinates provided by Kikaki’s study were not precise.

Marida images

Date NDVI FDI

18-09-2020 0,17528 0,03083

Table 3.4: Only verified pixel of the Marida dataset
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In conclusion, by analyzing the Biermann hypothesis, we obtain a positive result

(50 %) on Target 1 and negative (0 %) on Target 2 and 3. However, we must consider

the fact that the three targets are made up of different types of plastic: the Targhet 1 is

made up of bottles, the Targhet 2 is made up of nets and the Targhet 3 is made up of

envelopes. Given this consideration, we can conclude that the algorithm tends to better

identify the plastic of the bottles. By identifying all those pixels that have a plastic

bottle coverage greater than 29And it is useless when it comes to identifying fishing nets

and plastic bags.

As for Marida, one in six images had a positive outcome with regard to the Bier-

mann hypothesis, with an overall success rate of 16.67%.



Chapter 4

New study cases for the Po river

coastal area

The case study considered is represented by the waters coming out of the Po River.

Therefore, on the basis of the validation process carried out, a possible identification

of plastic debris in the waters near the Po River delta is expected by analyzing the data

acquired by Sentinel-2. The images analyzed concern the time period from 1/6/21 to

31/8/21. Not all available images were analyzed because many had excessive cloud cover.

In total 17 images were considered. The satellite images used in this report, in the period

of time considered, are those acquired on the dates shown in table 4.1.

2/06/21 4/06/21 14/06/21 17/06/21

22/06/21 24/06/21 29/06/21 2/07/21

7/07/21 9/07/21 22/07/21 24/07/21

29/07/21 6/08/21 18/08/21 21/08/21

26/08/21

Table 4.1: Aquisition Dates. Dates in which the satellite images used in this work

were acquired.

4.0.1 Satellite images

Among all the satellite images analyzed only in the image dating back to 26/8/21,

a possible accumulation of floating material was detected, located off the Po Delta exit.

Figure 4.1 represents the large-scale location of the study area and the purple circle

indicates the area where possible accumulation of floating material was detected.
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Figure 4.1: Combined display of FDI-NDVI-RGB in large scale of the study

area. The purple circle indicates the area where a possible accumulation of

floating material has been detected. Satellite image of the Padana area of 26

August 2021. Time of acquisition 10:05:49, time of processing 12:15:47. Image was

captured by Sentinel-2B multispectral instrument. (a) FDI (Floating Debris Index). In

red all the pixels that assume the values included in the FDI range. (b)NDVI (Normalized

Difference Vegetation Index). In yellow all the pixels that assume the values included in

the NDVI range. (c) True color R (590-670) nm, G (500-590) nm, B (455-515)

In picture 4.2 the possible accumulation of floating material can be observed in a

close and zoomed way.
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Figure 4.2: Combined display of FDI-NDVI-RGB of the area indicated inside

the circle in the previous image. Satellite image of the Padana area of 26

August 2021. Time of acquisition 10:05:49, time of processing 12:15:47. Image was

captured by Sentinel-2B multispectral instrument. (a) FDI (Floating Debris Index). In

red all the pixels that assume the values included in the FDI range. (b)NDVI (Normalized

Difference Vegetation Index). In yellow all the pixels that assume the values included in

the NDVI range. (c) True color R (590-670) nm, G (500-590) nm, B (455-515)

At this point, to apply the classification of FDI and NDVI following the indica-

tions of Biermann, a software with the Python language has been developed, which will

perform this process autonomously. The name we will give to this software is ”Plastic

classification”, and its functionality consists in taking a .nd file, converting it into a

dataset of useful information, applying the NDVI and FDI algorithms to finally perform

the classificatione. By classification we mean the creation of a matrix I [i] [j] with i =

1 ..... n and j = 1 ...... m (nxm is the pixel dimension of the image) which contains

boolean values (0 and 1) where ”1” in position I [i] [j] represents the presence of values

in the Biermann range in NDVI [i] [j] and FDI [i] [j] simultaneously.
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Plastic classification outputs 3 graphs: masked NDVI, masked FDI and classification.

A masked matrix is a matrix without values that do not respect a certain range, in our

case that of Biermann. In output, as regards NDVI and FDI, we will therefore have only

the pixels that are in the Biermann range.

Figure 4.3: NDVI plotting containing only the pixels that fall within the specific range

of values indicated in table 3.1.

Figure 4.4: Plotting of FDI containing only the pixels that fall within the specific range

of values indicated in table 3.1.
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Figure 4.5: Plotting of the interpolation of the two matrices.

The pixels that appear in the last graph, we can say, are classified as plastic (plastic

bottles), since the performance of the method was only good for plastic bottles. In

conclusion, based on the validation results we can state that the detected pixels are

classified as plastic bottle material, with at least 29% coverage of the pixel.



Chapter 5

Conclusions

This work focuses on verifying the detectability of plastic waste using Sentinel 2.

The detectability of plastic waste using Sentinel 2 has already been tested in the marine

environment (Biermann et al. 2020, Topouzelis et al. 2019, Kikaki et al. 2020).

Verification of the operation of the proposed method was carried out using ground

truth point data from the studies listed above. The methodology used is based on one of

the conclusions of the work carried out by Biermann (2020). Floating macroplastics can

be identified within mixed aggregations in the marine environment using the combination

of FDI and NDVI for a specific range of values.

To quantify the validation of this methodology, the analysis of the points of truth

on the ground of the Topouzelis and Kikaki studies was carried out, which made available

the geographical coordinates relating to the aggregation of verified plastic material. The

validation conducted on the targets of the Topouzelis study shows us the possibility of

identifying plastic bottles but not fishing nets and plastic bags. While the validation

applied to Kikaki’s studio allowed us to confirm only one scene indicated on the six

verified scenes. The application of the methodology on the Po Valley area, in the time

span studied, allowed us to identify a possible accumulation of floating plastic debris.

The experimentation confirms the possibility of using Sentinel 2 images for the

visible recognition of floating debris made of plastic. On the contrary, the functioning

and validation of the algorithms and methodology in question is still uncertain, requiring

further experimentation. In this context, the debris identification method proposed in

this study should be further expanded in order to generate more robust validation.

A more solid validation would allow not only a better calibration of the model,

but also a monitoring and identification of the density of the plastic present inside the

floating material, so as to be able to identify any variations in the spectral signature as

a function of the variation in density of the materials present.

The method could be easily implemented and automated continuously over time in
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order to create a historical series, evaluate whether to create periods with higher density

of waste transported by the river that may depend on the seasonality attributable to

the contribution of the river floods or if the supply of debris it may depend on other

factors, further investigations could be carried out to see if marine litter has a tendency

to aggregate into specific structures, for example along fronts. Specifically in the study,

the proposed method for the identification of plastics should be further expanded, in

order to obtain better information on the possible source of the Po River, in order to

better understand the contribution of the Po on the flow of plastic into the sea.

To conclude, it would be interesting to apply the approach to a watercourse rich

in wood and / or floating plastics where the validation of the model would be facili-

tated. Some possible applications may concern the Tiber (Italy), Rhone (France), Seine

(France), Rhine (Netherlands) rivers although, according to van Calcar & van Emmerik,

(2019) Indonesian and Vietnamese waterways, such as the Mekong (Vietnam) and Pa-

hang (Malaysia) Rivers contain up to four orders of magnitude more plastic than the

rivers in Italy, France and the Netherlands.

Finally, the search for floating materials through Sentinel 2 data could potentially

be extended globally, even if the model would require a great deal of validation in different

contexts around the globe.
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