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Abstract

The goal of the study is to investigate the skills of two Convolutional

Neural Networks as postprocessing frameworks for improving the prediction

of the vertically Integrated Horizontal Water Vapor Transport (IVT) field

provided by the 30-years high resolution reforecast based on WRF and de-

veloped by the Centre for Western Weather and Water Extremes (CW3E)

of UCSD San Diego. IVT is the main feature used to detect the Atmo-

spheric Rivers (ARs). ARs are large scale filamentary regions associated

with the warm sector of extratropical cyclones observable at midlatitudes on

both the hemispheres. ARs are characterized by the poleward transport of

large amount of water vapor in the low troposphere and they are responsible

for extreme precipitation events, particularly on the North American West

Coast, playing an important role for the water supply of the regions where

they occur.

Numerical Weather Prediction (NWP) models, based on the numerical

integration of a discretized version of the Navier-Stokes equations, show large

forecasting errors in the landfalling of ARs. In particular, the ensemble

forecasts provided by five main forecasting centres were analysed. The models

resulted able to predict the presence of ARs, however, they failed in the

timing and position of the landfall.

Starting from a study conducted at CW3E, we used a Machine Learn-

ing approach to improve the forecasts of ARs and to investigate the poten-

tial utility of data-driven models in weather forecasting. Two Convolutional

Neural Networks were trained with 30-years reforecast IVT data based on
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ii INTRODUZIONE

WRF over a region of interest from 25°N to 60°N latitude, and 150°W to

115°W longitude. After a large number of experiments to optimize the net-

works, the networks output was tested against MERRA2 reanalysis, used as

ground-truth, in terms of root mean squared error, bias and correlation.

Italian version

L’obiettivo di questo studio è quello di analizzare le prestazioni di due

Convolutional Neural Networks utilizzate come strumento di postprocess-

ing per migliorare le previsoni del Trasporto Orizzontale di Vapore Acqueo

verticalmente Integrato (IVT) ricavato dal reforecast trentennale messo a

disposizione dal Centre for Western Weather and Water Extremes (CW3E)

dell’Università della California di San Diego. L’IVT è la principale variabile

utilizzata per le previsioni di Atmospheric Rivers (ARs). Gli ARs sono re-

gioni a grande scala associati al settore caldo dei cicloni extratropicali e sono

osservabili alle medie latitudini in entrambi gli emisferi. Gli Atmospheric

Rivers sono caratterizzati da un importante trasporto di vapore acqueo nella

bassa troposfera dalle medie latitudini verso i poli e sono responsabili di eventi

di precipitazione molto intensa, in particolare sulla parte settentrionale della

costa ovest Americana. Gli ARs rappresentano inoltre un’importante risorsa

di acqua per le regioni lungo le quali si manifestano.

I modelli numerici di previsione basati sulla risoluzione delle equazioni di

Navier-Stokes mostrano un errore significativo nel predire la precipitazione

dovuta agli ARs. In particolare, sono state analizzate le previsioni ensemble

di cinque principali centri di previsione che risultano attendibili nel predire la

presenza degli ARs ma falliscono nella previsione della zona e del momento

dell’evento di precipitazione.

Partendo da uno studio effettuato presso il CW3E, in questa tesi viene

utilizzato il Machine Learning per migliorare le previsioni degli Atmospheric

Rivers. Sono state utilizzate due Convolutional Neural Networks il cui train-

ing è stato effettuato con 30 anni di dati ottenuti dal reforecast di CW3E su

una regione di interesse da 25°N a 60°N latitudine, e 150°W a 115°W longi-
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tudine. Dopo un esaustivo numero di esperimenti per ottimizzare le due reti

neurali i risultati ottenuti sono stati comparati con le reanalisi MERRA2 in

termini di scarto quadratico medio, bias e correlazione.
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Chapter 1

Introduction

1.1 What are atmospheric rivers

Atmospheric rivers (ARs) are narrows (≤ 1000 km) and long (≥ 2000

km) region of high water vapor content (Chapman et al., 2019 [50]). These

corridors are often identified inside the warm conveyor belt (WCB), a warm

and humid region located along and ahead the cold front of an extratropical

cyclone and characterized by high water vapor content and strong low level

winds in the low troposphere (Ralph et al., 2004 [37]; Wick et al., 2013 [10];

Rutz et al., 2014 [17]).

We can find ARs at midlatitudes on both the hemispheres (see figure 1.2)

and it’s estimated that these narrow corridors cover 10% of the hemispheric

circumference (Ralph et al., 2006 [39]; Zhu et al., 1998 [53]). Associated with

synoptic-scale extratropical cyclones, ARs are more numerous during the

winter time (Gimeno et al., 2014 [25]; Waliser et al., 2012 [49]) and they play

an important role in the heat poleward transport. It is shown that the 90%

and more of water vapor travels across the midlatitudes meridionally through

these filamentary regions (Zhu et al., 1998 [53]; Gimeno et al., 2014 [25]). ARs

take their name by the water volume transported and their flow rate that

is similar to the world’s largest rivers (Zhu et al., 1998 [53]). A typical AR

could carry as much water as ∼ 10 Mississipi River and there are three to five

1



2 1. Introduction

Figure 1.1: Schematic illustration of an atmospheric river (AR) in the warm

sector of an occluded extratropical cyclone. Arrows represent the water vapor

transport (Moore et al., 2011 [33]).

Figure 1.2: General ARs global distribution (red contours) and main conti-

nental areas (white contours) where extreme rain events caused by ARs have

been reported (Gimeno et al., 2014 [25]).
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ARs in each hemisphere at any given time (Ralph and Dettinger, 2011 [9]).

There is some disagreement on the term AR, with alternatives like “tropical

moisture exports ”or “moisture conveyor belt ”(Knippertz and Wernli, 2010

[19]; Bao et al., 2006 [3]), the last term because of their connection with the

warm sector of extratropical cyclones.

1.1.1 Atmospheric rivers as a source of waters and

flooding

ARs carry a big amount of water vapor in the lower troposphere and

combining it with horizontal wind and moist neutrality they can be an im-

portant source of precipitation (Ralph et al., 2006 [39]). The main mechanism

of precipitation is the orographic lifting so when an AR meet a topographic

barrier (Wick et al., 2013 [10]) the AR is forced upward producing in some

cases extreme precipitation events and flooding, decreasing the content of

water vapor as the AR penetrates inland (Wick et al., 2013 [10]). ARs con-

tribute 60-100% of the most extreme North American West Coast (NAWC)

hydrometeorological events (Lamjiri et al., 2017 [21]; Gershunov et al., 2017

[11]). At the same time ARs play an important role in the regional water cy-

cle as a significant seasonal water supply. With a focus on the western United

States, it’s estimated that ARs contribute 30-65% of annual precipitation on

the U.S. West Coast (Lamjiri et al., 2017 [21]; Gershunov et al., 2017 [11]),

particularly in California the six or more ARs that produce landfalling have

contributed 35-50% of all the state’s precipitation, with a single AR storm

providing 2.5 to 5 cubic kilometres of precipitation (Ralph and Dettinger,

2011 [9]).

1.2 Characteristics of Atmospheric Rivers

An Atmospheric River is typically observed within the WCB in front of

the cold region of an extratropical cyclone and from this disposition three
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Figure 1.3: In figure (1) it showed the plan structure of an AR with the cold

front and the low level wind defined as Low Level Jet (LLJ). In red it showed

the rain rate enhancement (RR ≥ 0.5mmh−1) and in green is represented

the thickness of the (IWV) if it were condensed. The line A-B (magenta)

represents the potential positioning of the cross section of figure (2) and the

pink point a-b defines a potential aerea for the integration of the profiles of

wind speed and humidity flux. The broken line in blue identifyes a potential

precipitation region based on the AR’s position. The picture is obtained

from (Gimeno et al., 2014 [25]) and the values showed represent the regional

trend. In figure (2) is represented the cross section of the AR along A-B in

figure (1). In the cross section in green is defined the specific humidity, in

red the horizontal moisture flux and in blue the wind speed (Gimeno et al.,

2014 [25]; Ralph et al., 2004 [37]).
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main properties are identified: 1) Enhanced low-level specific humidity with

a vertical expansion due to the frontal convergence that constraints air to

ascend. 2) Presence of a strong wind in the first two kilometres of atmosphere

in front of the cold frontal region originated by the temperature gradient

across the cold front. 3) Low static stability (Ralph et al., 2004, 2005 [37],

[38]; Wick et al., 2013 [10]). Furthermore two processes are identified as origin

of the water vapor inside an AR: 1) Convergence of the humidity along the

cold front of an extratropical cyclone. 2) Poleward flux of tropical moisture

(Gimeno et al., 2014 [25]; Bao et al., 2006 [3]; Ralph et al., 2004 [37]).

1.3 Artificial Neural networks and weather

forecasts: state of art

Weather forecasts are based on Numerical Weather Prediction (NWP)

models that solving a numerical integration of a discretized version of the

Navier-Stokes equations provide the evolution of the atmospheric state over

the time (Chapman et al., 2019 [50]; Dueben and Bauer, 2018 [36]; Scher,

2018 [43]). NWP models still represent an essential tool for predicting the

weather and the Earth’s climate (Scher, 2018 [43]). However, NWP models

forecast skills decrease with model time integration due to uncertainty in ini-

tial conditions, numerical approximations and model deficiencies (Chapman

et al., 2019 [50]).

1.3.1 Statistics and Machine Learning for improving

weather and climatological forecast: toward Ar-

tificial Neural Networks

Statistical forecast postprocessing techniques have been used to improve

the forecast skills of NWP models. These algorithms correct the errors in

the current predictions using historical forecasts and observations (Chapman

et al., 2019 [50]). Algorithms developed for this purpose include: model out-
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put statistics approaches (Glahn and Lowry, 1972 [12]; Carter et al., 1989

[5]; Wilks and Hamill, 2007 [51]), running mean techniques (Stensrud and

Skindlov, 2002 [45]; Stensrud and Yussouf, 2003 [46]; Hacker and Rife, 2008

[13]), algorithms based on Kalman Filtering (Homleid, 1995 [15]; Roeger et

al., 2003 [42]; Delle Monache et al., 2006 [6]; McCollor and Stull, 2008 [27]),

and analog-based methods which draw from past events to match designed

features of the current forecast to correct the error (Delle Monache et al.,

2011 [7]). Recently, Machine Learning has been used to improve NWP mod-

els too. Machine Learning techniques are computer algorithms that improve

automatically through experience (Mitchell, 1997 [31]), so they provide the

possibility to build models based on sample data, known as ”training data”,

capable of making predictions or taking decisions without explicitly know-

ing any type of connection between data and the physical process they are

used to predict or taking decision over (Koza et al., 1996 [20]). They are

also defined as data-driven models and some of them have been proposed in

connection with NWP models. They include: studying orbital parameters

and climate fields from a climate model (Holden et al., 2015 [14]), learning

from high-resolution simulations in order to improve predictions (Anderson

and Lucas, 2018 [2]; Rasp et al., 2018 [40]), helping in decision making in

extreme weather situations (McGovern et al., 2017 [28]), detecting extreme

weather in data set (Liu et al., 2016 [24]), and predicting the uncertainty of

weather forecasts (Scher and Messori, 2018 [44]). The mentioned algorithms

aim to extract and process information from models and add it into others,

this means that NWP models involve Machine Learning techniques; they are

linked. In recent years, however, a new challenge has been proposed from the

scientific community: can data-driven models compete with NWP models?

Broadly: can an algorithm trained with atmospheric data replace a model

based on physical equations?
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1.3.2 Artificial Neural Networks: a short introduction

Scientists are trying to investigate if data-driven models can beat NWP

models with Artificial Neural Networks (ANN), usually simply called Neural

Networks (NNs). NNs are a class of Machine Learning techniques that are

used in applications such computer vision, speech recognition and data fil-

tering, representing an important features of Artificial Intelligence (Dueben

and Bauer, 2018 [36]). Their structure is inspired to the human brain, they

are composed from artificial neurons organized in layers: input, hidden and

output. Input data are weighted through hidden layers and returned as out-

put.

Figure 1.4: Basic structure of a Nerual Network layers ( Nielsen, 2015 [29]).

The peculiarity of these algorithms is that they are capable to improve

using their output information in relation to a desired outcome through a

learning process. Two main types of learning process are defined: 1) Su-

pervised learning: providing the NN with input and matching output pat-

terns; 2) Unsupervised learning: the NN is supposed to discover statistically

salient features of the input population without any predefined output pat-

terns (Dongare et al., 2012 [1]). NNs exploit large amount of data to predict
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the evolution of non-linear processes (Dueben and Bauer, 2018 [36]). Train-

ing (with training we define the action of the NN to read the input data on

whose basis it will make the prediction) NNs with atmospheric data allow

us to compute the evolution in time of the atmospheric states (Scher, 2018

[43]) emulating the physics and the dynamics of NWP models without using

any physical equations. (Dueben and Bauer, 2018 [36]).

1.3.3 Artificial Neural Networks compared with NWP

models in literature

Among the numerous works that have been done trying to test if a NN

can compete with a NWP model we report the conclusions reached of four

of them.

Dueben and Bauer, (2018) [36] developed a NN “toy model”with the

purpose of predicting the geopotential height 500hPa (Z500) globally, based

on 6° longitude - latitude grid. The goal of the study was to investigate

trough the “toy model”, challenges and possible design choices for NNs in

order to obtain significant results on weather prediction. The NN has been

compared with the Lorenz ’95 low-complexity model that was presented in

(Thornes et al., 2017 [48]). The study stated that although NNs work without

any knowledge about the Earth system the results obtained from the toy

model suggest that a physical knowledge of the Earth system is required

considering that NNs and conventional models share the same challenges

in terms of nonlinear interactions between model components, interaction

among different scales, uncertainty in initial conditions and model biases

in long-term simulations. This, the study specified, even with a possible

big capacity of training data. Particularly, it would be difficult for NNs

to compete with NWP models in climate forecasts and long-term weather

forecast, hence seems more reasonable to use NNs for short-term and regional

predictions and for the study of large-scale events such El Nino that does not

require the prediction of the full atmosphere.

Scher, (2018) [43] presented an experiment never tried before. The
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study proposed the comparison between a NN and a general circulation model

(GCM) and showed that is possible, in principle, to predict the evolution in

time and so the complete dynamics of a weather/climate system with a data-

driven model. The results were encouraging, the NN showed stability even

in the long-term predictions (almost 1000 years). The experiment obtained

positive results respect to Dueben and Bauer, (2018) [36] due to various as-

pects as the simplicity of the GCM and the training of the networks with

the GCM data, contrary to Dueben and Bauer, (2018) [36] that used obser-

vation/reanalysis data which are more complex. On the other hand Scher,

(2018) [43] used training data with a daily time step while Dueben and

Bauer, (2018) [36] used a hourly time step. In the end another possible

cause of difference results between the two experiment could be the different

architecture of the two NNs. Scher, (2018) [43] proposed as ideas for future

works to use models with a more complex dynamics, in particular, to include

external forcing and higher amount of data to face an improvement of the

resolution and the requirements of more training data by more complex net-

works to simulate more complex weather/climate system. Scher, (2018) [43]

proposed as NN a Convolutional Neural Network (CNN), a type of NN that

we’ll explain in section 2.5 since it has been used for the experiments of this

thesis. Therefore, before go into details we would like to quote Larraondo et

al., (2019) [35] since it showed with their results important features about

CNNs.

Convolutional Neural Networks and weather interpretation

In a NWP model the state of the atmosphere and its evolution in space

and time is defined by the values of different variables or fields and some of

these variables are computed by other variables. All the variables are con-

nected by physical equations. Due to a lack of spatial and temporal resolution

and to the complexity of some processes these fields need to be interpretated

by humans (Larraondo et al., 2019 [35]). Larraondo et al., (2019) [35] in-

troduced the possibility to perform these “interpretations”with CNNs. The
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purpose of their study was to predict precipitation events over a period of

5 years on 5 different locations in the European area. For the experiments

they used geopotential data as input data relating to three different pressure

levels (1000,700,500hPa) and precipitation observation data about the 5 dif-

ferent locations to define if the predicted rain events or dry events (no rain)

correspond to reality. As stated in the study the used data aren’t directly

correlated to the precipitation variable, indeed, the study aimed to prove that

CNNs can predict the state of the atmosphere in a way that humans would

perform intuitively. Larraondo et al., (2019) [35] showed that CNNs allow to

acquire spatial information from images (each state of the atmosphere can

be seen as an image) and perform local weather prediction through a 3 di-

mensional CNN that incorporates as a third axis the temporal component.

They showed, at least in principle, the capability of the CNN to exploit the

pressure field to predict precipitation events and they suggested CNNs as

method to compute variables that in NWP models would be computed with

parameterizations or statistical models.

1.4 Thesis objectives

The objective of this thesis is to test and analyse the application of Con-

volutional Neural Networks as postprocessing tools to improve the forecast

of ARs of a Numerical Weather Prediction model. In particular, to improve

the performance of the West-WRF high-resolution reforecast provided by the

Center For Western Weather and Water Extremes (CW3E) department of

UCSD, San Diego. This study started from the work done at CW3E by

Chapman et al., (2019) [50] in which a Convolutional Neural Network has

been successfully used as postprocessing framework to improve the prediction

of the vertically Integrated Horizontal Water Vapor Transport (IVT) field of

GFS used to predict and detect the presence of Atmospheric Rivers on the

East Pacific and the Northern West Coast of the United States. Two CNNs

whose architectures will not be discussed in this study have been entirely



1.4 Thesis objectives 11

provided by Chapman et al., (2019) [50]. This thesis aims to apply the two

networks as postprocessing tools to improve the forecast of the IVT field

provided by the West-WRF reforecast and evaluate it against the MERRA-2

reanalyses, used as “ground-truth”, in terms of three valuation metrics: root

mean squared error, bias and pearson correlation coefficient. The applica-

tion of CNN to Atmospheric Rivers prediction has been chosen because of

the enormous practical importance of the potential improvements. This work

has been started and continued under the supervision of the CW3E team at

Scripps Institution of Oceanography during a Marco Polo stage.





Chapter 2

Introduction to Artificial

Neural Networks

An Artificial Neural Network is a group of artificial neurons that work

together. Neurons are organized in layers: input layer, hidden layers and

output layer. As shown in figure 1.4, the input layer is the leftmost layer in

the network and it’s composed by input neurons which represent the entry

values in the network. Every input neuron gives his value (we could consider

it as a neuron with an output and without an input) to each neuron in

the next layer. The output layer is the rightmost layer, in figure 1.4 it is

composed by only one neuron. The number of neurons in each layer and

the number of hidden layers (between input and output layer) it’s chosen in

reference to the problem we are approaching to and it’s based on some rules.

(Nielsen, 2015 [29]).

2.1 Neural Network fundamental unit: arti-

ficial neuron

Artificial Neurons (ANs) are the fundamental units of NNs. The task of an

AN is to process information called inputs to provide outputs. The simplest

model of AN is called perceptron. Perceptrons aren’t used anymore because

13
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their simplicity isn’t suitable for solving complex problems, however they’re

a good example to understand how an AN works. Perceptrons take binary

(0 or 1) inputs and produce binary outputs. Each inputs is weighted with a

weight, a real number expressing the importance of the respective input to

the output. The output, 0 or 1, is computed defining if the weighted sum∑
iwixi is less than or greater than a threshold value. (Nielsen, 2015 [29]).

Figure 2.1: Illustration of an Artificial Neuron (Nielsen, 2015 [29]).

In figure 2.1 is illustrated an example of AN with three input values

x1, x2, x3, that correspond to three weight w1, w2, w3. In algebraic terms:

output =

0, if
∑

iwixi ≤ threshold

1, if
∑

iwixi > threshold

where
∑

iwixi is the dot product w · x =
∑

iwixi where w and x are

vectors whose components are the weights and inputs, respectively. For sim-

plify the expressions above we move the threshold to the other side of the

inequality and replace it with the so called bias (b) where b ≡ threshold that

is a paramter of the AN as weights. Therefore the perceptron expressions

can be rewritten as:

output =

0, if w · x+ b ≤ 0

1, if w · x+ b > 0
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Finally we can represent the two possible outputs of a perceptron through

the graph of the step function hypothetically represented in figure 2.2 where

input and output values are represented respectively on x-axis and y-axis.

(Nielsen, 2015 [29]).

Figure 2.2: Shape of a step function that represents the outputs of a percep-

tron (Nielsen, 2015 [29]).

2.2 Sigmoid Neuron and the learning princi-

ple

The so called sigmoid neuron is the fundamental unit of modern ANNs.

The sigmoid neuron works as a perceptron, hence, it takes and weighs inputs

and owns a bias. The peculiar difference with the perceptron is that the

output is not binary but can take any values between 0 and 1 included. The

output of a sigmoid neuron can be defined as a function of inputs, weights

and bias, σ(wx+ b), where sigma represents the sigmoid function:
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σ ≡ 1

1 + e−z

Precisely considering the inputs x1, x2, .., weights w1, w2, .. and a bias we

can write the sigmoid function as:

σ(z) ≡ 1

1 + exp(−
∑

iwixi − b)
where wx + b = z. Algebraically when z is a large positive number the

output of a sigmoid neuron is approximately 1, on the other hand when z is

very negative the output is close to 0. When z is of a modest size the output

from a sigmoid neuron can take value between 0 and 1 and as said above in

this paragraph this is the peculiar difference with the perceptron model. This

is possible because the smoothness of the sigmoid function (see figure 2.3),

contrary to the step function as we can see from figure 2.2, allow to change

slightly the weights and biases to have a little change in the output while

small changes of perceptron paramaters can cause the output to completely

flip from 0 to 1 and viceversa. The possibility to apply small changes in

weights ∆wi and bias ∆bi for obtaining small changes in the output allows

to change parameters values to get as close as possibile to the best output.

(Nielsen, 2015 [29]).

∆output ≈
∑
i

∂output

∂wi
∆wi +

∂output

∂b
∆b

The variation of the output changes linearly with the variations of weights

and bias (Nielsen, 2015 [29]).

2.3 Learning process of a neural network: gra-

dient descent and backpropagation

The learning process is composed by three sections in sequence: forward-

propagation of the information, computation of the loss function and back-

propagation. The forwardpropagation occurs when the network is trained
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Figure 2.3: Shape of a sigmoid function that represents the outputs of a

perceptron (Nielsen, 2015 [29]).

Figure 2.4: Segments of the NN learning process.
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with the training dataset, hence, input data enter in the networks and they

are processed trought the neurons. Neurons apply their transformaton to the

information they receive from the neurons of the previous layer accordingly

with their own activation function. Once the data has crossed all the layer,

the final layer will give a result that explains how good are the processed in-

put data against a ground truth that is used as a target for prediction. The

transformations operated by the neurons and the modifications of parame-

ters accordingly to the loss value is computed through the gradient descent

techinque. We are indeed on a supervised environment because we have a

target and we want to verify how good or bad is the prediction in relation to

that target. (Nielsen, 2015 [29]).

We use a cost function to do this. The cost function computes the dif-

ference between the estimated (prediction) and the expected value (target),

hence, we want to minimize the cost function throug the adjustament of the

weights and bias of the neurons. Once the difference (loss) has been cal-

culated its value is propagated backward. The backpropagation spread the

information through all the neurons that have contribuited to the output.

Those neurons will receive only a fraction of the total value of loss in relation

to what they have contribuited to the output. The sequence of these three

steps makes the network able to learn. (Nielsen, 2015 [29]).

2.3.1 Cost function

The cost function is computed as:

C(w, b) ≡ 1

2n

∑
x

‖y(x)− a‖2

y(x) represents the desired output from the network, a is the vector of

outputs from the networks, x the input w all the weights in the network, b all

the biases. The sum is computed over all the training inputs x. The vector

a depends on x, b and w. The cost function considered is the quadratic cost

function, also known as MSE Mean Squared Error. We choose that because
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we used it as cost function in the NNs of this thesis. The cost function is

a function of bias and weights and it represents a tool to quantify how well

the network output a approximates the desired output y(x), hence, we need

to find an algorithm to adjust weights and biases which let the output to be

close to the desired one and so to minimize the cost function C(w, b) ≈ 0.

To do this we use the gradient descent technique. (Nielsen, 2015 [29]).

2.3.2 Gradient descent techinque

The objective is to minimize C(w, b). We can think about the values of

bias and weights as the current state of our model. Hence, it?s possibile to

define the variation of C as ∆C ≈ ∇C ·∆v with v as a substitude of b and

w where ∆v ≡ (∆v1,∆v2)
T is the vector of changes of bias and weights and

∇C ≡ ( ∂C
∂v1
, ∂C
∂v2

)T is the gradient vector of C. An interesting property of

∆C ≈ ∇C ·∆v is that it provides the possibility to choose ∆v to make ∆C

negative. In particular we can define ∆v = −η∆C where η is a small, positive

number called learning rate. With ∆C ≈ ∇C ·∆v and ∆v = −η∆C we find

∆C ≈ −η‖∇C‖2, this means that ∇C always decreases, never increases

if we change v accordingly with ∆v = −η∆C. Then, from ∆v = −η∆C

we can calculate the next state of the system toward the minimization C

defining v → v′ = v − η∇C where v′ represents weights and biases values of

next state of the system. The gradient descent consists to repeatedly ∇C
and then move the system in the opposite direction, indeed, we found that

∇C always decreases. Setting the size of the move ∆v = ε with ε small

fixed positive number, from ∆v = −η∆C we find η = ε
‖∇C‖ so we can think

about the gradient descent as taking small steps toward the best direction to

minimize C. The learning rate has to be small enough to prevent ∆C to be

positive but not too small because the algorithm would be too slow to reach

the minimum of C. Expliciting v → v′ = v − η∇C for weights and biases

we obtain wk → w′k = wk − η ∂C
∂wk

and bl → b′l = bl − η ∂C∂bl that represent the

gradient descent rule in term of components of our system/network. (Nielsen,

2015 [29]).
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Stochastic gradient descent

Stochastic gradient descent is a technique used for speed up the learning

process. The cost function has a form C = 1
n

∑
xCx so that for a single

training example Cx ≡ ‖y(x)−a‖2
2

. That means that to compute ∇C we have

to compute ∇C for each training input and then average them. In the

practice this is time consuming and the network would reach the minimum

of C slowly because usually the number of training inputs is large. Stochastic

gradient descent solves this problem computing ∇Cx for a smaller sample of

size m called batch of randomly chosen training data. (Nielsen, 2015 [29]).

It results that choosing an appropriate size of the batch:

m∑
j

∇CXj
m

≈
∑
x

∇Cx
n

= ∇C

Hence we can explicit ∇C as:

∇C ≈ 1

m

m∑
j

∇CXj

The training of network is therefore performed with a first batch where

the∇C is computed over the randomly chosen input data of the batch. When

it terminates, the algorithm start the same process with another batch and

so on until every training data is processed. At this point a training epochs is

completed and it’s possible to start with another one. The number of batch,

epochs and the values of the learning rate and other parameters related to

these are called hyperparameters. (Nielsen, 2015 [29]).

2.4 Dataset organization

When it comes to organize the data we differentiate it in three segments:

training dataset, validation dataset and testing dataset. Training dataset

is composed by the elements that the NN sees and from which it learns.

Validation data set is composed by data that the NN sees and use for tuning
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the hyperparameters as setting the number of hidden neurons or stopping

the learning process epochs before the number defined initially. When the

network is trained and it reaches the optimal hyperparameters setup the NN

has to be tested against a “ground-truth”. The testing dataset is composed

by elements that the NN doesn’t see during the training phase so it allows to

assess the performance of the network through the error obtained from the

output against the ground-truth. (Nielsen, 2015 [29]).

2.5 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are an example of deep learning

technique. Deep Learning involves all those NNs that are composed by many

hidden layers of neurons and so a large amount of parameters, contrary to

Shallow NNs that are less complex in terms of structure and parameters.

CNNs are widely used in image recognition, their architecture allow to con-

sider the spatial structure of an image that wouldn’t be possible with a NN

of fully connected layers. In image recognition indeed, every pixel of an im-

age is considered as a neuron. It results possible to apply this concept to

weather prediction considering the state of the atmosphere as an image with

grid points instead of pixel. This not only results to be more accurate when

it comes to data-driven weather prediction but makes CNNs faster to train

than other NNs. CNNs are built around three concepts: local receptive fields,

shared weights and pooling. (Nielsen, 2015 [29]).

2.5.1 Local receptive field

One of the peculiarity of the CNN architecture is the Local Receptive

Field (LRF). This idea permit to think differently about the input layer of

the network. Neurons aren’t disposed vertically as in figure 1.4 but as a

square of neurons as in figure 2.5. Input neurons are therefore connected

to the neurons in the hidden layers but contrary to those in figure 1.4 every

unit in the hidden layer is connected with a small region of the input neurons
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square called Local Receptive Field (figure 2.6). A hidden neuron learns

about a particular receptive field and the next hidden neuron in the same

hidden layer is connected with a window over input neurons shifted to the

right of an arbitrarily number of neurons from the previous one (figure 2.7).

(Nielsen, 2015 [29]).

Figure 2.5: Illustration of the disposition of neurons on a concolutional layer.

We can think about them as pixels of an image or grid points of a NWP model

output (Nielsen, 2015 [29]).

Figure 2.6: Local Receptive Filed of a hidden neuron (Nielsen, 2015 [29]).
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(a)

(b)

Figure 2.7: The first hidden neuron is connected to the first LRF (a) that

will be shifted on the right for the second hidden neuron (b) and so on until

all the hidden neurons have covered the entire input region (Nielsen, 2015

[29]).

2.5.2 Shared weights and biases

Every connection from the Local Receptive Field to the hidden neuron

is weighted and each hidden neuron owns a bias value. A peculiarity of

CNNs is that each hidden neuron has got the same weights and biases. This

concept allows all the hidden neurons of a hidden layer (or convolutional

layer) to detect the same feature in the input layer, for this reason, we say

that the hidden layer is composed by feature maps. This idea is useful

because allows the network to recognize and classify as a particular feature
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(i.e. an atmospheric river) elements that are apparently different from each

other. At this point of the discussion if we imagine a network able to detect

3 different features, the structure of the CNN would appear as in figure

2.8. A big advantage of shared weights and biases concept, sometimes called

as kernels or filters, is that it allows to reduce significantly the number of

parameters involved in the network and so improve the speed of training

processes. (Nielsen, 2015 [29]).

Figure 2.8: Illustration of an input layer composed by 28x28 neurons con-

nected to a hidden layer composed by 3 feature maps with 24x24 neurons

each (Nielsen, 2015 [29]).

2.5.3 Pooling layers

Pooling layers are used consecutively to convolutional layers and they

contain as many elements as features maps in a hidden layer. A pooling layer

is composed through a pooling technique as the max-pooling procedure that

provides a simplification of the information contained in the feature maps.

Indeed, every unit in the pooling layer is computed from an arbitrarily little

window of neurons in the feature map in terms of maximum contributions

of the neurons of the window with respect to the feature to which they are
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Figure 2.9: Max-pooling technique: the neurons selected from each window

are those that give the biggest contribution to the feature they are assigned

to (Nielsen, 2015 [29]).

assigned (figure 2.9). A perk of this concept is to reduce the number of

parameters. (Nielsen, 2015 [29]).

Figure 2.10: Pooling layers are consecutive to the hidden layers (Nielsen,

2015 [29]).

At the end each pooling layer is connected with the output layer whose

neurons are disposed vertically as in the 1.4 (figure 2.11). For CNNs the

learning processe composed by forward propagation, loss computatin and

backpropagation works in the same way that has been described in the sec-

tions above. (Nielsen, 2015 [29]).
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Figure 2.11: Convolutional Neural Network general structure with 3 features

maps and 3 pooling layers with 12x12 neurons each (Nielsen, 2015 [29]).



Chapter 3

Atmospheric rivers forecasting

3.1 Identification and detection of Atmospheric

Rivers

To understand the critical role of ARs in precipitation events it’s impor-

tant to define methods for identifying and predicting ARs.

An air column of a typical AR contains a quantity of water vapor that if

it were condensed it would create a layer of 2 centimeters or more of thickness

and the majority of that whitin the first 2.5 km of the column characterized

with a strong low-level (>12.5 ms−1) and humid wind (Ralph and Dettinger,

2011 [9]). Therefore the identification and the estimation of the strength of

an AR are performed through monitoring and tresholding two key features:

water vapor content e wind speed. Accordingly, two quantity are used for

detecting ARs: 1) Integrated Water Vapor (IWV) obtained through satellite

measurements and reanalyses or models; 2) Computing the vertically Inte-

grated Horizontal Water Vapor Transport (IVT) from reanalysis or model

(Ralph et al., 2004 [37]; Ralph and Dettinger, 2011 [9]).

The IWT [kgm−2] (Fionda et al., 2019 [8]) is defined as

IWT =
1

g

∫ px

ps

qdp

27
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Figure 3.1: IWT and IVT fields are respectively represented in figures (a)

and (b) at 0000 UTC 21 December 2010. The red line defines in (a) the

threshold value of 20mm and in (b) the threshold value of 250kgm−1s−1. In

figure (c) represents the analysis of accumulated precipitation in a day period

until 12 UTC 21 December 2010 (Rutz et al., 2014 [17]).
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where g is the gravitational acceleration [ms−2], q is the specific humidity

(dimensionless), p is the pressure [kgms−2m−2], in particular, ps is the pres-

sure at the surface and px the pressure at a desired level (Rutz et al., 2014

[17]). In Rutz et al., (2014) [17] IWT is computed through an integration

from the surface to 100-hPa, with intervals of 50-hPa from the surface to 500-

hPa, and 100-hPa from 500 to 100-hPa. An AR is defined, using IWT, as a

continuos region ≥ 2000km in length and with IWT ≥ 20mm (considering

mm as if all the water vapor in the column were condensed in liquid water

and spread evenly in the column). Adding the wind to the IWT equation,

the IVT [kgm−1s−1] is defined as:

IV T =
1

g

∫ px

ps

qV dp

where V wind vector [ms−1] (Rutz et al., 2014 [17]). The IVT defines an

AR as a contiguous region ≥ 2000km in length with IV T ≥ 250kgm−1s−1.

In both cases, IWT and IVT, the length of an AR is defined as the greatest

distance between two points within each contiguous feature (Rutz et al.,

2014 [17]). The width of an AR it’s not considered, indeed, an AR satisfying

the required characteristics by the IVT thresholds is not usually wider than

1000 km. Rutz et al., (2014) [17] again, showed how the choice to use IVT,

despite some studies use IWT to present results, could be more suitable in

the detection of ARs to predict the rain, in particular on the West Coast of

United States.

Firstly as it shown in (Junker et al., 2008 [18]; Neiman et al., 2002 [34];

Rutz et al., 2014 [17]) IVT is greatly associated to precipitation over topo-

graphical obstacles respect the IWT. Especially on the western United States

is more firmly correlated with cool-season precipitation (figure 3.1)(Rutz et

al., 2014 [17]). Second, Rutz et al., (2014) [17] shows in figure 3.1 that ARs

defined by the treshold IVT≥ 250kgm−1s−1 penetrate more in land then

when they are described by IWT≥ 20kgm−2. Moreover IVT describes in a

better way the spatial extension interested by heavy precipitation events and

helps to solve the problems related to the decreasing of atmospheric thickness
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and IWT values over complex terrain (Rutz et al., 2014 [17]).

3.1.1 Prediction of Atmospheric Rivers

Our overall interest is to predict the presence and intensity of ARs be-

cause they produce anomalous precipitation events. So why don’t we focus

our effort on predicting precipitation directly? Lavers et al., (2016) [23])

found that IVT (and hence ARs) is strongly related to synoptic-scale atmo-

spheric processes such as extratropycal cyclone’s warm belts. In the non-AR

cases, precipitation is controlled by mesoscale atmospheric processes which

can produce highly localized events. This difference of scales makes mesoscale

precipitation less predictable than IVT. The IVT, being strongly correlated

with precipitation and being associated with large-scale processes turns out

to be easier to predict, therefore, is a better way to predict precipitation.

3.2 Skills of NWP models in ARs forecasting

NWP models show large forecasting errors in the landfalling of ARs

(Ralph et al., [39]). Ensemble forecast systems provided by five main fore-

casting centers were analyzed by Wick et al., (2013) [10]. It is found that

they reproduce: the IWV content along the AR axis, its water vapor con-

tent and the position of the AR once the land is reached and the AR width.

The models resulted able to predict the presence of ARs 10 days beforehand,

however, they failed in the timing and position of the landfall, especially for

longer lead times (Wick et al., 2013 [10]). (Chapman et al., 2019 [50]) tried

to improve the prediction and detection of ARs with a Machine Learning

approach.

Chapman et al., (2019) [50]) is the study on which this thesis is based.

The study evaluated the improvement performed by a Convolutional Neural

Network of the IVT prediction from the Global Forecast System (GFS) over

a region of interest from 180° W to 110° W longitude, and 10° N to 60° N.

The aim of the study was to improve the IVT forecast with respect to the
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forecast on the same region provided by a dynamical NWP model using GFS,

a climatological forecast (CF) and a persistence forecast (PF) (Chapman et

al., 2019 [50]).

The dataset used composed of GFS’s IVT forecasts at a 0.5°horizontal

spatial resolution on 64 vertical levels with two daily initializations at 0000

and 12000 UTC. A 7 days forecast has been analyzed with 3 hours incre-

ment for the firsts 12 hours, 12 hours increment for the next day and 24

hours increment until the 168th hour. The forecasts covered a period of

time from October to April from 2006 to 2018. As a ground-truth IVT from

MERRA2 reanalysis has been used, with a 0.625°x0.5° grid on 21 pressure

levels from 1000 and 300-hPa. GFS forecasts have been regridded and up-

scaled to MERRA2 resolution for consistency. The IVT forecasts have been

divided in training (2008-2016), validation (2016-2017) and testing datasets

(2017-2018).

To evaluate the forecast error the study applied four valuation metrics

to the forecasts: root mean squared error (RMSE), bias (Bias), centered

root-mean-square error (CRMSE) and spatial Pearson Correlation (PC) co-

efficient.

As shown in figure 3.2 for the first three hours of forecasts the CNN and

the NWP model showed better results respect the climatology and persistence

forecast, with the CNN improving on BIAS and CMRSE with respect to the

NWP model. After five days CNN and the NWP model were almost equal

about BIAS while CRMSE was still better for the CNN. At the seventh day

CNN performed better than other models in terms of RMSE and showed

a higher correlation with the ground-truth through all the forecast period,

in particular, at the 7th day CNN’s correlation corresponded to that of the

NWP model at the 6th day. The study showed that CNNs as postprocessing

framework can improve a seven days IVT forecast respect to a GFS NWP

model in terms of RMSE improvement at every lead time with a higher

correlation between forecast and ground truth after the 12 hours lead time.
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Figure 3.2: Valuation and comparison of the performances of the CNN (AR-

cnn) in blue, GFS NWP model (GFS) in red, climatological forecast (Climo)

in green and persistence forecast (Pers) in grey, in terms of RMSE (c), Bias

(a), CRMSE (b) and correlation (d) obtained in Chapman et al., (2019).

(Chapman et al., 2019 [50]).



Chapter 4

Improving reforecast with

Convolutional Neural Networks

On the basis of the positive results obtained in Chapman et al., (2019)

[50] and described in the previous section, we will now use a new determin-

istic model, so-called Weather Research Forecast (WRF), to re-forecast for

a period of 30 years for the same region of Chapman et al., (2019) [50]. We

will use two different convolutional networks, CNN1 and CNN2 and we will

compare the forecast skill with respect to a reference data set, this time the

MERRA2 reanalysis. The reforecasts data are used as training, validation

and testing data set for both the CNNs that are evaluated with MERRA2

reanalysis in terms of Root Mean Squared Error (RMSE), Bias and Per-

son Correlation (PC) Coefficient and compared between each other and with

West-WRF. The experiment is performed over a region of interest (ROI)

from 25°N to 60°N latitude, and 150°W to 115°W longitude.

4.1 Data

4.1.1 West-WRF Reforecast

Reforecasts products are computed from the forecasts of the same model

extended for several years in the past. The West-WRF reforecasts have

33
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been created with the goal of: 1) investigating the skill of a high-resolution

reforecast; 2) conducting process-based studies of atmospheric rivers; and 3)

improving predictive skills by the application of postprocessing techniques

and machine learning to reduce errors (Martin et al., 2018 [26]).

West-WRF reforecast dataset involves 30 years of forecasts (1987-2017)

with each year composed by the four-months period 1st January-31st March

and 1st-31st December. The reforecast is based on WRF version 4.0.1 and

the forecasts are initialized at 0000 UTC daily using the 0.5° Global Ensemble

Forecast System (GEFS) Version 10. The entire dataset covers the spatial

domain showed in figure 4.1 composed by a 9 km horizontal spatial resolution

outer domain and a 3 km horizontal spatial resolution inner domain, both

having 60 vertical levels until a model top of 10 hPa (Martin et al., 2018

[26]). In this study only the outer domain is used, that it is composed of 618

by 569 grid points. Forecasts are produced for 168 hours lead time (7 days)

with time resolution of 1 hour.

Figure 4.1: The full plot represents the outer domain with 9km horizontal

spatial resolution and the smaller domain d02 represents the inner domain

with 3km horizontal spatial resolution (source: https://cw3e.ucsd.edu).



4.2 Methodology and experimental design 35

4.1.2 MERRA2 reanalysis: ground-truth

Reanalysis data are created by the combination of observations made in

the past with a weather model providing the best possible reproduction of

the atmosphere at a given time (Dueben and Bauer, 2018 [36]). The benefit

to train a network with reanalysis instead of observations is that they provide

data for each grid point at each time step, consistently over the entire data

set (Dueben and Bauer, 2018 [36]). In this study MERRA2 reanalysis is

used as a ground-truth, representing the target for both the CNNs and so

to assess their training error and the forecast error of West-WRF. MERRA2

data are structured on 0.625°x0.5° grid interpolated within the interval 1000

and 300 hPa divided in 21 vertical layers (for IVT computation) (Chapman

et al., 2019 [50] ).

4.2 Methodology and experimental design

The variable of interest to detect ARs is the amplitude of the IVT vector

field. West-WRF provides the variable “IVT”(amplitude of the IVT vector)

that represents the forecasted IVT and MERRA2 provides the target vari-

able “IVTm”. For consistency West-WRF IVT is regridded and upscaled to

MERRA2 resolution. For simplifying the problem and making the training

faster we examined a forecast of 48 hours with an increment of 6 hours for

a total of 9 forecasts lead times from 0000 (initialization) to 0048 UTC over

a time period from 1987 to 2017 for 8 vertical levels from the surface to

200 hPa. The experiments are conducted over a region from 25°N to 60°N
latitude, and 150°W to 115°W longitude.

4.2.1 Verification metrics

To evaluate the ability of the two Convolutional Neural Networks we

compared the IVT forecast provided by the West-WRF reforecast with the

IVT forecast postprocessed by the two CNNs, CNN1 and CNN2. WRF,
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CNN1, CNN2 provides a forecasted IVT field (f) whose error e = f − g

is computed with respect to the ground-truth (g) IVT field provided by

MERRA2. The skill is then quantified in terms of root mean squared error

(RMSE), bias (Bias) and Pearson Correlation (PC) coefficient that we will

call simply correlation.

4.2.2 Error patterns of West-WRF

(a) (b)

Figure 4.2: Spatial distributions of the West-WRF error patterns defined by

the difference between the West-WRF and MERRA2.

In figure 4.2 the error patterns of West-WRF with respect to MERRA2

are shown in terms of Bias and RMSE at 48-hour forecast lead time computed

over the testing dataset. The biggest source of error is from the areas where

the IVT field is usually more intense (see figure 1.3(1)). This could lead

to wrong predictions of positioning and magnitude of the IVT field. West-

WRF under-estimates the IVT at high latitudes and over-estimates it at low

latitudes. This could be caused by the mesoscale frontal waves associated

with ARs characterized by lower predictability and is consistent with the

errors pattern of GFS showed in (Chapman et al., 2019 [50]).
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4.2.3 Convolutional Neural Nerworks configuration

Both of networks produced the best results with 50 training epochs and

batch size 20. CNN1 and CNN2 have been optimized with a mean squared

error loss and after the training they provide an estimated IVT field that is

corrected from some portion of the forecast error that have been learned from

the networks during the training. The CNN1 has performed better with a

learning rate of 0.0009, differently from CNN2 that exhibited at 0.0005 learn-

ing rate. We tested 4 similar regions and we noticed that reducing the size

of it, the evaluation metrics and the speed of training improved for both

networks. The activation function used for CNN1 and CNN2 is a linear one.

The optimal configuration for both the CNNs was found splitting the training

dataset in 24 years (1987-2011), validation and testing dataset in 3 years each

one respectively 2012-2014 and 2015-2017, so with different proportions with

respect to the standard subdivision 50:25:25 (training,validation,testing). It-

eratively, the training data help to optimize the weights of the CNNs while

the validation datasets are utilized to calculate the performance metrics dur-

ing the training. The networks do not see the testing data; indeed, they

are independent from the training data and they are used for assessing the

postprocessing ability of the networks. For both the networks a new CNN is

generated and trained for each forecast lead time. Due to potential similar

IVT features across the lead times, the training of each lead time follows a

sequential scheme that allows the weights of the network at a particular lead

time to be initialized by the network weights of the previous lead time. This

reduces the training time with an improvement of the overall error results

(Chapman et al., 2019 [50]). The optimal configuration for the architecture

and parameters of the networks was reached through a large number of ex-

periments. In the next paragraph results on the performance of the networks

accordingly to the variation of parameters and the regions are shown in terms

of the valuation metrics.
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Figure 4.3: Comparison of CNN1 and CNN2 in terms of valuation metrics

at 48-hour lead time for each value of training epochs tested.

Figure 4.4: Comparison of CNN1 and CNN2 in terms of valuation metrics

at 48-hour lead time for each value of learning rate tested.

4.3 CNNs optimization

Convolutional neural networks are regulated by many parameters. In this

study for simplicity and consistency we analyzed the best configuration of the
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Figure 4.5: Comparison of CNN1 and CNN2 in terms of valuation metrics

at 48-hour lead time for each region of interest tested.

networks in terms of epochs training, learning rate and variation of the region

of interest size over which we performed the prediction (see figures 4.3,4.4

and 4.5). This of course, does not exclude the possibility that analyzing

and changing other parameters would lead to a better configuration of the

networks. For testing the best performance in terms of epochs we trained

the networks for each forecast lead time with 9 different epochs value (a total

of 81 trained lead times) holding the size of the region of interest and the

value of the learning rate with their best performance value. In figure 4.3 are

represented the three valuation metrics at 48-hour lead time for each value

of training epochs we tested. For both the networks we choose 50 epochs as

best value. The RMSE of CNN1 and CNN2 decreased significantly after 20

epochs and it is almost stabilized between 40 and 70 epochs. None of the

networks reached the 60 and 70 epochs of training, both showed an early

stopping of the training within the 50 epochs, except in the training of few

lead times, caused by the lack of improvement in the forecast error. Bias

and correlation accordingly with the RMSE showed stable value after 40

epochs of training. The best learning rate value was obtained (see figure 4.4)
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through the same experiment design we used for obtaining the best epochs

value. We noticed that decreasing the learning rate from 0.09 to 0.0001 we

obtained a significant improvement of RMSE and correlation. The learning

rate reached its best value in terms of RMSE at 0.0009 learning rate for

CNN1 and 0.0005 for CNN2 while the best values for the correlation are

slightly shifted to the left, 0.001 for CNN1 and 0.0009 for CNN2. We have

chosen the RMSE as more representative of the overall performance. About

the region of interest (ROI), we tested 4 different regions of interest (see figure

4.5): region 1 from 10°N to 60°N latitude, and 180°W to 110°W longitude;

region 2 from 15°N to 60°N latitude, and 170°W to 110°W longitude; region

3 from 20°N to 60°N latitude, and 160°W to 112°W longitude; region 4 from

25°N to 60°N latitude, and 150°W to 115°W longitude that is the region of

interest on which is based this study. Initially we did not want to change the

ROI because we aimed to compare the performance of the networks trained

with West-WRF reforecast data with the results obtained by (Chapman et

al., 2019 [50]) with the CNN trained with GFS. However, as first approach

to Neural Networks was interesting to see how reducing the size of the ROI,

both the networks performed better in terms of valuation metrics and speed

of training (not reported). Hence, we have chosen to train CNN1 and CNN2

with region 4.

4.4 Results

4.4.1 CNN1 and CNN2 used as postprocessing tools

Figure 4.6 shows the intensity of the IVT field at 48-hour forecast lead

time of the 18th January 2017. The West-WRF IVT field at 48-hour lead

time is used as input for the 48-hour lead time CNN1 and CNN2. After

the training of the networks CNN1 and CNN2 produced respectively a post-

processed forecast in a few milliseconds. The West-WRF IVT field, hence,

is processed by the two networks that produced a corrected IVT field com-

pared against the 48-hour MERRA-2 IVT field (figure 4.6(a)). West-WRF
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(a) (b)

(c) (d)

Figure 4.6: IVT field produced by CNN1(d) and CNN2(c) compared with the

IVT field provided by MERRA2(a) and West-WRF(b) at 48-hour forecast

18th January 2017.
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(a) (b)

(c) (d)

(e)

Figure 4.7: Difference between the IVT fields of CNN1 with MERRA2 and

WRF (a),(b); CNN2 with MERRA2 an WRF (c),(d); WRF and MERRA2

(e).
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(figure 4.6(b)) and CNN2 (figure 4.6(c)) perform well on the positioning of

the AR. West-WRF shows a better result in modelling the intensity of the

IVT filed than CNN2 that under-estimates the magnitude of the IVT field.

On the contrary CNN2 better predicts the shape and the orientation of the

IVT and it correctly reduces the IVT magnitude between the offshore zone

of high IVT intensity and the land. CNN1 (figure 4.6(d)) misses the position

of the AR and the positioning of the IVT high intensity zones, while seems

acceptable the orientation of IVT field.

Figure 4.7 shows the difference of the IVT field between CNN1, CNN2 and

West-WRF with MERRA2 (see 4.7(a),(b),(e)) and between CNN1 and CNN2

with West-WRF (see 4.7(b),(c)). From the difference between MERRA2 it

is possible to notice how CNN1 fits with MERRA2 only in the center of the

AR with a significant difference of intensity above and under the central axis

of the AR. This means that CNN1 is significantly missing the position of the

IVT field showing the same pattern against West-WRF. This pattern is less

pronounced in the difference CNN2-MERRA2. CNN2 can better detect the

positioning of the AR with a more pronounced difference in the magnitude

of the IVT field in the northern part of the AR. CNN2 and West-WRF show

similar pattern against MERRA2 in terms of AR positioning detection and

magnitude estimation. CNN2-WRF shows a little difference of IVT field

magnitude from the zone of high IVT intensity.

4.5 Overall performance of CNN1 and CNN2

on the testing dataset

The overall performance of CNN1 and CNN2 is shown in figure 4.8 in

terms of the valuation metrics, root mean squared error (RMSE), bias, and

Pearson Correlation (PC) coefficient from a seasonal point of view considering

that both the networks have been tested over the four-months period 1st

January-31st March and 1st-31st December for the years 2015,2016 and 2017.

CNN1 and CNN2 have been trained for each forecast lead time with their
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best configuration. Considering the variability of the atmospheric fields and,

in particular the IVT, it would have been better to produce a forecast with

smaller time steps than 6 hours. We did choose that time step to reduce

the time necessary for the networks training. Figure 4.6 shows that both

CNN1 and CNN2 start with higher RMSE value respect West-WRF. While

the CNN1 maintains this trend for the entire prediction, CNN2 significantly

reduces the RMSE value with respect to West-WRF. In terms of correlation

CNN2 outperforms CNN1 and the prediction made by West-WRF that shows

a correlation value at 36-hour lead time that CNN2 reaches at 48-hour lead

time. CNN1 shows the best result for bias at the 00-hour but it rapidly

deteriorates at 06-hour lead time and remains worse than West-WRF up to

the end of the second day. CNN2 although improves the West-WRF forecast

for the entire period in terms of RMSE and correlation, shows a negative

bias for the entire prediction. The negative bias is connected to the overall

under-estimation of CNN2 with respect to the MERRA2 IVT field showed

in the study case reported in the previous section (see figure 4.6(c)).

Figure 4.8: Overall performance of CNN1,CNN2 and West-WRF against

MERRA2 on the entire testing data for the entire forecast period.
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Conclusions

This thesis was concerned with a special atmospheric phenomena, so

called Atmospheric River (AR). It was found that such ARs produce intense

precipitation events on land inducing flooding and consequent disasters, if

not loss of lives. AR are large scale atmospheric structures, transporting

large amount of water vapor and their horizontal scale is several hundred

km. Given such large scale, the hypothesis is that ameliorating the AR

transport of water vapor would improve the forecast of precipitation events

on land. After having defined the key quantity to identify AR and their

intensity, the Integrated Vapor Transport (IVT) amplitude, we have studied

a high resolution reanalysis field (MERRA2) with re-forecasts from a limited

area forecasting model, WRF over the California west coast. We applied two

Convolutional Neural Networks (CNN1 and CNN2) to improve a 48 hours

forecast of the IVT provided by the West-WRF 30-years reforecast of the

CW3E department, UCSD, San Diego. The IVT field is used to detect At-

mospheric Rivers over a region of interest from 25°N to 60°N latitude, and

150°W to 115°W longitude. After an optimization phase of the networks,

both the CNNs have been trained and validated for each lead time with

∼3480 reforecast data, selecting as variable of interest, the amplitude of the

IVT vector. Once the networks have been trained and validated, the out-

puts have been tested over the four-months period 1st Jan-31st Mar and 1st

45
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Dec-31st Dec for the years 2015,2016 and 2017 with ∼300 reforecast data

for each network. The corrected IVT fields from the networks have been

evaluated against MERRA-2 reanalysis in terms of root mean squared error,

bias and correlation. Although the results of CNN1 were outperformed by

West-WRF, CNN2 improved slightly the IVT forecast of West-WRF with an

improvement of the 0-2% in terms of RMSE. The CNN2 maintained better

results with respect to West-WRF in terms of correlation, however, it under-

estimated the IVT intensity for the entire forecast period. From a general

point of view we can consider the CNN2 capable to improve the IVT field of

West-WRF model over the region of interest. In conclusion this thesis has

shown that CNN is a promising forecasting technique but that still improve-

ments are required, such as a better optimization of hyper-parameters for the

neural network and probably a large input data set for the network training.
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