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Chapter 1

Introduction

1.1 Ensemble Forecasting: Atmospheric and Ocean Weather

Despite the fact that operational weather ensemble forecasting is a recent achievement,

the first ideas about the necessity of evaluating the forecast uncertainty date back to the

very beginning of the Numerical Weather Prediction (NWP) history. A notable review

of the origin of ensemble forecasting was recently written by Lewis ( 2004 [51] ). In the

early 1950’s the first successful experiments of NWP were performed at the Institute of

Advance Study, Princeton. Electronic computer were for the first time used to solve a

set of dynamical equations to describe the atmospheric flow. In the same years Eady and

Charney independently developed the theory of baroclinic instability ( Charney 1947 [14],

Eady 1949 [28] ) that explains the basic instability mechanism by which small pertur-

bations of the atmospheric state might have an exponential growth. Eady first realised

the implication of baroclinic instability on weather forecasting: since the initial condition

of the atmospheric state is known only up to a certain accuracy, the initial errors will

propagate undermining the prediction skills. Eady stated that “long-range forecasting is

necessarily a branch of statistical physics” ( Eady 1951 [29] ). In the late 1950’ several

practical problems of NWP systems were investigated and solved and in parallel the work

of Phil Thompson addressed from a theoretical point of view the problem of predictability.

He calculated the derivative of the error at the initial time for a quasi-geostrophic two-level

2



model and extrapolated the error growth concluding that the limit of predictability is in

the order of 1 week ( Thompson 1957 [89]).

One of the major contribution to the understanding of the chaotic nature of the atmo-

spheric flow was given by Lorenz. In 1963 he showed that the solution of a simple set of

differential equations representing a forced dissipative hydrodynamic flow is aperiodic and

unstable with respect to small modifications; then small perturbation in the initial condi-

tion can evolve in considerably different solutions( Lorenz 1963 [55]). In the conclusion of

this seminal paper, Lorenz states that “prediction of the sufficiently distant future is im-

possible by any method, unless the present conditions are known exactly”. In 1965 Lorenz

also envisioned ensemble forecasting suggesting to apply a system of dynamical equation

to a set of different initial states representing the error and inadequacies in observations;

then he remarked that the future state is unpredictable when two states chosen from the

ensemble becomes indistinguishable from two randomly chosen atmospheric states.

The existing link between dynamical and probabilistic aspects of weather forecasting

was clarified in the late 1960s by Edward Epstein. He proposed a geometrical interpreta-

tion of ensemble forecasting where each member is a point is a phase space and the spread

of points represents the uncertainty. The dynamical system is then made of random vari-

ables that are characterised by stochastic properties. Using a simple but nontrivial system

of equations Epstein explicitly derived the full set of stochastic-dynamic (SD) equations

for the mean and the variances of the state variables ( Epstein 1969 [31] ). Epstein also

used Monte Carlo simulations as a reference for the numerical experiments performed with

the SD model. He showed that the SD prediction were a better representation of the ‘true’

state then the determinist forecast. However the SD machinery suffers from limitations

that prevented a wide application of the method; for instance the analytical derivation of

SD equations is only possible if assumptions are made on the shape of ensemble distribu-

tions. Furthermore the computational time required to solve the the stochastic-dynamic

equation for a system of n components growth with a factor n2.

Interestingly it was the Monte Carlo method that survived the evolution of the stochas-

tic prediction. In the 1970’ Leith continued the work of Epstein and focused on the Monte
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Carlo approximation to the SD prediction ( Leith 1971 [44], 1974 [45] and Leith and

Kraichnan 1972 [46]) ). He also studied the theoretical skill of Monte Carlo forecasting as

a function of ensemble size ( Leith 1974 [45] ) claiming that a small number of members is

sufficient to estimate the ensemble mean; however he provided no indication about the en-

semble size that is required for the determination of higher-order moments of the forecast

distribution. Leith explained that ensemble mean is a better estimate than a determinis-

tic forecast starting from the best initial condition because averaging together individual

members of a Monte Carlo simulation has the effect of filtering out the small scale struc-

tures of the prediction for which there is little predictability. He admitted that this point

was controversial since the smooth mean field may become an unrealistic representation

of the atmospheric state.

Today the state of the art global ensemble prediction systems (EPS) are all based on

a slightly modified Monte Carlo approach. In traditional Monte Carlo the initial state

probability distribution function (pdf) is assumed to be known and it is randomly sam-

pled, where the operational weather forecasting centres have adopted different strategies

to sample the initial state distribution. This choice is made to optimise the usage of com-

putational time reducing the ensemble size to the smallest number of members that are

able to capture the larger portion of atmospheric state variability. Again this technique

was already being suggest by Lorenz back in 1965 ( Lorenz 1965 [53] ). The optimal per-

turbations by which it is possible to initialise an ensemble forecast are generally found as

Singular Vectors that identify the perturbation of the initial state that have a maximum

linear growth for a given norm ( Lacarra and Talagrand 1988 [42], Farrel 1990 [34] ).

These structure can be qualitatively associated with the unstable baroclinic modes of the

basic-state flow ( Buizza and Palmer 1995 [9] ).

Ocean ensemble forecasting is quite a novel field and has not undergone the growth

as in weather forecasting. Ensemble method for the ocean are generally used in data

assimilation schemes to provide the error covariances statistics ( Evensen 2003 [33] ),

rarely used to quantify forecast uncertainty in short-term operational prediction systems.

The aim of this work is to implement an ensemble forecasting methodology to be applied
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in the framework of the Mediterranean Forecasting System (MFS, see Pinardi et al. 2003

[73]) .

The increasing computational power available to the oceanographic community is feed-

ing interest on the application of Monte Carlo methods to the ocean prediction problem.

The development of large distributed computing network, such the Grid infrastructure (

Foster and Kesselman 1999 [35] ) makes possible to simultaneously run a very high num-

ber of simulations within the time constraint imposed by an operational application. A

technical study of the feasibility of operational ensemble forecasting using the Italian Grid

was performed applying a Monte Carlo approach based on randomly selected initial per-

turbation for a large number of members ( see Pinardi et al. 2007 [74] ). The development

of sharing computing network makes available even to small scientific community large

resources that were accessible only to few large centres in the world.

The major problem in establishing an ensemble procedure is the identification of the

initial perturbation of the system that are required to i) represent the error of the system

due to insufficient and imperfect observation of the initial state, ii) identify an optimal

sub-sample of the initial error that is most likely to affect the prediction. For ocean fore-

casting this problem concerns both the initial and the boundary conditions. A natural

implementation of ocean ensemble forecasting can be implemented using the ensemble

forcing produced by a weather ensemble prediction system, such as European Centre for

Medium-range Weather Forecasting (ECMWF). An ocean ensemble forecast can be pro-

duced forcing several ocean simulations with different ECMWF ensemble wind members.

This approach is feasible but is assume that the forcing errors affects only the atmospheric

prediction phase and not the atmospheric analyses.

The launch of scatterometer satellite missions have led to a new understanding of the

wind stress over the sea surface. Since 1999 the QuikSCAT satellite mission has provided

high resolution and spatially extensive wind measurements over the global ocean and

revealed persistent small-scale features in the curl and divergence of the wind stress that

are important kinetic energy input to the ocean ( Chelton et al. 2003 [15] ). What is

relevant for ocean ensemble forecasting is that wind analyses from state of the art NWP
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such as ECMWF or US Natianal Centre for Environmental Prediction (NCEP) present a

KE deficiency that is particularly relevant at the small scales (Chin et al. 1998 [16], Milliff

et al. 1996 [65] , 1999 [66] , 2004a [63], 2004b [64]).

The fact that wind analyses present systematic and persistent errors in representing

the external forcing over the sea surface constitutes an ideal starting point to address the

problem of ocean ensemble forecasting. This is especially true for high resolution ocean

modelling. This is by no means the only source of uncertainty in ocean forecasting but

it is the most controllable. QuikSCAT wind constitutes a large data-set to compare the

ECWMF products and derive a realistic representation of the errors. The availability of

wind measurement allows to build an “objective” method for creating the Monte Carlo

perturbations. This system is not optimal in the sense the reduces the ensemble size

that is necessary to consider, but it is a sound representation of a well-known source of

uncertainty for ocean forecast

A large part of the effort of this thesis were dedicated to the development of an “objec-

tive” modelling of uncertainty in the wind forcing. Full probabilistic modelling based on

the Bayesian paradigm has been rapidly growing in recent years due to the increased com-

putational power and the development of new sampling techniques. Chapter 2 presents a

general explanation of the Bayesian modelling and the sampling strategies that are com-

monly applied. A Bayesian Hierarchical Model ( BHM) of winds over the sea-surface is

presented in Chapter 3. Chapter 4 describes the BHM ocean ensemble method together

with an inter-comparison with other commonly used techniques such random perturba-

tion of initial conditions and the direct application of ECMWF ensemble forcing. Finally

Chapter 5 present a study of the relation between ensemble statistics and model error

with a particular attention to data assimilation problems.
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Chapter 2

Bayesian Analysis

2.1 Basic Bayesian Analysis

The first step in Bayesian inference is the identification of the full probability model

(Wikle and Berliner 2007 [92]) . This is the joint probability of all the observable and non

- observable components of interest. For instance if we want to estimate the wind field in

a given region of the ocean, we should collect all the information we might have about this

event. This means collecting all the available wind measurements together with our best

knowledge of the dynamical process and with an estimate of non-observable parameters

that enters the definition of the physical laws. So we can say that data, physical laws and

parameters define our full probability model.

Our aims is to gain a better understanding of the non-observable components using

the information that is carried by observations, i.e. we want to solve an inverse problem.

To do this, we need to write the conditional probability of the unknown random variables

given the observations. The theoretical solution of this problem is given by the Bayes’

rule, however we shall note that most of the time we are unable to solve this in practice

and then we should rely on some approximation methods.

The last part of our analysis is the evaluation of the model we derived so far. This is

a good and common practice for all modelling efforts. At this points we need to check our

initial assumtions, all the simplification that we might have done to see how to improve
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the solution we found.

A review of bayesian analysis with particular attention to data assimilation problems

can be found in Wikle and Berliner 2007 [92] and in the classical texts by Berger (1985

[4]) and Bernardo and Smith (1994 [7]).

In the following random variable will be denoted by capital letter, while fixed and

observed quantities by low case letter. The will write probability density using p() and

low case letter as arguments. Bold quantities will refer to matrix or vector. Finally Greek

letters will usually denote parameters.

Let’s say the Y represents our data and X is some unobservable random quantities.

The full probability model is given by joint probability p(x, y). Is always possible to break

down a joint distribution in it’s component:

p(x, y) = p(x|y)p(y) = p(y|x)p(x)

where we use the notation p(x|y) to define the conditional distribution of X given Y . The

Bayes’s rule simply follows:

p(x|y) =
p(y|x)p(x)

p(y)
(2.1)

It’s worth to have a closer look of the components of this equation, because we will be

commonly referring to them with this nomenclature:

• Prior distribution: the distribution p(x) summarises our scientific understanding of

the random variable X before adding information through the data. We should

observe that the specification of this distribution is subjective. We can use past

data or a set of physical laws, or even a mixture of this two. This is the crucial

step is designing a Bayesian model. The choices we take here are likely to propogate

through all the model, and we should keep in mind this when we will be evaluating

the performancies of the Bayesian model we have built.

• Data model : the quantification of the random nature of the data Y and their re-

lationships to X are modelled as the probability distribution p(y|x). In literature
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this distribution takes the name of likelihood function L(x|y) when we consider fixed

data for random X; this is the case of the maximum likelihood estimation. Here we

will think at the data stage as the distribution of imperfect observation Y around

the true ( unobservable ) value ( Wikle and Berliner 2007 [92] ).

• Marginal distribution: the distribution p(y) =
∫
p(y|x)p(x)dx enters the denomina-

tor of Bayes’ rule 2.1 and can be thought as a “normalising constant”. This shape

of this distribution is generally unknown since it can be analytically computed for a

very limited range of cases.

• Posterior distribution: p(x|y) is the updated distribution of X having observed Y .

The full specification of this distribution, or some of its moments are the final aim

our analysis.

2.1.1 The Univariate Case; Normal Prior and Normal Data

Here we review a simple univariate example that it also described in Wikle and Berliner

(2007 [92]). Let’s say we want to estimate the temperature value on a given location and

at a given time in the ocean; then our random variable is a scalar and will be denoted by

X. The climatology distribution X ∼ N(µ, τ2) constitutes our prior knowledge, where µ

is the climatological mean temperature and τ2 is the variance of the distribution. Then

suppose we collect a series of n independent but noisy observations Y = {Y1, Y2, . . . , Yn}.

Each observation can be described by a normal distribution Yi|X = x ∼ N(x, σ2). The

data stage containing all observations is:

p(y|x) =
n∏
i=1

1√
2πσ2

exp{−1/2(yi − x)2/σ2}

∝ exp{−1/2
n∑
i=1

(yi − x)2/σ2}

Applying the Bayes’ rule 2.1 we can write the posterior distribution as:

p(x|y) ∝ exp{−1/2[
n∑
i=1

(yi − x)2/σ2 + (x− µ)2/τ2]} (2.2)
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The posterior distribution is given by the product of Gaussian distributions. Solving the

squares in equation 2.2 we obtain :

p(x|y) ∝ exp{−1/2[x2(n/σ2 + 1/τ2)− 2x(
n∑
i=1

yi/σ
2 + µ/τ2)} (2.3)

where all the terms that do not contain x are ignored. The probability distribution ex-

pressed in 2.12 is still Normal and can be write as:

X|y ∼ N
(
(
n

σ2
+

1
τ2

)−1(
n∑
i=1

yi
σ2

+
µ

τ2
), (

n

σ2
+

1
τ2

)−1
)

(2.4)

The expectation and variance of the Normal distribution 2.4 can be rearranged in this

form:

E(X|y) = µ+K(ȳ − µ)

var(X|y) = (1−K)τ2

K = nτ2(σ2 + nτ2)−1

where we introduced the term K that is normally referred as “gain”. Several interesting

considerations can be drawn from this simple example. First the posterior estimation of

our temperature value is obtained as weighted average of prior and data. Note that the

weights are inversely proportional to the variances of the input distributions. For a given

σ2 the posterior weights more the data stage as the number n of observation increases. The

second consideration concerns the fact that only the statistics ȳ enter the definition of the

expectation and variance of X|y. This means that the statistics T (y) = ȳ is sufficient to

describe the posterior distribution and that the knowledge of the data Y does not add any

information. The sufficient statistics principle is a powerful form of dimension reduction

in statistics and we will see an application of this idea in the next sections.
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2.2 Monte Carlo Tecqniques

The Bayesian inference relies on the application of the simple theory we showed so far.

However for the majority of practical applications we are not able to find the analytical

solution. Indeed many problems arise in large dimensional spaces. Given some unknown

variables X ∈ Rm and data Y ∈ Rc those are some of the integration problems that we

commonly find in the Bayesian inference contest ( Andrieu et al. 2003 [2] and Freitas [20]

):

• Normalization. As was shown in previous section to compute the posterior distribu-

tion of X given Y we should be able to solve: p(y) =
∫

Rm p(y|x)p(x)dx.

• Expectation. The computing of summary statistics of a distribution is achieve as:

Ep(x|y)(f(x)) =
∫

Rm

f(x)p(x|y)dx

where f(x) is some function of interest integrable with respect to p(x|y). A common

example are the mean ( f(x) = x ) and the covariance (f(x) = xx′−Ep(x|y)(x)E′p(x|y)(x)

).

• Marginalization. Given a joint distribution p(x, z) ∈ Rm × Rn the marginal distri-

bution for X is given by:

p(x|y) =
∫

Rn

p(x, z,y)dx

When the analytical computation of the above integrals is not feasible we can try

analytical approximations, numerical integration or Monte Carlo simulations. Many as-

similation techniques make some analytical approximation, such the Kalman filter that

assumes the distributions are normal and the model is linear. This technique proved to be

very useful for many application, but they might disregard some salient statistical feature

of the processes under consideration (Freitas 1999 [20] ). The numerical computation of

high-dimension integrals is very expensive and might prove to be of little use in practical
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application. Monte Carlo approximation might be viewed as an intermediate approach.

The basic idea behind Monte Carlo methods is to draw N sample

x1,x2, . . . ,xn from the distribution p(x). Then, the samples can be used to describe the

target distribution through an empirical point-mass function:

pN (x) =
1
N

N∑
i=1

δx(i)
(x)

where δxi is the delta-Diract mass function located at x(i). As a consequence we can

approximate expectation of the form:

Ep(x)(f(x)) =
∫

Rm

f(x)p(x)dx

by the following estimate:

EN (f(x)) =
1
N

N∑
i=1

f(xi)

The estimate EN (f(x)) is unbiased and it will almost surely converge to Ep(x)(f(x)) by

the strong law of large number (Robert & Casella 2001 [11] ). In many applications it is

unfeasible to sample directly from the probability distribution, that might to complicated,

or we may know only up to a proportional constant. There are two families of possible

solutions of this problem: Monte Carlo Markov Chain and Importance Sampling Monte

Carlo. The overall aim is to produce ensemble members that are representative of the true

posterior as efficiently as possible. There is no way to say which is the best, the choice

should be based on the particular problem under investigation.

2.3 Importance Sampling Monte Carlo

Let’s consider the problem of estimating the mean of the posterior distribution of a time

depend process Xτ for τ = 0, . . . , t conditioned on observation Yτ available at time step

τ = 1, . . . , t. In the following we define Xτ and Yτ to be scalar without any loss of
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generality. The expectation is given by the following integral:

E(gt(x0:t)) =
∫
gt(x0:t)p(x0:t|y1:t)dx0:t

To apply the Monte Carlo approximation we need to draw samples from the posterior

distribution p(x0:t|y1:t). When it is not possible we can apply an Importance Sampling

Monte Carlo (ISMC) scheme. We introduce a easier to sample proposal distribution

q(x0:t|y1:t) and make the following substitution:

E(gt(x0:t)) =
∫
gt(x0:t)

p(x0:t|y1:t)
q(x0:t|y1:t)

q(x0:t|y1:t)dx0:t

=
∫
gt(x0:t)

p(y1:t|x0:t)p(x0:t)
q(y1:t|x0:t)q(x0:t)

q(x0:t|y1:t)dx0:t

=
∫
gt(x0:t)

w(x0:t)
p(y1:t)

q(x0:t|y1:t)dx0:t (2.5)

where w(x0:t) are the un-normalized importance weights and are defined as:

w(x0:t) =
p(y1:t|x0:t)p(x0:t)

q(xo:t|y1:t)
(2.6)

To avoid the computation of the normalizing density we substitute in 2.5 p(y1:t) with

its equivalent marginal integral:

E(gt(x0:t)) =
1

p(y1:t)

∫
gt(x0:t)w(x0:t)q(x0:t|y1:t)dx0:t

=
∫
gt(x0:t)w(x0:t)q(x0:t|y1:t)dx0:t∫
p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
q(x0:t|y1:t)dx0:t

(2.7)

then we substitute 2.6 in 2.7:

E(gt(x0:t)) =
∫
gt(x0:t)w(x0:t)q(x0:t|y1:t)dx0:t∫

w(x0:t)q(x0:t|y1:t)dx0:t

=
Eq(·|y1:t)(wt(x0:t)gt(x0:t))

Eq(·|y1:t)(wt(x0:t))

Then by drawing sample from the proposal distribution q(x0:t|y1:t) it is possible to ap-
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proximate the expectation as:

E(gt(x0:t)) =
1
N

∑N
i=1 gt(x

(i)
0:t)wt(x

(i)
0:t)

1
N

∑N
i=1wt(x

(i)
0:t)

=
N∑
i=1

gt(x
(i)
0:t)w̃t(x

(i)
0:t)

where w̃(i)
t are the normalised importance weights:

w̃
(i)
t =

wt(x
(i)
0:t)∑N

i=1wt(x
(i)
0:t)

The normalised importance weights are nonnegative values and sum to one. Then it is

possible to consider the normalised importance weight as as the probability of the samples

obtained by the proposal distribution. A useful review of ISMC can be found in Merwe

et al. ( 2000 [60] ).

2.3.1 Particle Filter

For many application we are only interested in describing the filtering density that is the

probability of Xt conditional on the previous state only of the variable. In the smoothing

case we will be trying to modify the state Xt conditional of the observation we might

have at subsequent time steps. The smoothing problem is not well resolved by ISMC, the

sequential incorporation of observation prove to be more effective in this framework.

The first assumption we make in filtering is that the current state do not depend on

future observation, and then we won’t be correcting previously simulated states using new

observations. In this case we can use proposal distribution of this shape:

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|xt−1, y1:t) (2.8)

Now we assume that states correspond to a Markov process and that the observations are
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conditionally independent give the state, i.e:

p(x0:t) = p(x0)
t∏

j=1

p(xj |xj−1) and (2.9)

p(y1:t) =
t∏

j=1

p(yj |xj) (2.10)

If we substitute 2.13 and 2.9 in equation 2.6 we obtain:

wt =
p(y1:t|x0:t)p(x0:t)

q(x0:t−1|y1:t−1)q(xt|xt−1, y1:t)

=
p(y1:t−1|x0:t−1)p(x0:t−1)

q(x0:t−1|y1:t−1)

× p(y1:t|x0:t)p(x0:t)
p(y1:t−1|x0:t−1)p(x0:t−1)

1
q(xt|xt−1, y1:t)

= wt−1
p(y1:t|x0:t)p(x0:t)

p(y1:t−1|x0:t−1)p(x0:t−1)
1

q(xt|xt−1, y1:t)

= wt−1
p(yt|xt)p(xt|xt−1)
q(xt|xt−1, y1:t)

(2.11)

Now we have a method to sequentially update the weights given their previous state and

a proposal distribution q(xt|xt−1, y1:t). We can write a generic particle filter algorithm in

two main steps, known as forecast and analysis ( or update ). An idealised algorithm can

be written as:

1. Initialisation. Sample x(i)
0 from the prior p(x0) for i = 1, . . . , N

2. For t = 1, . . . , T

• Forecast: sample x(i)
t ∼ q(xt|x

(i)
t−1, y1:t) for i = 1, . . . , N

• Analysis: compute the importance weights w(i)
t using equation 2.11 for i = 1, . . . , N

and then normalised weigths w̃(i)
t

3. Compute the target distribution as:

p(xt|y0:t) ≈ p̂(xt|y1:t) =
N∑
i=1

w̃
(i)
t δ

x
(i)
t

(dxt)
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This generic algorithm is subject to many drawback as we shall see. A major problem is

know as degeneracy. After some time steps the weight are likely to concentrate on a small

portion of the ensemble, this is enough to prevent the scheme from describing a correct

target posterior distribution. Several variants of particle filter have been proposed. A

comparison between different schemes can be found in Arulampalam et al. (2002 [3])

In the next paragraphs we will focus on the choice of the proposal distribution and on

some technique that might be used to mitigate the degeneracy of the particle filter.

2.4 Monte Carlo Markov Chain

Monte Carlo Markov Chain is a method to draw sample x(i) from the probability distri-

bution p(x) using a Markov chain mechanism ( Andrieu et al. 2003 [2]). It is easier to

describe MCMC in finite state space, i.e. where x(i) can only take a series s of discrete

values x(i) = {x1, x2, . . . , xs}. We say that the stochastic process x(i) is a Markov chain if

the transitional probabilities between different values in the state spaces depends only on

the stochastic variable current state, i.e.:

p(x(i)|x(i−1), . . . , x(1)) = T (x(i)|x(i−1))

where T (x(i)|x(i−1)) is defined as the transition probability or kernel of the Markov chain.

We say that the chain is homogenous is the kernel remains invariant for all i and the sum

of the transitional probability over all x(i) is equal to 1. In this case the evolution of the

random variable depends only on the current state and a fixed transition matrix. For every

starting point the chain will converge to the invariant distribution p(x) provided that the

kernel is irreducible and aperiodic. The irreducibility condition requires that transitional

kernel to explore all possible states of the random variable x. The aperiodicity condition

requires that the chain to do not get trapped in cycles. The detailed balance provides a

sufficient, but not necessary condition, to ensure that the a particular p(x) is the invariant
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distribution:

p(x(i))T (x(i−i)|x(i)) = p(x(i−1))T (x(i)|x(i−1))

Summing both sides over x(i−1) gives:

p(x(i)) =
xs∑

x(i−1)=x1

p(x(i−1))T (x(i)|x(i−1))

In continuous spaces the transitional matrix T becomes an integral kernel K:

p(x(i)) =
∫
p(x(i−1))K(x(i)|x(i−1))dx(i−1)

MCMC samplers are irreducible and aperiodic Markov chain that have the target distribu-

tion as invariant distribution. The following description of Metropolis-Hasting and Gibbs

sampler follow the work of Andrieu et al. (2003 [2]).

2.4.1 Metropolis-Hasting

The Metropolis-Hasting (MH) sampler is the most used MCMC algorithm ( Metropolis

and Tweedie 1949 [62] Metropolis et al. 1953 [61] and Hasting 1979 [38] ). The algorithm

provides a practical way to implement the transition kernel required by the Markov chain.

A step of the MH algorithm requires the sampling of a candidate value x∗ from a

proposal distribution q(x∗|x). The Markov chain moves to the candidate x∗ with an

acceptance probability that is given by:

A(x, x∗) = min
(

1,
p(x∗)q(x|x∗)
p(x)q(x∗|x)

)

The transition kernel for the MH algorithm can be written as:

KMH(x(i+1)|xi) = q(x(i+1)|xi)A(x(i)|xi+1) + δx(i+1)(xi+1)r(x(i))
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where the term r(x(i)) represents the rejection probability:

r(x(i)) =
∫
q(x∗|x(i))(1−A(x(i)|x∗))dx∗

Since by construction the MH kernel satisfies to detailed balance condition:

p(x(i))KMH(x(i+1)|xi) = p(x(i+1))KMH(x(i)|xi+1)

the MH algorithm admits p(x) as invariant distribution. Moreover the algorithm is ape-

riodic since the it always allow for rejection of the candidate value and it is irreducible if

we ensure that the support of the proposal distribution covers the support of the targeted

p(x). The last condition means that the candidate distribution is required to have positive

probability for all the possible outcome of the invariant distribution p(x). If the MCMC

is aperiodic and irreducible then the chain asymptotically converges ( Tierney 1994 [90] ).

We shall now present a particular case of the MH algorithm that prove to be numeri-

cally convenient for application that require the evaluation of high-dimesional problems.

2.4.2 Gibbs sampler

The Gibbs sampler is a special case of the MH algorithm that was introduced by Geman

and Geman in 1984 ( [37] ) in the contest of digital image processing. The main idea is

that we only consider univariate conditional distribution ( or full conditional), i.e. the

distribution when all random variables are assigned fixed values except one. Such con-

ditional distribution are normally easy to sample often being normal , gamma or other

common prior distributions. However we shall note that it is not always possible to ana-

lytically derive the expression of full conditionals, hence the applications of Gibbs sampler

are limited.

Suppose that we are in a finite space and the state vector can take values {x1, x2, . . . , xn}

and that we know all the full conditional distributions

p(xj |x1, . . . , xj−1, xj+1, xn). In such case we can use as proposal distribution for j =

1, . . . , n :
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q(x∗|x(i)) =

 p(x∗j |x
(i)
−j) if x∗−j = x

(i)
−j

0 Otherwise.

The corresponding acceptance probability is:

A(x, x∗) = min
(

1,
p(x∗)q(x(i)|x∗)
p(x)q(x∗|x(i))

)
min

(
1,
p(x∗)q(x(i)

j |x
(i)
−j)

p(x)q(x∗j |x∗−j)

)
min

(
1,
p(x∗−j)

p(x(i)
−j)

)
= 1

The acceptance probability for the Gibbs sampler is always 1, making this algorithm

extremely efficient.

Hence a generic Gibbs sampler can be written as:

1. Initialise s x0,1:n

2. For i = 0 to N -1

• Sample x(i+1)
1 ∼ p(x1|x2, x3, . . . , xn)

• Sample x(i+1)
2 ∼ p(x2|x1, x3, . . . , xn)

• . . .

• Sample x(i+1)
j ∼ p(xj |x1, . . . , xj−1, xj+1, xn)

• . . .

• Sample x(i+1)
n ∼ p(xj |x1, x2 . . . , xn−1)
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2.5 Bayesian Hierarchical Model

It is often convenient to apply a hierarchical approach to solve complex statistical problem.

The basic idea is that any joint distribution p(x, θ, φ) can be decomposed as:

p(x, θ, φ) = p(x|θ, φ)p(θ|φ)p(φ)

where we think at x as an output of a model, and θ, φ as parameters. When x depend on

φ only through the parameter θ the problem reduces to:

p(x, θ, φ) = p(x|θ)p(θ|φ)p(φ)

The combination between hierarchical strategy and bayesian modelling is at basis of

the statistical tool that we are aimed to develop. In the following section we present the

Bayesian Hierarchical Model (BHM) implemented for an idealised problem. The sampling

from the posterior distribution is achieved through the application of Particle Filter and

Gibbs Sampling.

2.5.1 A Toy BHM: an application for wind at sea surface

So far we have discussed some basic concept of the bayesian analysis. Here we present

an example of statistical modelling applied to a 2-dimensional wind field. This problem

has some inherent properties that make the application of a bayesian model easy and

successful. Namely it exist a strong physical balance that allows to describe the wind as

a function of the pressure field, i.e. the geostrophic equilibrium. Geostrophy is both easy

to model and effective to diagnostic large scale circulation. This physical property of the

wind fits with the hierarchical approach that we have just described. We model the zonal

and meridional components of the wind as function of the pressure field, without any need

to explicit any correlation structure between the components of the wind vector. A real

world application is presented in Chapter 3, here we discussed an idealised toy problem.

We consider a uniformly spaced grid of 25× 25 points located at mid-latidute on the
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northern hemisphere. Suppose that we have measurement du = {du,dv} of the wind

u = {ux,uy} that covers only a portion of the basin and that we have more accurate ob-

servations dp of the pressure field p over all the domain (figure 2.1). The wind observations

are simulated applying the geostrophic relation to the pressure field:

u = − 1
f

∂p

∂x
and v =

1
f

∂p

∂y

where we used 1/f = 11000s−1. The assimilation of the observed quantity ( wind and

pressure ) should provide information about the unobserved parameter θ that links to two

fields, i.e. 1/f .

The full probability problem is :

p(u,p, θ|du) ∝ p(du,dp|u,p, θ)p(u,p, θ)

Assuming that the data stages du and dp are independents we can write an hierarchy

to represent the posterior distribution as:

p(u,p, θ|du,dp) ∝ p(du|u)

p(u|θ,p) (2.12)

p(θ)p(p|dp)

where we substituted the p(dp|p)p(p) with its posterior p(p|dp) via Bayes’ rule.

2.5.2 Particle Filter

The posterior distribution can be found via Particle Filter following this procedure:

1. randomly sample an ensemble of size m, {pi, wip} to represent the p(p|dp). The normalised

weight wip can be found as:

wip ∝
exp[− 1

2 (dp −Hppi)′R−1(dp −Hppi)]∑m
i=1 exp[− 1

2 (dp −Hppi)′R−1(dp −Hppi)]
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where R is the diagonal measurement error covariance matrix and H is an observational

operator that moves the sample pi to the location of data dp.

2. sample an ensemble of size m, {θi, wiθ} from the independent distribution p(θ). Since θ are

unobserved parameters impose wiθ = 1/m for all i.

3. for each sample pi and θi generate ui from p(u|θi,pi). Then the weights:

wi = p(du|ui)wip

can be used to make inference under the full posterior distribution 2.12.

However we shall note that this procedure is likely to be ineffective even if we consider a

very large number m. This issue arises since we are approximating a continuos distribution

as a finite ensemble of limited size. The presence of unobserved variable θs is a further

complication and make this approach unfeasible unless we introduce some approximations

that are aimed to constrain the filter to the most relevant portion of the probability space.

The recent work of Berliner and Wikle ( 2007 [6] ) presented an Approximate Partilce Filter

(APF) that can be used to reduce the degeneracy of the sampler in high-dimensional space,

where the re-sampling strategy are generally not sufficient.

Before presenting the modified algorithm we consider this re-arrangment of the poste-

rior distribution. Integrating both sides of 2.12 with respect to u yields:

p(p, θ|du,dp) ∝ p̃(du, |θ,p)p(p|dp) (2.13)

where,

p̃(du|θ,p) =
∫
p(du|u, V )p(u|p, θ)du (2.14)
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Let’s say that the marginal distribution 2.14 is computable, then we further assume that

for fixed p the distribution p̃ admits a sufficient statistics T (du; p) for θ such that:

p̃(du|θ,p) = G(T (du; p)|θ)h(du; p) (2.15)

where the distribution h(du; p) do not depend on θ. Then we can rewrite equation 2.13

as:

p̃(p, θ|du,dp) ∝ G(T (du; p)|θ)h(du; p)p(θ)p(p|dp) (2.16)

The introduction of the sufficient statistics is the crucial point of the work of Berliner and

Wikle ( 2007 [6]) and need not to be overlooked. The marginal 2.14 links the distribution

of the unobservable parameter θ to the observable quantity du recognising that given a

pressure field there is a relation between the velocity field and the geostrophic parameters.

However this relation explains only up to a certain degree the behaviour of the observed

wind field. For instance the atmospheric flow over the sea surface can be induced by

convective turbulent processes that are totally pressure independent. As we shall see in

the following the proposed assumption relies an the idea that for weighting the θ priors

we can assume that the wind observations are in geostrophic balance with pressure field.

This approximation is aimed to reduce the probability space rejecting all wind samples

that are too far away from geostrophy without assuming that the wind field are in perfect

geostrophic balance.

Now we can write the APF algorithm:

1. draw an ensemble as size m, {pi, wip}, where the weights are defined according to 2.13.

2. draw an ensemble m, {θi, 1/m} from the prior distribution p(θ).

3. the resulting ensemble of Step 1 and 2 represent p̃(du|θ,p) (2.13) if they are weighted

according to:

wi1 ∝ wipG(T (du; p)|θi)h(du; pi)
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We approximate the weigths wi1 retaining only:

w̃i1 ∝ wipG(T (du; p)|θi)

4. the posterior distribution 2.12 can be re-written as:

p̃(u,p, θ|du,dp) = p̃(u|p, θ,du)p̃(p, θ|du,dp)

If it is possible to simulate ui from p̃(u|p, θ,du) proceed with inference under the full pos-

terior distribution with weights wi1.

To increase the efficiency of the scheme Berliner and Wikle (2007 [6]) proposed to

replace G(T (du; p)|θi)p(θ)

with G(T (du; p))p(θ|T (du; p) in equation 2.16. The resulting algorithm will be more

computationally expensive but the APF will sample only physically consistent values for

the θ parameter. The modified APF2 algorithm can be written as:

1. same of step 1 of APF.

2. draw an ensemble of size m, {θi, 1/m} from the posterior distribution

p(θ|T (du; p)).

3. the ensemble {pi, θi} represents p̃(du|θ,p) (2.13)

if weighted by:

wi2 ∝ wipG(T (du; p))h(du; pi)

We approximate the weigths wi2 retaining only:

w̃i2 ∝ wipG(T (du; p))

4. same as APF replacing w̃i1 with w̃i2
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2.5.3 Gibbs Sampling

If the distributions are conforms then a Gibbs sampler can be written to describe the

posterior distribution using a sequence of full conditional. A long iteration of the chain will

produces a set of samples that will be distributed according to the targeted distribution.

In our case the Gibbs sampling chain can be written as:

1. Initialise u0,p0 and θ0 and set k = 0

2. Iteration k

• Sample uk+1 ∼ p(uk+1|pk−1, θk−1, . . .)

• Sample pk+1 ∼ p(pk+1|uk+1, θk−1, . . .)

• Sample θk+1 ∼ p(θk+1|uk+1,pk+1, . . .)

3. set t = t+ 1 and go to 2

The first step of the chain require the initialisation of the random variable, this initial

choice do not influence the behaviour of the MCMC. The second step of the chain requires

the sampling from the ‘full conditionals’ that represent the probability distribution of a

variable when all the other random variable are kept fixed. When the prior distributions

belongs to the family of standard distributions ( Gamma, Guassian, Exponential ) we

can derive the analytical expression for the ‘full conditional’ and then the writing of the

sampling algorithm become strait-forward.

2.6 Results

The Gibbs sampling and the particle filter were tested on the same problem. The posterior

distribution for the geostrophy parameter θ is used here to compare the performances of

these techniques. The number of samples m and iteration k was set to 10000 for the two

algorithm.
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Figure 2.2 shows the results of the APF scheme..The first panel shows the sampling

cloud of the geostrophic parameter θ. Given a vague prior of the p(θ) only a small portion

of the sampled values are given weights different from zero ( see panel b ); out of 10000

iteration, only 5 or 6 sample fall in the relevant portion of the probability space for the

geostrophic parameter. Consequently the posterior distribution of θ is not well represented

by the sampling ( see panel c ).

Figure 2.3 shows the result of modified APF2 where we sample θ from its posterior

distribution given the significant statistics T (du; p). Panel a shows that the θ samples span

a limited portion of the probability space, consequently the associated weights are almost

equally distributed between the θ ensemble ( see panel b ). The posterior distribution is

well defined ( see panel c )and it is centered around the analytical value of θ that was used

to generate the synthetic wind data.

The Gibbs sampling proves to be the most efficient scheme in solving the posterior

distribution for the toy model. Panel a of figure 2.4 show the θ for the 10000 iteration of

the Markov chain. After few hundreds iteration the chain converges to the true value of θ.

Panel b show the Markov chain after the burn-in period, the sample of θ are confined to a

very space even if the prior for the θ was vague and the initial value was 0. The posterior

distribution ( panel c ) is centered around the true value of θ with a smaller variance then

the APF schemes.
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Figure 2.1: Toy model domain and data. The contour lines represent pressure data [mbar].
Arrows are wind synthetic observations derived from the pressure field.
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Figure 2.2: a) Sampling cloud of the geostrophic parameter θ for APF from the vague
prior distribution p(θ). b) sampling weight for each of the 10000 sampled values of θ. c)
posterior distribution for θ after resampling.
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Figure 2.3: a) Sampling cloud of the geostrophic parameter θ for APF from the conditional
distribution p(θ|T (du; p)). b) sampling weight for each of the 10000 sampled values of θ.
c) posterior distribution for θ after resampling.
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Figure 2.4: a) Markov chain for the geostrophic parameter θ for Gibbs sampling. b) same
as a) but skipping the first 1000 iteration, i.e. burn-in period. c) posterior distribution
for θ
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Chapter 3

The Bayesian Hierarchical Model

for surface winds

The study of the air-sea interactions for ocean modelling relies on the atmospheric sur-

face fields provided by Numerical Weather Predicition (NWP) systems such as the Eu-

ropean Centre for Medium-range Weather Forecasting (ECMWF). The introduction of

back-scattering wind measurement from satellites in the recent years has uncovered a new

picture of the winds over the ocean ( Chelton 2003 [15] ) . In particular since the launch

of the QuikSCAT mission in 1999, the scientific community benefits from the availability

of high-resolution and high-frequency measurements of the wind at sea surface.

In this work we aim to implement a statistical model of the wind at sea surface melding

ECMWF products with QuikSCAT data. Following the approach that is described in

Chapter 2, we propose to use a Bayesian Hierarchical Model (BHM).

The BHM model will be presented in its components that are the data stages, the

process models and the priors. The algorithm used to solve the posterior distribution is

the Gibbs Sampling. A theoretical discussion of this method can be found in Chapter 2.
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3.1 ECMWF and QuikSCAT Sea Surface Winds

ECMWF provides data for wind, pressure, cloud cover, relative humidity, dew point and

air temperature. This data set is available to the Mediterranean Forecasting System

community at a 6 hour frequency (at 0, 6, 12, and 18UTC) and at a space resolution of

half a degree. The ECMWF forecast is released daily to the MFS group since September

1998. In this work the forecast is assumed to be available only once a week, as it was in

the configuration of the MFS between 1998 and 2004. The forecast window has a length

of 10 days and it starts at 18:00 p.m. of every Tuesday. For the purpose of the wind BHM

only wind and pressure data are used in the data stage.

The QuikSCAT satellite carries a microwave radar that measures near-surface wind

speed and direction under all weather and cloud conditions over the world oceans. QuikSCAT

data are available at 25×25km resolution in continuous 1,800 km swaths which cover about

90% of the ice-free ocean every 24 hours ( see the data product user’s manual [70]) For the

Mediterranean Sea the QuikSCAT data were collected following the time frequency of the

EMCWF products. The QuikSCAT orbits were searched for observation during a 6 hour

period centred at 0, 6, 12 and 18 UTC. The maximum time lag between EMCWF analyses

and QuikSCAT data is 3 hours. The algorithm used to extract wind speed and direction

from the microwave measurement is the ‘Direction Interval Retrieval with Thresholded

Nudging’ developed by Styles (1999). Further post-processing guarantees the elimination

of rain-flagged data for wind speed grater then 15 m/s and of the 3 outermost wind vector

cells of each swath ( see Milliff and Morzel 2004 [63] ).

In the Mediterranean Sea the average wind speed difference between ECMWF analyses

and QuikSCAT data is 0.8± 0.5 [m/s] for the period between September 2004 and March

2005. The difference is mainly due to a positive bias suggesting that the ECMWF usually

underestimates wind speed ( Milliff 2004 [64] ); positive misfit up to 10 m/s are usually

observed during strong wind events. There is not a preferential differential direction

between the two data set, the mean difference being −1.1± 6.9◦.

Recent works have demonstrated a Kinetic Energy (KE) deficiency in global ocean
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surface wind provided by Numerical Weather Prediction (NWP) systems with respect

to coincident surface wind retrieved by scatterometer data ( see Chin et al. 1998 [16]

and Milliff et al. 1996 [65], 1999 [66], 2004 [63] ). An analysis of the differences in the

Mediterranean Sea between ECMWF and QuikSCAT ( see Milliff 2004 [64] ) demonstrate

that a KE deficiency also characterises the analyses and forecast currently used to force

the MFS ocean model. The KE spectra for QuikSCAT data is consistent with a power-law

relation with the form PSD(k) ∼ kp where k is the wavenumber and p is the exponent

of the power-law. Freilich and Chelton ( 1986 [36] ) highlighted the relation between

the theoretical power-law decay of isotropic two-dimensional turbulence with QuikSCAT

spectra. This idea was further investigated by Wikle et al. ( 1999 [93] ) that analysed

the TOGA COARE IOP region in the Pacific Ocean cross-comparing satellite, in-situ and

high resolution doppler-radar measurements from aircrafts. Milliff ( 2004 [64] ) showed

that ECMWF analyses depart from the theoretical power-law relation at about 400 km.

At the spatial scale of 100 km the KE amplitude differences are grater then two order of

magnitude. These differences are evident in all the ECMWF analyses in a time period

ranging from 2000 to 2004.

The energy lack at small scales of ECMWF products might have a strong impact on

the mesoscale ocean circulation and it is regarded as a source of uncertainty in an ocean

prediction effort.

Figure 3.1 show the error growth of the ECMWF forecast. The statistic is computed

as the RMS difference between forecast and analysis on the same day. For each one of

the 10 days of the prediction window a set of 216 weeks of forecast, ranging from January

2000 to December 2004, was analysed to compute the mean and variance of the error. The

results are divided by year.

Forecast error grows linearly with leading time reaching a mean value of 3 m/s at the

end of the forecast.
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Figure 3.1: RMS difference between ECMWF forecast and analysis as a function of leading
time for the years 2000-2004 ([m/s]).

3.2 The Data Stage

The BHM data stages includes the ECMWF analyses and forecast and the QuikSCAT

wind data. Two assumptions have been made:

• The data stages are treated as independent. This is a major approximation but has

it was shown the ECMWF in not effective in retaining the information content of

the QuikSCAT data, at least for what concerns the small scales of motion.

• White-noise error. The spatial structure of the data stage error is assumed to behaves

has a white-noise process. This is a common simplification in data assimilation and

it is normally reasonable to represent observational error as un-correlated in space

and time. However it could be objected that the ECMWF data stage should be

defined differently since ECMWF forecasts are a modelling product. The choice was

made to simplify the solution of the problem, and it may be revisited in the future.
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The data stages are represented by multi-variate Normal distribution centred around

the ‘true’ value of the zonal and meridional wind components. The covariance of these

distributions is entirely defined by the a scal measurement error. Hence the QuikSCAT

and ECWMF data stages for the wind component U and V are written as:

(
Stu|U t

Stv|V t

)
, σ2

s ∼ N

((
KsU

t

KsV t

)
, σ2

sI

)
(
Atu|U t

Atv|V t

)
, σ2

a ∼ N

((
KaU

t

KaU t

)
, σ2

aI

)

where Su, Sv are the QuikSCAT zonal and meridional wind components and Au, Av are the

ECMWF homologues. The error variances σ2
s and σ2

a are defined as known and constants.

The matrices Ks and Ka are the observational operator for QuikSCAT and ECMWF data

that move the ’true’ gridded value to the location of the observations.; I is the identity

matrix.

The QuikSCAT data are assumed to have an measurement variance of 1 [m2/s2] A

reference for this number can be found in Ebuchi et al. ( 2004 [30] ). The choice of the

ECMWF variance was based on a preliminary study of the error properties of the ECMWF

products. The wind analyses were compared with the QuikSCAT data, while the forecasts

were tested against the analyses. It should be noticed that this parameter has a strong

impact on the behaviour of the BHM. It is one of the few fixed parameters and a small

value for the ECMWF variance will constraint the solution to the input data. Especially

because this data set it is ubiquitous with respect to the model grid. The variance of the

ECMWF wind distribution was set to 10 [m2/s2].

The third data stage is the distribution of the pressure data. Again a multi-variate

Normal distribution is chosen:

Atp|P t, σ2
ap ∼ N(KpP

t, σ2
ap)

where Ap is the ECMWF pressure field and Kp is its observational operator. The variance

σ2
p is not considered constant and we only define the initial value to be 1 mbar2.
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3.3 The APBL Process Model

The process model expresses the relation between the random variables in the BHM. This

relation can be represented in a statistical sense or applying physical balances. Given the

nature of the problem treated here, is is strait-forward to apply the geostrophic balance to

prescribe to relation between wind components and the pressure field. Royle et al. (1999

[83] ) first proposed to model the spatial correlation of the wind field imposing a geostrophic

constraint in the formulation of the process model. Here we expand this approach deriving

two formulation of the process model as approximations of an Atmospheric Planetary

Boundary Layer (APBL, see Anderson and Gill 1974 [1] ).

The linear momentum equation for the APBL are:

∂u

∂t
= +fv − 1

ρ0

∂p

∂y
− γu (3.1)

∂v

∂t
= −fu− 1

ρ0

∂p

∂x
− γv (3.2)

where γ is a ”bottom” friction parameter, f is the Coriolis parameter and ρ0 is a constant

reference atmospheric boundary layer densisty. The dependent variable (u, v) are the

winds components and p is the pressure field.

We solve for u and v in the equations 3.1 and 3.2, to get:

u = − 1
fρ0

∂p

∂y
− γ

f
v − 1

f

∂v

∂t
(3.3)

−v = − 1
fρ0

∂p

∂x
− γ

f
u− 1

f

∂u

∂t
(3.4)

Then substituting 3.3 into 3.4 for u and 3.4 into 3.3 for v we derive:

1
f

[
∂2

∂t2
+ (f2 + γ2)

]
v + 2

γ

f

∂v

∂t
=

1
ρ0

∂p

∂x
− 1
fρ0

∂2p

∂y∂t
− γ

fρ0

∂p

∂y
(3.5)

1
f

[
∂2

∂t2
+ (f2 + γ2)

]
u+ 2

γ

f

∂u

∂t
= − 1

ρ0

∂p

∂y
− 1
fρ0

∂2p

∂x∂t
− γ

fρ0

∂p

∂x
(3.6)

Two approximations of these equations are used to defined different versions of the
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process model.

3.3.1 APBL Process Model 1

Here we ignore all the time derivative in equations 3.6 and 3.5. This leads to a simple set

of equations:

ρ0v =
f

γ2 + f2

∂p

∂x
+

γ

γ2 + f2

∂p

∂y

ρ0u = − f

γ2 + f2

∂p

∂y
+

γ

γ2 + f2

∂p

∂x

both the pressure derivative in x and y are used model the u and v fields.

A stochastic analogue of this set of equation can be written on a discrete grid as:

Vt = θvxDxPt + θvyDyPt + ε (3.7)

Ut = θuyDyPt + θvxDxPt + ε (3.8)

where V,U, P are random variables defined on a discrete grid and Dx, Dy are discrete

differential operators. The equation error ε and θ are stochastic parameters. For θ and ε

we are required to specify their prior distribution. Details about the specification of these

distributions can be found in next paragraphs. This set of stochastic equation was already

used in the work of Royle et al. (1999 [83] ) that however do not explicitly derived 3.7

and 3.8 from the APBL equations 3.5 and eq:gillU.

A multivariate Normal distribution is used to represent the process model stage:

[Ut|Pt, θux, θuy, σ2
u] ∼ N(θuyDyPt + θvxDxPt,Σu) (3.9)

[Vt|Pt, θvx, θvy, σ2
v ] ∼ N(θvyDyPt + θvxDxPt,Σv) (3.10)

where Σu and Σv are the covariance matrices of the two distribution. This is a crucial

point in designing the Bayesian model and it will discussed in detail in the following.

37



3.3.2 APBL Process Model 2

Ignoring the second order time derivative in u and v in equations 3.6 and 3.5, the APBL

equations reduce to:

2
γ

f

∂v

∂t
+

1
f

(f2 + γ2)v =
1
ρ0

∂p

∂x
− 1
fρ0

∂2p

∂y∂t
− γ

fρ0

∂p

∂y

2
γ

f

∂u

∂t
+

1
f

(f2 + γ2)u = − 1
ρ0

∂p

∂y
− 1
fρ0

∂2p

∂x∂t
− γ

fρ0

∂p

∂x

Then using central finite difference we derive the descretized equations:

Vt =
[
(f2 + γ2)− 2γ

∆

]−1

(
−2γ

∆
Vt−1 +

f

ρ0
DxPt +

1
ρ0

(γ − 1
∆

)DyPt +
1

∆ρ0
DyPt−1

)
Ut =

[
(f2 + γ2)− 2γ

∆

]−1

(
−2γ

∆
Ut−1 −

f

ρ0
DyPt +

1
ρ0

(γ − 1
∆

)DxPt +
1

∆ρ0
DxPt−1

)

where ∆ is the time step and capital letters refer to gridded variables.

A stachastic analogue of these equations is:

Vt = +θv(1)Vt−1 + θvxDxPt + θvyDyPt (3.11)

+θvy(1)DyPt−1 + ε

Ut = +θu(1)Ut−1 + θuyDyPt + θuxDxPt (3.12)

+θux(1)DxPt−1 + ε

where again we ignore the constant air density term. The term θ and ε are assumed to be

random variables.

Similarly to the previous case, a multivariate Normal distribution is used to represent
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the process model:

[Ut|Ut−1, Pt, Pt−1, θu(1), θux, θuy, θux(1),Σu]

∼ N(θu(1)Ut−1 + θuyDyPt + θuxDxPt + θux(1)DxPt−1,Σu)

[Vt|Vt−1, Pt, Pt−1, θv(1), θvx, θvy, θvy(1),Σv]

∼ N(θv(1)Vt−1 + θvyDyPt + θvxDxPt + θvy(1)DyPt−1,Σv)

3.4 The prior and hyper-prior distributions

To complete the design of the BHM it is necessary to specify a prior distribution for each

one of the stochastic variables that were introduced so far.

The random variables for which a prior distribution is needed are the pressure field, the

equation parameter θux, θuy, θvx, . . . and the covariance Σu,Σv, . . . of the process models.

The specification of these distributions will introduce other parameters that are normally

referred as hyper-priors. At this level of the hierarchy the distributions are chosen to be

vague and a particular choice for the quantities at the hyper-prior level should not affect

the behaviour of the model. Table 3.1 presents the prior distribution and hyper-prior

values for all the parameters of the BHM.

3.4.1 The Pressure Field

The wind components are modelled using either 3.7-3.8 or 3.11-3.12 that are mainly based

on the pressure field for which a prior distribution is required. To specification of this

quantity is performed in a reduced space. The pressure is decomposed in a set of m basis

Φ1, . . . ,Φm as:

P t ≡ µ+ Φαt
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where µ is a basin mean pressure value and αt is a vector coefficient of dimension m. Since

the set of basis function Φ is kept constant, it suffices to write the α coefficient prior:

[αt|Λ] ∼ N(0, diag(Λ))

[λi|ξi, ri] ∼ IG(ξi, ri)

where diag(Λ) = λ1, . . . , λm: i.e. there is no correlation between the coefficient α. The

Inverse Gamma (IG) distribution parameter ξ, r are constant, see table 3.1. Several ex-

periments were conduced to identify the best set of basis function Φ. Two possible choices

are a geometrical set of eigenvectors, computed from a Gaussian covariance matrix, or a

set of Empirical Orthogonal Functions (EOF) of the pressure field itself. The choice of

the EOFs proved to be optimal in reducing the difference between the original and the

reconstructed P field ( not shown here ).

3.4.2 Equation Parameters and Errors

The priors of the equation parameters θ are defined as Normal distributions.

[θ|µθ, σ2
θ ] ∼ N(µθ, σ2

θ)

The mean and variance of the parameter prior are shown in table 3.1. It should be

noticed that having very large variances allows the BHM to find the optimal value for the

θ variables. As it was shown in Chapter 2, the prior assumption made at this level doesn’t

influence the behaviour of the Markov Chain. This is one of most desirable property of a

well constructed Monte Carlo Markov Chain (MCMC) and make this techniques preferable

to the Importance Sampling Monte Carlo (ISMC). On the other hand, posterior θ values

that are not physically consistent are indicator of errors in the MCMC coding, making

this an important check on the numerical implementation of the Bayesian model.

The last part of the BHM design concerns the definition of the equation error form for

the process model. Three approaches have been tested: a scalar white noise process and
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a structured field based on EOF or wavelet.

1. White-noise process ε = τI

In the first case the process model error is supposed to be a scalar quantity, then the

covariance is a diagonal matrix Σ ≡ σ2
uI, where I is the identity matrix and σ2

u is a

scalar variance for to the u. The prior distribution for the positive-definite variance

is chosen the be an Inverse Gamma, i.e. σ2
u ∼ IG(ξσ, rσ) the initial value for the ξσ

and rσ are reported in table 3.1. A similar relation applies for the process model of

the v component of the wind field.

2. EOF representation of process model error:

ε = Ψbu + τI (3.13)

the process model error for is wrote as a combination of a scalar τ plus a term that

is defined by a set of k EOFs Ψ and their amplitude coefficient vector bu. If n

is the size of state vector then k << n. The term Ψbu does not have a unique

interpretation. It can be view as an additional term in the physical process model

equations or as a nuisance term in an hierarchical model of a full covariance matrix.

To show this point consider this simple process model:

X = 0 + Ψ b + τI

τ ∼ N(0, σ2)

b ∼ N(0, C)

where X is a generic random variable, and C is the covariance matrix of the b

coefficients. This system is equivalent to write:

X = 0 + f

f ∼ N (0,Ψ C ΨT + σ2 I)
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The two formulations are identical, in the sense that the marginal distribution of∫
[X|Ψb, σ2][b|C]db = [X|ΨCΨ′+σ2]. The major advantage of using the first system

instead of the second is that the dimension of the covariance matrix reduces to [k×k],

making trivial the numerical solution of the inverse problems.

3. Wavelet representation of process model error:

εt = Ξdt + τ

where dt is a vector of size n of temporally evolving random coefficients and Ξ

is a matrix of size n × n of Daubechies wavelet basis functions of order two that

are defined on the prediction grid ( Daubechies and Paul 1987 [19]); a modification

is introduced to take into account the close domain ( see Cohenamd et al. 1993

[17]). The coefficient vector dt is assumed to follow a first order Markov vector

autoregression, hence its prior distribution is set to:

dt|Hd,dt−1,Σηd ∼ N(Hddt−1,Σηd)

Σηd
≡ diag(σ2

ηb
(1), . . . , σ2

ηb
(n))

This model it is initialised at time 0 as d0 ∼ N(µd,Σηd). The covariance matrix

Σηd
is diagonal and is defined accordingly to a multi-resolution scaling. This con-

straint follows from the consideration that the sea surface wind as it is observed by

QuikSCAT has an energy spectrum that follow a power-law relation. Wornell (1993

[95]) and Chin et al. ( 1998 [16]) derived the variance for such processes in one and

two dimensions. Wikle et al. (2001 [94]) combined the previous results with the

innovation variance of an auto-regressive process. They show that the variance of

this process can be written as:

σ2
ηb
∝ [1− h2

b(l)][2
−l(1+d)−1]

where hb(l) is the marginal variance of the auto-regressive process and 2−l(1+d)−1
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is the variance of a two dimensional wavelet coefficient, where l is the level of the

multi-resolution decomposition and d is the slope of the power law relation. This

relationship was used to find the prior of an Inverse Gamma distribution.

3.5 Posterior Distribution Estimates

The posterior distribution of the wind model can now be written. The time window

over which the problem will be solved is divided in an analysis [1 : T ] and a forecast

[T + 1 : T + L]. The QuikSCAT data stage is available only on the analysis while during

the forecast only ECMWF prediction are available. The time integration appears as a

product of distribution since each step is supposed to be independent from the others.

Then the posterior distribution of the wind model defined by the first approximation and

the first error type is:

t=T+L∏
t=1

[U t, V t, P t, . . . |Stu, Stv, Atu, Atv, Atp]

∝
t=T+L∏
t=1

([Stu|U t, σ2
s ][S

t
v|V t, σ2

s ]

[Atu|U t, σ2
a][A

t
v|V t, σ2

a][A
t
p|P t, σ2

p]

[U t|P t, θux, θuy,Σu][V t|P t, θvx, θvy,Σv]

[αt|Λ])[Λ][. . .]

The posterior distributions for the other process models are similarly found. As it was

discussed in Chapter 2, the solution of this problem can be obtained numerically following

different approaches. The most interesting being the Metropolis-Hasting and the Impor-

tance Sampling Monte Carlo. Given the nature of the probability distributions considered

here, and the linearity of the process model, it is convenient to choose the Gibbs sampler,

that is a very efficient variation of the Metropolis-Hasting algorithm. This scheme works

as a smoother, so the solution of the posterior distribution will be found in a time window,

where past and future observations are used to constraint the solution at a certain time
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step.

The derivation of the full conditional distribution for this simple model implementation,

required by the Gibbs sampler can be found on Appendix A.

3.6 Results

A set of experiments was performed to assess the sensitivity of the BHM solution to

the process model and the error covariance structure. The selection of a process model

influences ability of the Bayesian model to statistically interpolate between the data stages.

It is reasonable to expect that adding complexity to the process model we should improve

the representation of the wind field operated by the BHM. However there is a point

over which the model is not able to isolate the effect of different terms in eqautions and

compensating effects might become important. In this case the solution loose a physical

consistency, while still holding a statistical sense.

The results shown here refers to a time window defined around a forecast start day

February 8th 2005. The analysis part starts 2 weeks before, while the forecast leading

time is 10 days. As it will presented in the next chapter this choice in made to be conform

with the operational chain adopted by the Mediterranean Forecasting System.

APBL Process Model 1, error type 1 (A1-E1)

The process model of version A1-E1 is based on the balance between geostrophic and

friction terms as expressed in equation 3.7-3.8. The equation error covariance matrix that

appears in 3.9 (and 3.10) is modelled as a diagonal matrix with uniform components, i.e.

the random variable that represents the error structure is a scalar.

The geostrophy terms dominates process model. The posterior distributions for the

term θuy and θvx have an expectation value of -5500 and 5100 [ m3

kgs−1 ] respectively , while

friction terms θux and θvy have an expectation value of 1500 and 1900 [ m3

kgs−1 ] ( see figure

3.2 ). We remind that in a friction-less case the geostrophic parameters −θuy and θvx

would have value 1/f ∼ 14[ m3

kgs−1 ]. The equation for U exhibits a stronger geostrophy
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balance then the V equation. Since strongest winds over the Mediterranean region are

mostly meridional, as it is the case for Mistral or Bora, the BHM represents a non-linear

process, such as friction, with different posterior distributions for the equation parameters

of the meridional and zonal wind components.

The error term σ2
u and σ2

v have expectation values of 5.5 and 5.8 [m2/s2] respectively

(see figure 3.3). The error terms are a quantification of the difference between the posterior

field for U and V that includes the data stages and the wind field inferred by the process

model: the error terms reflects the ability of the process model to mimic the behaviour

of the wind data. The variance σ2
ap represents the difference between ECMWF and BHM

pressure field. A variance of 2000 [Pa2], that corresponds to a standard deviation of

0.4 [mbar], reflects a substantial agreement between the pressure field estimate by the

Bayesian model and the data stage.

APBL Process Model 2, error type 1 (A2-E1)

In version A2-E1, beside geostrophy and friction, two more terms enter the process model

in equation 3.11 and 3.12 . The θu(1) ( or θv(1) ) relates the U ( or V ) wind component

between two time steps. From a statistical point of view this is an auto-regressive pa-

rameter of a AR-1 process, while physically it comes from the time-derivative of u ( or v

). One interpretation doesn’t exclude the other. Even if the derivation of equations 3.11

and 3.12 was rigourous, the BHM do not perform a time integration with CFL constraints

then the term θu(1) ( or θv(1) ) do not properly represent a time step process. The terms

θux(1) and θvy(1) are significant for motion at time scale grater then the inertial time scale

and where first described by Anderson and Gill ( 1974 [1] ) to be responsible for Rossby

wave propagation in a boundary layer. The results shown in figure 3.4 and 3.5 suggest

that the AR(1) terms dominate the process model and are responsible for a significant

reduction of the expectation value for geostrophy and friction terms respect to version

A1-E1. The ratio between geostrophy friction terms is still in favour of geostrophy but to

a minor extent to what has been observed for the previous process model. The planetary

waves term θux(1) and θvy(1) have a small impact on version A2-E1 and account for half
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the value of the friction. The pressure field variance σ2
ap is about 2500 [Pa2]. The model

is able to reproduce the data stage for pressure with an error that is less then 1 [mbar] (

see figure 3.6).

The expectation values for equation error variance σ2
u and σ2

v are 5.1 and 4.4 [m2/s2]

respectively. Overall they are smaller then what observed in version 5 but the difference

between the two process model is not large.

The fact that the error covariance matrix if specified only through a scalar value

implies that a portion of un-correlated white noise is introduced at each sampling from

the distribution of U or V . To avoid this problem it is introduced a more structured form

of the error covariance matrix for the process model equation.

APBL Process Model 1, error type 2 (A1-E2)

A set of 20 EOFs of U and V were used to build the covariance prior as defined in 3.13.

The introduction of the EOF model for the process model equations change the posterior

distribution of the θs parameters with respect to version A1-E1. The major changes affect

the geostrophy terms, whose expectation value is reduced to 3000 [m3skg1] ( see figure

3.2).

The EOFs would represent a natural basis to build a purely statistical wind model

and have the potential to represent the dynamical patterns of the wind. Therefore they

compete in the BHM with the other equation terms in fitting the data stages. In the

work of Berliner at al.[5] the error covariance was defined by a set of k EOFs that do not

appeared in a statistical process model that was already modelled through EOFs. The

separation between process and error was introduced by splitting the series of Empirical

Orthogonal Function in two halves; then no direct competition between the two parts is

possible since they represent different aspects of targeted field. However in this application

it is not strait-forward to ensure that the EOFs do not compete with the dynamical terms

of the process model since the EOFs are not scale-selective.

In version A1-E2 the variances σ2
u and σ2

v , see figure 3.3, representing the diagonal

component of the process model covariances models are fixed values.
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APBL Process Model 2, error type 2 (A2-E2)

A drastic change affects the posterior distribution of the equation parameters, see figure 3.4

and 3.5 . The interaction between the U and V error EOFs changes the balance between

the terms of equations 3.11 and 3.12; the AR(1) coefficients θv(1) and θu(1) invert sign and

become negatives. The geostrophic terms θuy and θvx augment their value in order to

compensate the AR(1) coefficients. The model does converge to some equilibrium but the

drastic alteration of process model parameters indicates that the physical consistency is

lost.

Note that all the variances shown in figure 3.6 for version A2-E2 are constant values.

APBL Process Model 1, error type 3 (A1-E3)

A more explicit scale separation between process model and error modelling can be in-

troduced using multi-scale wavelet. Here the most critical prior assumption concerns the

variance distribution at different scale. As it was earlier in this Chapter discussed a rea-

sonable assumption is to prescribe the variance of the wavelet coefficient accordingly to

the slope of a power-law relation.

The θs parameter expectation values are similar to version A1-E1, see figure 3.2. There

is no interference between the error term and the rest of the process model. The wavelet

implementation is able to capture only spatial scale that are not resolved by the geostrophic

balance and friction. We observe an increase in the variance of the pressure data stages

that do not alter the representation of the major features of the pressure field as it is

described by the ECMWF analyses and forecasts. Note that all the variances shown in

figure 3.3 for version A1-E3 have been set to fixed values.

APBL Process Model 2, error type 3 (A2-E3)

The wavelet term has an impact on the posterior distribution of the θs parameters. Inter-

estingly the AR(1) terms almost vanish making this formulation very similar to version

A1-E3, see figure 3.4 and 3.5. The effect of the scale selective error term suggest that
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the version A1-E3 formulation suffices to explain the m large scale motion of the problem

considered here.

The diagonal terms of the process model covariances σ2
u and σ2

v and the variance σ2
ap

of the pressure data stage are kept constants to make the sampler converge, see figure 3.6.

Conclusive remark

The parametrization of equation error through EOF reduces the expectation values of the

large scale parameter θuy and θvx in version A1-E2 compared to version A1-E1. We also

note an inversion of the sign of the AR(1) parameters θu(1) and θv(1) in version A2-E2

compared to version A2-E1. This is due to the fact that the error EOFs (error type 2) and

the equation parameters compete for the representation of the same dynamical processes.

The competition between the error terms and the equation parameter causes the Gibbs

sampler to converge to a solution that is unphysical; then version A1-E2 and A2-E2 loose

their analogies with the APBL equations. For this reason in the following we focus only

on the physically consistent version A1-E1, A2-E1, A1-E3 and A2-E3.
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Figure 3.2: Posterior distribution of θux[m
3s
kg ], θuy[m

3s
kg ], θvx[m

3s
kg ] and θvy[m

3s
kg ] for version

A1-E1, A1-E2 and A1-E3.
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Figure 3.3: Posterior distribution of σ2
u[m

2

s2
], σ2

v [
m2

s2
] and σ2

ap[mbar2] for version A1-E1, A1-
E2 and A1-E3. Note that in version A1-E2 σ2

u and σ2
v are fixed values; in version A1-E3

σ2
u, σ

2
v and σ2

ap are fixed values.
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Figure 3.4: Posterior distribution of θu(1), θux[m
3s
kg ], θuy[m

3s
kg ] and θux(1)[m

3s
kg ] for version

A2-E1, A2-E2 and A2-E3.
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Figure 3.5: Posterior distribution of θv(1), θvx[m
3s
kg ], θvy[m

3s
kg ] and θvy(1)[m

3s
kg ] for version

A2-E1, A2-E2 and A2-E3.
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Figure 3.6: Posterior distribution of σ2
u[m

2

s2
], σ2

v [
m2

s2
] and σ2

ap[mbar2] for version A1-E1,
A1-E2 and A1-E3. Note that in version A1-E2 and A1-E3 σ2

u, σ
2
v and σ2

ap are fixed values.

54



3.6.1 The wind posterior distributions

The posterior distribution of the wind and the pressure will be considered here in terms

of the sensitivity to QuikSCAT data insertion and Kinetic Energy (KE) spectra.

Sensitivity to QuikSCAT data insertion

The time window of the BHM span 14 days in the past and 10 days in the future. During

the fist phase, QuikSCAT data and ECMWF analysis are inserted as data stages, while

in the next 10 days only ECMWF forecast products are used. The QuikSCAT data cover

portions of the Mediterranean Sea three times a day leaving the time step at 12 am always

empty. Since the insertion of scatterometer data affect the posterior distribution of all

BHM implementations very similarly, here we show the results only for the A1-E3 version.
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Figure 3.7: Root Mean Square difference between posterior mean and 10 realisations of
the BHM for the meridional component of the wind field for the period from 25th January
to 18th February 2005; each line in the plot refers to a single realisation of version A1-E3.
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This feature is evident in the time evolution of the overall variability of the wind

realisations. Figure 3.7 shows the standard deviation of the 10 members around their

posterior mean for version A1-E3. Two different periods are evident on the plot. During

the first 14 days the posterior spread oscillates between 1.4 and 1.9 [m/s], then it remains

almost constant at 1.9 [m/s]. The oscillation is the footprint of QuikSCAT data insertion.

The BHM wind uncertainty doesn’t increase with the leading time during the forecast

period. This feature do not mimic the pattern that was observed in the comparison

between EMCWF analysis and forecast (see figure 3.1 ) and constitute a direction of further

development of the BHM. However this simple implementation of the BHM forecast do

not require any ad hoc assumption about the behaviour of the wind forecast error and

constitutes a reasonable initial choice.

Figures 3.9 and 3.10 show two snapshots of the surface wind for February 3rd 2005

at 12.00 and 18.00 UTC as it is seen by the ECMWF analysis, the QuikSCAT data, the

BHM A1-E3 posterior mean and 10 realisations. A mistral event is active in the Gulf

of Lion region with winds stronger then 20 m/s. At 12.00 there are no QuikSCAT data

available, while at 18.00 a portion of the Gulf of Lion region is covered with satellite data.

The spread of the 10 realisations drawn from the posterior distribution is larger where

QuikSCAT data are not present.

The insertion of the QuikSCAT data in the BHM is a constraint for the wind posterior

distribution. Two simulations of the BHM model were performed with and without scat-

terometer data. Figure 3.8 show the scatterplot of the BHM A1-E3 posterior distribution

against the QuikSCAT data for the wind components U and V for the two experiments:

the upper panels show the results for a run that was made without using scatterometer

data, while the lower one refers an experiment for which the QuikSCAT data were inserted.

The cloud of the wind distribution collapse when the scatterometer data are included in

the analysis.
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Figure 3.8: QuikSCAT wind at 18.00 UTC 3 February 2005 versus the posterior BHM A1-
E3 at QuikSCAT location; (a) Data versus BHM A1-E3 posterior mean for u-wind when
QuikSCAT data are not included in the data stage; (b) Data versus BHM A1-E3 posterior
mean for u-wind when QuikSCAT data are included; (c) same as (a) for v component; (d)
same as (b) for v component. All data are in [m/s].
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Figure 3.9: Wind snapshot 03/02/2005 12:00. Up-left panel: ECMWF analysis. Up-right
panel: QuikSCAT data (empty). Low-left panel: BHM A1-E3 posterior mean. Low-right
panel: 10 BHM A1-E3 realisations.
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Figure 3.10: Wind snapshot 03/02/2005 18:00. Up-left panel: ECMWF analysis. Up-right
panel: QuikSCAT data. Low-left panel: BHM A1-E3 posterior mean. Low-right panel:
10 BHM A1-E3 realisations.
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The BHM Energy Spectra

The energy spectra for QuikSCAT wind are computed along 40 consecutive wind retrieval

lines of 1000 km length ( with a resolution of 25 km ). These lines are equally distributed

in the south part of the western and eastern Mediterranean Sea ( note that the northern

part of the basin is not wide enough to extract sufficiently long lines of scatterometer

data).

The ECMWF and BHM winds are not interpolated on the location of QuikSCAT data.

The KE spectra are computed along a series of 20 longitudinal lines spaced by 0.5 ◦ that

cover the same regions of the Mediterranean Sea that are used for the scatterometer data

analysis.

Each line is transformed in the Fourier space after removing the along-track mean and

then it is tapered and treated with a Hanning window ( Press et al. 1986 [79] ) to reduce

the spectral leakage. The smallest spatial scale, i.e. Nysquist scale, that is resolved is 50

km for the QuikSCAT data and 90 km for the ECMWF and BHM winds. The largest

spatial scale is about 900 km for all cases. An explanation of the method used to computed

the KE spectra can be found in Milliff 2004 [64].

The KE spectrum for the QuikSCAT data ( solid green line in figures 3.14 and 3.13

) shows an approximate power-law relation with exponent p = −2. Beyond 100 km we

note the QuikSCAT spectrum flattens suggesting a possible concentration of energy at the

smallest resolvable scales. However caution must be taken in evaluating this result since

the high wave-number tail of the spectra might affected by spurious signals due to spectral

windowing and tampering.

The ECMWF analyses ( dashed green line in figures 3.14 and 3.13 ) departs from the

theoretical power-law relation at a spatial scale equivalent to 500 km. The energy decay

that affect the ECMWF is severe; the KE content at 100 km is two order of magnitude

less then what observed for the QuikSCAT winds.

The energy spectra of BHM version A1-E1, A1-E2 is shown in figure 3.11 and 3.12.

Even in neither of the BHM versions is able to reproduce the exact power-slope of the

QuikSCAT wind data, the BHM winds clearly represent an improvement with respect to
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the ECMWF analyses, at least for what concern the posterior mean. The wind realisations

of version A1-E1 and A2-E1 show a flat spectra of high KE below the spatial scale of 200 km

that is a clear indication of a large white-noise input in the BHM winds. An improvement

of the kinetic energy spectra for the wind realisations is observed in version A1-E3 and

A1-E2 ( see figure 3.13 and 3.14 ).
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Figure 3.11: Average kinetic energy vs. wavenumber spectra for QuikSCAT ( green solid
line ), ECMWF ( green dashed line ) and BHM A1-E1 expectation mean ( red solid line
) and BHM A1-E1 realisations ( black solid line ) for period 25 January to 7 February
2005.. Power spectral density (PSD, the ordinate) plotted against spatial wavenumber
(k, the abscissa) . The spatial scales corresponding to selected wavenumbers are noted on
the horizontal axis at top. A reference slope for a power law relation PSD ∼ k−2 is also
shown in dashed black line. Confidence intervals are shown for BHM spectra.

62



Figure 3.12: Average kinetic energy vs. wavenumber spectra for QuikSCAT ( green solid
line ), ECMWF ( green dashed line ) and BHM A2-E1 expectation mean ( red solid line
) and BHM A2-E1 realisations ( black solid line ) for period 25 January to 7 February
2005.. Power spectral density (PSD, the ordinate) plotted against spatial wavenumber
(k, the abscissa) . The spatial scales corresponding to selected wavenumbers are noted on
the horizontal axis at top. A reference slope for a power law relation PSD ∼ k−2 is also
shown in dashed black line. Confidence intervals are shown for BHM spectra.
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Figure 3.13: Average kinetic energy vs. wavenumber spectra for QuikSCAT ( green solid
line ), ECMWF ( green dashed line ) and BHM A2-E3 expectation mean ( red solid line
) and BHM A2-E3 realisations ( black solid line ) for period 25 January to 7 February
2005.. Power spectral density (PSD, the ordinate) plotted against spatial wavenumber
(k, the abscissa) . The spatial scales corresponding to selected wavenumbers are noted on
the horizontal axis at top. A reference slope for a power law relation PSD ∼ k−2 is also
shown in dashed black line. Confidence intervals are shown for BHM spectra.
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Figure 3.14: Average kinetic energy vs. wavenumber spectra for QuikSCAT ( green solid
line ), ECMWF ( green dashed line ) and BHM A1-E3 expectation mean ( red solid line
) and BHM A1-E3 realisations ( black solid line ) for period 25 January to 7 February
2005. Power spectral density (PSD, the ordinate) plotted against spatial wavenumber (k,
the abscissa) . The spatial scales corresponding to selected wavenumbers are noted on
the horizontal axis at top. A reference slope for a power law relation PSD ∼ k−2 is also
shown in dashed black line. Confidence intervals are shown for BHM spectra.
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3.7 Summary

A Bayesian Hierarchical Model was developed to produces estimates of winds as a com-

bination of ECMWF and scatterometer winds. The BHM has been built with different

process models and representation of model equation errors. The approximation of the

physical laws or the error representation has a strong impact on the final results.

Version A1-E1 and A2-E1 are the easiest implementation of the BHM that were tested

for what concern the parametrization of model equation errors. The results for the wind

posterior mean show that both models are able to retain most of the energy content

that is missing in the ECMWF analyses. However the simple parametrization of model

error introduces a large white-noise signal that affect the wind realisations; the flat energy

spectra for the wind realisation of version A1-E1 and A2-E1 is typical of a random process.

The wavelet implementation of model error allow to significantly reduces the white-

noise level that affect the wind realisation in version A1-E3 and A2-E3. The usage of

wavelets makes possible a proper scale separation between the large scale, prevalently

geostrophic atmospheric flow, and the small scale of the error. Furthermore the poste-

rior distribution for the equation parameters of version A1-E3 and A2-E3 mimics the

distribution observed for the simplest model A1-E1.

Based on this consideration we identify in version A1-E3 and A2-E3 the best imple-

mentation of wind BHM. Since the result of these two BHM are very similar for what

concerns the posterior distribution of the equation parameters and the energy spectra of

the wind realisations, we select the easiest implementation A1-E3 as the BHM set-up to

be applied in the contest of ocean ensemble forecasting.

However we note that the presence ofa major drawback that still need to be addressed.

The spread of the BHM winds do not growth with the forecast time but remains constant

at a relatively small value of 1.8 [m/s]. The BHM developed so far allows to represent

the forcing error in the past, but does not include any sensible information about the

error evolution in the prediction phase. A direction of development is constituted by the

integration of the stochastic forcing produced by NWP system, such the ensemble forecast
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of ECMWF, in the forecast wind data stage.
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Chapter 4

Ocean Ensemble Forecasting Part

I: the methodology

A new methodology is being devised for ensemble ocean forecasting using distributions

of the surface wind field derived from a Bayesian Hierarchical Model (BHM). The ocean

members are forced with samples from the posterior distribution of the wind during the

assimilation of satellite and in-situ ocean data. The initial condition perturbations are

then consistent with the best available knowledge of the ocean state at the beginning of

the forecast.

An experimental array is being devised to test the BHM-ocean ensemble against tra-

ditional techniques that include initial condition random perturbation and the direct ap-

plication of an ensemble of winds produced by the European Centre for Medium-range

Weather Forecasting (ECWMF). Two implementation of the MFS ocean model were used

to perform the ensemble experiments; the first is a high resolution eddy resolving set up,

the latter is a low resolution model.

The study period is February 2005 when the maximum number of observation were

available in the Mediterranean Sea including XBT, Argo floats and satellite measurements.

Strong Mistral events were recorded during the months of January and February making

this period particularly suitable to test the BHM-Wind ensemble method.
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4.1 Method Description

4.1.1 BHM-wind Ocean Ensemble Method

The stochastic forcing produced by the BHM described in Chapter 3 is used here to

generate an ensemble of ocean forecasts. A set of wind realisations sampled from the

BHM posterior distribution is used to force an ensemble of ocean runs. This approch is

strait-forward and relies on the important role that the wind plays on the circulation of the

Mediterranean Sea. There is a large literature on this topic. Back in the 1974 Moskalenko

[69] showed that the wind stress and its curl are responsible for the formation of basin-

scale gyres. Malanotte-Rizzoli and Bergamasco (1989) [57] reproduced the eastern basin

circulation using a model forced by realistic winds and heat fluxes. Pinardi and Navarra

(1993) described the correlation between the sub-basin structures and the curl of the wind

forcing. Zavatarelli and Mellor (1995) [96] and Roussenov et al. (1995) [82] demonstrated

that the major control on the Mediterranean circulation is provided by the combined effect

of wind and thermohaline forcing. Recently Molcard et al. (2002) [68] demonstrated that

it is possible to reproduce the major patterns of the Mediterranean circulation using the

wind alone in a flat topography model. Here we want to demonstrate that the uncertainty

in the wind forcing has an impact on short term ocean forecast.

The working hypothesis is that all the ocean model uncertainty is due to a misrepresen-

tation of the wind forcing both in the analysis and in the forecast period.The uncertanty

in the wind forecast is a well know problem in literature ( Epstein 1963 [31], Lorenz 1993

[54], Buizza and Palmer 2003 [8]) and is widely recognised that after 3 or 4 days the wind

forecast looses most of its skill. Thus building a set of statistically consistent wind esti-

mates from ECMWF and scatterometer winds allows us to have a physically consistent

representation of the wind error in the forcing fields of an ocean model.

The BHM ocean ensemble method is tailored on the MFS operational scheme ( Tonani

et al. 2007 [91] and Dobricic et al. 2007 [27]). Each ocean member replicates a full cycle

of assimilation and forecast.

For a forecast cycle starting at day j an ensemble of M members is initialised from a
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single restart file at day j−14. During the first 14 days each ocean member is forced with a

BHM realisation and it experiences the assimilation of temperature, salinity and SLA data.

Then the M ocean states at day j are consistent with all the available observations. The

ensemble forecast is obtained continuing to force the M ocean run with BHM prediction

winds.

The initial condition perturbation is defined to be the spread of the ocean ensemble at

the day j, i.e. the uncertainty of the forecast initial condition. We will be referring to the

ensemble spread as the standard deviation of the ensemble member around the ensemble

mean.

4.1.2 ECMWF wind ocean ensemble method

The European Centre for Medium-range Weather Forecasting (ECMWF) runs a global

Ensemble Prediction System (EPS). The EPS is one of the most successful prediction

system and proved to be extremely useful in a wide range of applications (Buizza 2006

[8]). The capability of this product in generating an ensemble of ocean forecast is tested

here.

The key feature of the EPS systems is the usage of singular vector to produce the

initial condition perturbations . Singular vector identifies the perturbations with maximum

growth rate for an energy norm in the first 48 hours of forecast ( Lacarra and Talagrand

1988 [42], Farrel 1990 [34] ). Small errors in the initial condition along this direction would

amplify most rapidly and affect the forecast accuracy [9]. Since 2004, the operational

implementation of the EPS includes 50 perturbed members plus a control forecast run at

a horizontal resolution of approximately 100 km. The data are interpolated on a Gaussian

grid at 0.5 degrees resolution.

Figure 4.1 shows the first 3 EOFs of the ECMWF surface wind ensemble for the time

period considered in this study. The first EOF ( panel a ) shows a large scale wind

pattern that modulates the intensity of a Mistral event occurring between February 10th

- February 13th. The second EOF has the shape of a cyclone-anticyclone centred over

central Mediterranean. The third EOF ( panel c of figure 4.1 ) exhibits a topography
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modulation of the winds that interests the Gibraltar Strait and Sicily Channel regions.

Figure 4.2 shows the growth in amplitude of the standard deviation of the ECMWF 51

members around the ensemble mean. The ensemble spread perfectly mimics the behaviour

the forecast errors as depicted by figure 1 of Chapter 3. We remind that the BHM wind

spread is constant all along the 10 days of forecast ( see figure 8 of Chapter 3).

There is no doubt that the ECMWF ensemble contains more information about the

forecast error in winds then what can be extracted by statistical models based on past

observations. However the ability of the ECMWF stochastic forcing to generate a large

ocean response need to be verified.

The ocean ensemble is constructed forcing several ocean forecasts with different mem-

bers of the ECMWF wind ensemble. Each ocean forecast starts from a single un-perturbed

initial condition.

4.1.3 Initial Condition Random Perturbation Method

A “standard” initial condition perturbation technique is presented here. In the seven-

ties Leith [45] conceived ensemble forecasting as a Monte Carlo approach based on the

integration of numerical models starting from randomly perturbed initial conditions. In

this application we perturb the prognostic field temperature and salinity. The T and S

perturbations are:

Tp(x, y, z, t0) = T (x, y, z, t0) + p(x, y)
1
N

N∑
i=1

M∑
j=1

eijfij(z) (4.1)

Sp(x, y, z, t0) = S(x, y, z, t0) + p(x, y)
1
N

N∑
i=1

M∑
j=1

eijgij(z) (4.2)

where Tp and Sp are the perturbed temperature and salinity and p(x, y) is a 2D random

field that is extrapolated in the vertical dimension using a set of precalculated vertical

statistical modes. These modes, fij(z) and gij(z), are Empirical Orthogonal Functions

(EOFs) and represent the largest vertical variability of temperature and salinity computed
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Figure 4.1: EOFs of the ECMWF ensemble winds computed over the 10 days of forecast
from 8 to 18 February 2005; a) First EOF, Percentage of Explained Variance (PEV): 12%.
b) Second EOF, PEV 7%. c) Third EOF, PEV 4%
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Figure 4.2: The growth in amplitude of the standard deviation (std) for the 10 days
forecast of the 51 members of ECMWF ensemble. Each line represent a member of the
ensemble. Units are in [m/s].
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Figure 4.3: Example of a 2-dimensional random field p(x, y) with a correlation radius of 30
km produced following the procedure describe in Evensen 2003 [32]. The contour interval
is arbitrary.

over a 7 years-long simulation of the model itself ( see Dobricic et al. [26] and Appendix

B) . The first 20 modes of T and S variability are used (M=20) and each mode is weighted

using the normalized percentage of explained variance eij . In the operation system, the

EOFs were computed separately for 13 subdomains of the Mediterranean Basin (N=13),

but for this experiment a single mean EOF is considered over the entire domain.

The pseudorandom field p(x, y) is generated following the procedure proposed by

Evensen ( 2003 [32]) . The mean of p(x, y) is zero and the covariance, which deter-

mines the smoothness of the field, is specified a priori. A generator of pseudorandom

numbers is used in the algorithm and it insures that different output will be produced

given different input seeds. Figure 4.3 shows an example of the p field.

The initial perturbation of temperature and salinity was calibrated to simulate a stan-

dard deviation of 2 cm in the Sea Surface Height field. The random ensemble scheme is

not constrained by any observation.

The ocean ensemble is produced running several ocean forecasts from a perturbed

initial condition. Each ocean run is forced by the deterministic ECMWF wind forecast.

4.1.4 Experimental Design

The three perturbation methods are tested on the same forecast cycle that spans between

February 8th to February 18th 2005. A control run was obtained replicating the oper-
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ational forecast; the control run starts from the previous day analysis and it is forced

by ECMWF deterministic fields. Each method was tested with high (MFS1671) and low

(MFS471) resolution models described in appendix B.

Then the experiment array is composed by 6 ensembles that we will be compared on

the basis of their spread, mean error and predictable patterns ( see table 4.1 )

Table 4.1: Experiment array. See text for a description of perturbation methods.

Ocean model Initial Condition Wind Forcing Ensemble
perturbation perturbation size

BHM-MFS1671 high yes yes 10
resolution (section 1.1.1) (section 1.1.1)

BHM-MFS471 low yes yes 100
resolution (section 1.1.1) (section 1.1.1)

EC-MFS1671 high no yes 10
resolution (section 1.1.2)

EC-MFS471 low no yes 51
resolution (section 1.1.2)

ICRP-MFS1671 high yes no 10
resolution (section 1.1.3)

ICRP-MFS471 low yes no 100
resolution (section 1.1.3)
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4.2 High resolution results

4.2.1 Ensemble Initial Conditions

The initial condition perturbations are shown for the 3 different perturbation method in

figure 4.4. The initial condition spread of the BHM ensemble is concentrated in following

circulation features ( see Robinson et al. 1992 and Pinardi et al. 2005 [76] for a detail

description of Mediterranean circulation):

• Algerian Current (AC); the AC is a boundary intensified jet-like current that trans-

ports Atlantic Water (AW) following the northern African continental slope. Large

anticyclonic eddies of diameter of about 100 km detach from the mean current and

have a lifetime that range between few months to several years ( Millot and Taupier-

Letage 2005 [67] and Testor 2005 [88]). During the period of this study a large

anticyclonic eddy is located at 6◦E and it has already separated from the Northern

African coast. The wind perturbation effectively displaces the border of the eddy

generating a large ensemble variance along the sharp density front.

• Atlantic-Ionian (AI) Current; the AC separates in two branches at the western tip of

Sicily. The north branch enters the cyclonic circulation of the Thyrrenian Sea, while

the second branch heads south in the Sicily Channel and becomes the Ionian-Atlantic

stream. The AI current leaves the Sicily shelf plateau and undergoes a meandering

process in the deep Ionian basin. The separation of the AC and the meandering of

the AI stream are highlighted in the ensemble SSH spread. A barotropic signal in the

esemble SSH standard deviation it is evident over the shallow African continental

shelf.

• North African Current; in the Levantine basin the AI current takes the name of North

African Current (NAC). The NAC flows along the African coast before bifurcating

in the Mid Mediterranean Jet (MMJ). The ensemble SSH spread is concentrated in

the boundary intensified portion of the NAC to the east of the Mersa-Matruh gyre.

76



The EC-ensemble is obtained without any initial condition perturbation but at the end

of the first forecast day the ensemble standard deviation of SSH has reached an amplitude

comparable with the BHM ensemble ( panel c of figure 4.4). The spread concentration in

the northern Adriatic Sea is key feature of the EC ensemble and it suggests that only the

barotropic ocean circulation is affected by the ECMWF wind perturbation.

The initial condition of the ICRP ensemble reflects only the perturbation method and

it is not informative about the ocean dynamics and its uncertainty ( panel d of figure 4.4).

4.2.2 Ensemble spread during forecast time

The IC perturbations of the BHM-MFS1671 ensemble grows during the forecast time. We

observe well defined structures of ensemble spread that interest the mesoscale circulation

of the Mediterranean Sea ( panel b of figure 4.5). The maximum spread in Sea Surface

Height reaches the value of 6 cm that is comparable in amplitude with a typical model

error that in a mean sense oscillates between 4-6 cm ( Dobricic et al. 2005 [27]). There is

a clear continuity between the ensemble spread at the beginning and end of the forecast (

panel a of figures 4.5 and 4.4 ), the main difference being the disappearance of any swallow

water signal in the SSH ensemble spread at the forecast end time.

The EC ensemble presents a reversed scenario. Most of the ocean spread is found on

shelf areas, with maximum SSH standard deviation of 12 cm in the Northern Adriatic

(panel c of figure 4.5). In the Algerian Current and in the Ionian Sea we observe weak

ensemble variability that concerns the mesoscale circulation.

The ICRP ensemble shows a large ocean spread, up to 10 cm, that is not well organised

around circulation structures, suggesting that 10 members are not sufficient to highlight

the most relevant instability regions ( panel d of figure 4.5 ). However three maxima of

ensemble variability for the SSH can be identified in the Algerian current in the Ionian Sea

and in the Levantine basin around the Mersa-Matru gyre. It should be noticed that both

the initial perturbation and the final variability of the ensemble members in the costal

areas are low. The applied perturbation scheme is sensitive to the depth of the water

column. The perturbation of temperature and salinity results in volume anomalies that
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are integrated between 1000 m and the surface to obtain the perturbation on SSH. In

shallow water (z < 1000) this integral is smaller being computed over a shorter interval.

In figure 4.6 we show the ensemble density standard deviation along a section at

5E. The ensemble variance vertical structure reveals interesting similarities between the

ensembles, especially between the BHM and ICRP experiments ( panel b and d ). The

EC ensemble presents a small vertical penetration of the wind perturbation (see panel c

of the same figure) confirming the prevalent barotropic structure of the ocean response.
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Figure 4.7: Observation locations from 8 to 18 February 2005 in the Mediterranean Sea.
Blue points are XBT temperature profiles, red crosses refer to ARGO temperature and
salinity profiles. Black points refer to Sea Level Anomaly measurements from satellite
altimetry.

4.2.3 Comparison with data

So far we have being looking at the properties of the ensemble variance, trying to under-

stand the ocean response to a set of perturbations of different nature. But the question of

how effective the ensembles are to reduce to forecast error has being left aside. The pres-

ence of buoys and satellite data makes it possible to check the forecast error reduction. It

is believed that if the ensemble method is valid it should reduce forecast error with respect

to the deterministic single forecast ( Leith 1971 [44] ). Here we evaluate this comparing

the ensemble mean state with observations.

In the 10 days that are covered by this hind-cast experiment, 22 ARGO profiles of

temperature and salinity and 77 XBT temperature profiles were taken in various areas

of the Mediterranean Sea. A set of 55 Sea Level Anomaly tracks are also available for

this period for a total of 1761 points. Figure 4.7 shows the space distribution of the data

during the 10 days of forecast.

Table 4.2 presents the 10 day averaged forecast error for the control run, forced with

ECMWF winds, and the three high resolution ensemble experiments. The results are

presented for temperature, salinity and model error. Temperature and salinity skill scores

are further divided considering three groups; the first 30 m, the first 100 m and the whole
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water column.

• BHM: the ensemble mean presents similar skill score of the control run. This is

probably due to the fact that the ensemble spread is very limited in small regions.

• EC: the ensemble mean presents a slightly smaller RMS on temperature but show a

0.4 cm increment in the Sea Surface Height RMS error.

• ICRP: the ensemble mean is worse then the control run for all the observed variables.

The temperature ensemble mean error is 20% worse then the control run and the

salinity ensemble mean is 10% worse then the reference run.

The BHM method is not very effective in reducing the forecast error but the EC method

worsen the scores for SLA. The worst results are observed for the random perturbation

ensemble that also proved to be the most successful method in exiting a large ocean

response.

Table 4.2: MFS1671 ensemble and control rms errors. Units are [◦C] for temperature,
[psu] for salinity and [m] for SLA.

Temperature Salinity SLA
All 30 m 100 m All 30 m 100 m

Control 0.37 0.41 0.4 0.18 0.28 0.22 0.04
BHM Ensemble Mean 0.36 0.41 0.34 0.18 0.28 0.23 0.04
EC Ensemble Mean 0.36 0.39 0.39 0.18 0.28 0.22 0.05
ICRP Ensemble Mean 0.43 0.50 0.48 0.20 0.30 0.25 0.05

4.3 Low resolution results

The high resolution of the MFS ocean model makes a Monte Carlo approach computation-

ally prohibitive unless the ensembles size is limited. The possibility to enlarge the number

of ensemble members arises if we consider a low resolution version of the ocean model.

A 1/4 of a degree set-up of MFS model was implemented reducing by a factor 16 the

dimension of the state vector. The MFS471 ocean model fits a single CPU of a standard

PC, making possible to run multiple experiments on cluster machines without the need of
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any interface between nodes. This approach is optimal for the usage of High Throughout

Computing systems, such the Grid. A technical efficiency and reliability investigation was

conducted on the Italian Grid.it system, see Pinardi et al. (2007 [74]) and Appendix C.

Generally we observe that the MFS471 EC and ICRP ensembles are qualitatively

similar to their high resolution homologues (figure 4.5 and figure 4.9 ):

• The BHM ensemble method is highly sensitive to the resolution of the ocean model

since the BHM winds prevalently act on the meso-scale circulation that is poorly

represented by the low resolution model. The spread maxima both in the initial

condition and at the forecast end are localised similarly in the two BHM ensembles

but the signal amplitude is weakened in the MFS471 case (panel b of figure 4.8

and 4.9). The vertical section at 5E (figure 4.10) shows that the BHM forcing

perturbation propagates less in the depth then the high resolution experiment.

• The EC ensemble spread after the first day of forecast (panel b of figure 4.8) presents

a clear variance maximum on the Northern Adriatic and little if any impact on the

rest of the Mediterranean basin. At the end of the forecast a small portion of the

initial variance has been transferred to the meso-scale circulation, but the most

evident signal is still concentrated in shallow regions ( panel c of figure 4.9).The

density spread along section 5E, see figure 4.10, is more baroclinic but weak as

usual.

• The ensemble size is a crucial factor for the random perturbation scheme. The low

resolution model allows us to easily run 100 members making possible to fully explore

the probability distribution that simulates the uncertainty of the initial state. Panel

d of figure 4.8 show the initial condition spread for the SSH field. We clearly recognise

that the initial perturbation is homogenous in region of similar depth and this is very

unrealistic. At the end of the forecast the SSH spread is generally localised in region

of high dynamical circulation, see panel c of figure 4.9 with maxima in the Algerian

current, along the Atlantic current in the Ionian Sea and around the Mersa-Matruh

gyre in the Levantine basin. The section at 5E ( see panel d of figure 4.10) reveals a
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vertical structure of the density spread that is similar to the high resolution ensemble.
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4.3.1 Comparison with observations

Table 4.3.1 presents the general conclusion on the skill scores of the coarse resolution

ensemble experiments. We note that:

• The low resolution implementation of the BHM ensemble method does better then

the control run for SLA. The ensemble mean error is 1 cm less the the reference run.

The temperature and salinity comparison show an opposite situation; the control

run is better then the ensemble mean. The fact that we do not observe consistent

forecast skills for temperature, salinity and SLA suggests that the number of available

observations in not sufficient to properly sample the model error in a coherent way.

• The EC ensemble mean do not show significant variation of the error skills in com-

parison with the control run for salinity and SLA. However we register a reduction

of the temperature error.

• The ICRP ensemble seems to benefit from the increment of the ensemble size; the

skill scores of the ensemble mean are closer to the control run then in the high

resolution case.

Table 4.3: MFS471 ensemble and control rms errors. Units are [◦C] for temperature, [psu]
for salinity and [m] for SLA.

Temperature Salinity SLA
All 30 m 100 m All 30 m 100 m

Control 0.38 0.42 0.40 0.17 0.26 0.22 0.05
BHM Ensemble Mean 0.45 0.56 0.50 0.20 0.28 0.25 0.04
EC Ensemble Mean 0.35 0.36 0.36 0.18 0.26 0.22 0.05
ICRP Ensemble Mean 0.39 0.44 0.42 0.18 0.26 0.22 0.05

89



4.4 Predictability

We measure the information contained in a probability distribution as its entropy ( Shan-

non 1948 [85] ) that is defined as:

H(X) = −k
∫
p(x) log p(x) dx (4.3)

where k is a normalizing factor and h(x) = −log p(x) is the information content of a single

event X = x.

If the entropy is a measure of the amount of information contained in a distribution

function, it is strait-forward to think at the predictability as the difference between the

entropies of two probability distributions ( DelSole 2004 [21] and [22]):

1. The climatological probability distribution: this distribution represent the prior

knowledge that we have about a certain process. We assume that this distribution

is stationary:

p(xt+τ ) = p(xt)

where we define that p(xt) dx is the probability that the ocean N-dimensional state X

at time t lies in the range xt and xt+dxt; τ is the forecast lead time. The expectation

of this distribution is the climatology mean that is simply called climatology.

2. The forecast probability distribution: also known as posterior distribution represents

the best knowledge that we have of the ocean state X at time t+τ having observed all

available data ot up to time t. The chain rule allows to write the forecast distribution

as:

p(xt+τ ) =
∫
p(xt+τ |xt)p(xt|ot)dx

where p(xt|ot) is the analysis distribution and here its mean is obtained using the

Reduced Order Optimal Interpolation scheme ( Dobricic 2007 [27]). The transitional

distribution p(xt+τ |xt) is computed from a dynamical or stochastic model of ocean

circulation. We recognise that the ensemble forecasts are a discrete approximation
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of the forecast probability distribution.

Thus the predictive information can be defined as ( Schneider and Griffies 1999 [84]

and DelSole 2004 [21]):

Rv = H1 −H2 (4.4)

where H1 and H2 are the entropy of the climatology and forecast distributions.

A major simplification arises if we consider all the distributions as Gaussian. Then the

climatology distribution can be written as:

p1(x) =
(2π)−m/2

(detΣ)1/2
exp
[
−1

2

(
x− 〈X〉

)T
Σ−1

(
x− 〈X〉

)]
(4.5)

where x is the m-dimensional state vector, 〈X〉 is the expectation value and Σ is the

climatology covariance matrix.

Similarly we can write the forecast distribution as:

p2(xt) =
(2π)−m/2

(detCt)1/2
exp
[
−1

2

(
xt − 〈X̃t〉

)T
C−1

t

(
xt − 〈X̃t〉

)]
(4.6)

where 〈X̃t〉 is the forecast expectation and Ct is the covariance of the forecast distribution.

Inserting 4.5 in 4.3 we find that the entropy for the climatological distribution of

dimension m is:

H1 =
k

2
(m+mlog2π + logdetΣ) (4.7)

and similarly the entropy of the forecast distribution is:

H2 =
k

2
(m+mlog2π + logdetCt) (4.8)

Substituting 4.7 and 4.8 in 4.4 it follows that the predictive information is:

Rv = −k
2
log

(
detCt

detΣ

)
(4.9)
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Finally the Predictive Power (PP) can be defined as:

α = 1− (det Γt)1/(2m),

where we set the normalising constant k equals to 1/m and we applied the product theorem

of determinants. The matrix Γt = Ct Σ−1 is call the predictive information matrix. For

the univariate case the Predictive Power reduces to 1 minus the ratio of root mean square

errors, i.e the standard deviations, of the climatology and forecast distributions.

The predictive information matrix can be decomposed the ocean state in a set of

subspaces that are ordered by their predictive power. Schneider and Griffies ( 1999 [84])

show that the Predictable Patterns can be found as the solutions of an eigenvalue problem.

In particular the Least Predictable Pattern (LPP) satisfy the condition:

Γtv1 = γ1v1 (4.10)

where γ1 is the biggest eigenvalue of the Information Matrix Γ to which correspond the

least predictable pattern of the ensemble at time t.

4.4.1 Climatological and forecast covariance matrices

Assuming that the forecast and climatological distribution are Normal, the predictable

patterns can be found using only the covariance matrices of the two distribution. We

compute the climatology covariance matrix as:

Σ =
1

T − 1

T∑
t=1

(xt − x̄)(xt − x̄)T

where the t index refers to a time series of the model state vector x and the bar denotes

the time mean. If X = {x1 − x̄, . . . ,xT − x̄} we can write the covariance matrix as

Σ =
1

T − 1
XXT =

1
T − 1

WΛ2WT
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where W and Λ are the EOFs and diagonal eigenvalue matrix derived from a singular

value decomposition of X. Equation 4.9 requires non-singular Σ; this is often not the

case since the dimension m of the state vector x is usually greater then the degree of

freedom T over which the covariance is computed. The similarity between predictable

pattern and principal component analysis is used to solve the rank deficiency problem the

analysis is performed in the reduced space of the first k << m eigenvectors. It is clear that

the definition of the climatological covariance matrix is subjective and requires physical

consideration about the properties of the predictability that we are interested in.

The forecast covariance matrix Ct is easily computed as:

Ct =
1

M − 1

M∑
i=1

(xit − x̄t)(xit − x̄t)T

where xit is the state vector of the ith ensemble member and x̄t is the ensemble mean at

time t. Note that also this matrix can be written using a singular value decomposition

of the ensemble anomaly field. In order to compare all the experiments with the same

climatological covariance matrix the low resolution fields where interpolated on the finer

MFS1671 grid.

4.4.2 Results: Density predictability

We apply the PP formalism to study the predictability of density from the model ensemble

forecasts. In this experiment the climatological matrix is defined using the single deter-

ministic evolution of the density field from January 1 to February 8, 2005 along a section

at 5◦E. Several test were made using different periods for the definition of Σ ( not shown

here ) and it was found that using a relatively short period for building Σ allows to catch

the ensemble variability that is associated with the eddy field. Since the climatological

matrix is singular, the analysis was performed in a truncated space, retaining the first

r = 14 eigenvectors This truncation allow to capture 88 %of the total variability of the

density field.

We focus our attention on the LPP ( equation 4.10 ) of BHM, ICRP and EC ensembles.
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For the BHM ensemble we consider both the analysis and forecast periods since both of

them are associated to a probability distribution that we can compare with the same

climatological covariance matrix; for the ICRP and EC experiments we have a probability

distribution only for the 10 days of forecast.

Figure 4.11 and 4.12 shows the LPP for the high and low resolution ensembles at

February 18th 2005, i.e. the last day of forecast. There is a substantial agreement in all

the results and especially between high and low resolution counterparts.

The BHM and ICRP ensembles ( see panel a and c of figure 4.11 and 4.12 ) highlight

an isolated thick structure at 38.5◦ E that extends down in the water column to 150

m. The least predictable pattern for these experiments is the location and shape of the

strong anticyclone in the Algerian Current. The predictable power that is associated

to this pattern varies drastically between the experiments, see figure 4.13. The ICRP

high resolution experiment show the a rapid decrease of PP during the very first days of

forecast, reaching values close to zero after 6 days. The low resolution ICPR presents a

similar behaviour suggesting that the initial condition random perturbation is capable of

producing a strong response from both model set-ups. The high resolution BHM ensemble

presents a less drastic decrease of predictable power, but at the forecast end the uncertainty

associated with the least predictable pattern is about 50% of the dynamical variance of

the density field along 36 days of simulation. The predictability power analysis confirm

that the BHM wind perturbation is less effective for the low resolution model.

The least predictable pattern of the ECMWF ensemble ( see panel b of figures 4.11

and 4.12 ) presents a slightly different picture. The maximum unpredictability is almost

equally divided between three structure centred at 38, 40 and 43◦; the anticyclonic gyre

in the Algerian Current is not preferentially exited the by large scale wind perturbation.

The predictable power associated to this structure clearly shows that the stochastic EC

wind forcing is the least effective perturbation of the vertical stratification of the model

density.
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Figure 4.11: Density Least Predictable Pattern (LPP) along a section at 5◦E at day
February 18th 2005 (last day of forecast); contour interval is arbitrary. a) BHM-MFS1671
ensemble, b) EC-MFS1671 ensemble, c) ICRP-MFS1671 ensemble. The control run den-
sity field is depicted in panel a of figure 4.6.
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Figure 4.12: Density Least Predictable Pattern (LPP) along a section at 5◦E at day
February 18th 2005 (last day of forecast); contour interval is arbitrary. a) BHM-MFS471
ensemble, b) EC-MFS471 ensemble, c) ICRP-MFS471 ensemble. The control run density
field is depicted in panel a of figure 4.9.
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Figure 4.13: Predictive Power associated to the density Least Predictable Pattern for 6
ensemble experiments. The analysis period extend from January 25th to February 8th,
following days are in forecast period. EC and ICRP have predictable power equal to 1
before February 8th, since there is no ensemble during the analysis period.
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4.4.3 Results: SSH predictability

The climatological covariance matrix is defined using the dynamical evolution of the SSH

field is a box region that extends from 2◦E to 8◦E in the Western basin for the same 38 days

period used for the study of density predictability. The covariance matrix is truncated

using the first k = 14 EOFs that explain the 81% of the variability of the SSH field.

The least predictable SSH pattern of the ensemble distributions for the three experi-

ments at high and low resolution is presented in figures 4.14 and 4.15 for the day February

8th 2005. The SSH mean field for the high and low resolution ensemble is shown in panel

a of figures 4.14 and 4.15. The complex dynamics of the SSH is only poorly solved by the

MFS471 implementation of the ocean model that do not solve the eddy field.

The least predictable pattern for all experiment highlights the north-eastern border

of the anti-cyclonic gyre that is detaching from the core. Fontanet et al. ( 2004 [40] )

explained the dynamics of similar anti-cyclonic eddies of the Algerian Current in terms

of two-dimensional turbulence. In particular they show that the circulation cell that

encircle the eddy core is characterised by strain dominated processes that are responsible

for abrupt changes in the behaviour of the Lagrangian motion of drifters. Then the

forecast uncertainty might affect our ability to predict the dispersion of particles crossing

these regions and need to be taken into consideration for end-user applications of ocean

ensemble forecast.

Panel b of figures 4.14 and 4.15 shows the least predictable pattern for the BHM

ensemble for high and low resolution model set-up. The shape of LLPs is similar but the

associated predictability power ( see figure 4.16 ) is almost 1, i.e. total predictability, for

the MFS471 indicating that the BHM winds are a less efficient perturbation for coarse

resolution model.

The least predicable pattern of the ICRP and EC ensemble are shown in panel c and

d of figure 4.14 and 4.15 respectively . Again the shape of the LPP is similar between all

the ensemble regardless to the kind of perturbation and resolution, the only significant

difference being the PP the is associated to each pattern.

The results indicate that the eigenvectors of the Information Matrix Γt are found along
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the directions of maximum variability of the climatological covariance matrix Σ that is a

unique reference for the 6 ensemble experiments. Then also for the low resolution ensemble

experiments the least predictable pattern highlights meso-scale feature that are not fully

resolved the coarse MFS471 ocean model.

We observe that generally the low resolution experiments presents higher Predictable

Power then their high resolution counterparts; it is useful to clarify this point. What we

are estimating here is only the potential predictability of the system given by accessible

forecast distribution that is based on our imperfect model representation of the dynamical

evolution of the ocean state vector (Del Sole 2004, [22] ). DelSole extends the problem in

order to find which is the predictability of the “true” state given the accessible forecast

distribution. This conditional distribution will be different for the various experiments

that we presented here in order to relate them to the unique predictability of the “true”

system.

4.5 Summary

In this chapter we presented a comparison between 3 methodologies of ocean ensemble

forecasting applied to the Mediterranean Forecast System. The application of Bayesian

Hierarchical Model winds ( that are described in Chapter 3 of this thesis ) during 14

days of ocean analysis proves to be an effective method in perturbing the forecast initial

condition given realistic estimated of uncertainties in the surface wind forcing; the parallel

assimilation of in-situ and satellite data provide a reasonable constraint to the initial

condition perturbations reducing the uncertainty in the ocean field according to the best

available knowledge of the system. The BHM winds are also applied in the forecast phase

to sustain the perturbations growth. The ocean spread at the end of the forecast is mainly

concentrated in the meso-scale of the Mediterranean circulation suggesting the eddy field

is the most unpredictable component of the ocean state.

The Initial Condition Random Perturbation built by vertical extrapolation of a random

2-dimesional field through EOF generate a large ocean ensemble spread, as it was already
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Figure 4.14: a) MFS1671 control run SSH [m] at February 18th 2005 in a box region in the
Western Mediterranea. The contour interval is 5 cm. b) SSH Least Predictable Pattern
(LPP) of BHM-MFS1671, c) EC-MFS1671 and d) ICRP-MFS1671 ensembles. Contour
interval for panel b, c and d is arbitrary.
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Figure 4.15: a) MFS471 control run SSH [m] at February 18th 2005 in a box region in
the Western Mediterranea. The contour interval is 5 cm. b) SSH Least Predictable Pat-
tern (LPP) of BHM-MFS471,c) EC-MFS471 and d) ICRP-MFS471 ensembles. Contour
interval for panel b, c and d is arbitrary.
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Figure 4.16: Predictive Power associated to the SSH Least Predictable Pattern for 6
ensemble experiments. The analysis period extend from January 25th to February 8th,
following days are in forecast period. EC and ICRP have predictable power equal to 1
before February 8th, since there is no ensemble during the analysis period.
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demostrated in a recent work of Pinardi et al. ( 2007 [74] ) applied to a similar set-

up. However the random nature of the perturbation to not permit to integrate the best

available knowledge of the ocean state; the data comparison shows that ICRP ensemble

mean has lower skills then the control forecast.

The ensemble generated by the ECMWF ensemble winds prove to be centred around

the control forecast, presenting only slightly deteriorate skills. This method generates

mostly a large-scale signal in ocean spread, suggesting that the EC winds are not an

effective perturbation of the meso-scale circulation.

The experiments performed with a low resolution ocean model set-up show strong

analogies with their high resolution counterparts; however BHM winds appear to be an

ineffective perturbations of a coarse resolution model most of their energy being confined

in scale not properly resolved by the low-resolution model. On the other hand the ICRP

scheme benefits from the increased numbers of members that can be computed for the

less-demanding low resolution implementation of the ocean model.

The differences observed in the responses of the ocean model to BHM, ICRP and EC

collapse when we isolated the least predictable pattern of the forecast. The ocean model

present a preferential direction of variability that is similarly found in all ocean ensembles.

We identify two directions of further development of the present work. The first one is

the investigation of the singular vectors of the ocean model that will help the understanding

of the observed similarities between the ocean ensemble forecast experiments. The second

direction of development is the investigation of the relation between forecast probability

distribution and forecast errors. In the next Chapter we focus on this second issue; we

present a study of the ensemble properties viewed as a proxy for model error. The first

issue is left to a future evolution of this work.
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Chapter 5

Ocean Ensemble Forecasting Part

II: error covariance estimates
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5.1 Experiment Description

An eight month long experiment from April to December 2005 of weekly BHM ensemble

forecasts was performed in the framework of the operational Mediterranean Forecast-

ing System. The statistical properties of the ensemble are compared with model errors

throughout the seasonal cycle proving the existence of a strong relationship between fore-

cast uncertainties due to atmospheric forcing and the seasonal cycle of model errors.

The new ensemble forecast method based on the BHM winds described in Chapter 4

has being applied in a long re-forecast experiment for the year 2006.

The Mediterranean Sea is an ideal testbed since it has been the site of an important

modelling and real time forecasting effort; operational prediction of the ocean state are

released regularly by the MFS group since 1998 [73]. The operational modelling activities

are complemented by a large observational network. Vertical profiles of temperature and

salinity were regularly taken by a ship of opportunity program (Manzella et a. 2003 [58])

and a drifting profiling program that deployed ARGO floats in the Mediterranean Sea (

see Poulain at al. 2007 [77]). Satellite measurements of Sea Level Anomaly (SLA) data

and Sea Surface Temperature were available in near real time for the operation activities

of MFS (Le Traon et al. 2003 [49] and Buongiorno Nardelli et al. 2003 [10] ).

A set of 36 ensemble forecast experiments was performed for the period April to De-

cember 2006. Each week an ensemble cycle is conducted: it is composed of 14 days of

analysis and 10 days of forecast repeated for 10 ocean members forced by different re-

alisations of the stochastic forcing produced by the BHM. The ensemble is initialised at

every cycle with a control run forced with deterministic ECWMF winds; hence there is no

propagation of ensemble uncertainties between successive forecast cycles. The experiment

period spans between spring to late autumn and allows to study the ensemble properties

all along the seasonal variability of the Mediterranean Sea.

The ocean model used here is the high resolution version of the MFS model described

in Tonani et al. (2007 [91]), so-called MFS1671. The assimilation is carried out with

an Optimal Interpolation scheme that was originally developed by De Mey and Benkiran
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(2002 [23]) and which last MFS implementation is described in Dobricic et al. (2005 [26]

). A brief review of the ocean model and of the assimilation scheme can be found in

Appendix B.

The BHM produces small scale, high frequency wind perturbations that do not change

the mean property of the atmospheric flow as it is depicted by the ECMWF analysis and

forecast. Figure 5.1 show a 10 days moving average of the ensemble mean and the ensemble

standard deviation of BHM wind stress over the Mediterranean Sea. We observe that the

variability of wind stress is constant throughout the seasons, while the standard deviation

of the wind stress curl is generally larger during spring and fall than summer. In summer

in the Mediterranean Sea we achieve the lowest wind speeds and wind curl values; our

method to perturb the winds by BHM is not capable to create speed in the wind stress

curl when the amplitude is low.

The surface boundary conditions for the ocean model include a set of bulk formula to

account for the surface heat budget ( Castellari et al. 1999 [12] and 2000 [13]) then the

perturbation of the input winds indirectly affects the heat and water fluxes. The time

series of the net heat flux is shown in figure 5.2. The ocean warms up until August then

it starts to loose heat to the atmosphere reaching highly negative values of heat flux that

a typical of the winter season in the Mediterranean Sea. The standard deviation of net

heat flux slowly increases during the experiments reaching maximum values of 10 W/m2

at the end of November.

The Mediterranean Sea has negative balance between evaporation and precipitation

that is compensated by a net water inflow through the Strait of Gibraltar. The scarcity of

precipitation data over the ocean makes difficult to model this important process directly

and it has led to alternative parametrization of the water fluexes. The MFS models the

air-sea water exchanges as a salt flux, where the driving force is the difference between

model and climatological surface salinity, see Chapter 1 and Tonani et al. (2007 [91]).

The wind perturbation acts on the modelled water balances not through evaporation, as

it would be physically correct, but altering the dynamics of surface salinity advection

and mixing. Figure 5.2 shows the 10 days moving average ensemble mean and standard
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Figure 5.1: Basin mean wind stress [N/m2] and wind-stress curl [N/m3] over the Mediter-
ranean Sea. Dark solid line refer to ensemble mean values, vertical bars denote ensemble
standard deviations.

deviation of the net upward water flux. The standard deviation is large compared to the

signal suggesting that the water fluxes scheme is sensible to small variation of the surface

salinity field. This is probably non completely consistent with the heat flux perturbations

and simulations should be carried out in the future with new water flux formulation of the

MFS model.
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Figure 5.2: Basin mean upward water flux [kg/m2s] and total heat flux [W/m2]. Dark
solid line refers to ensemble mean values, vertical bars denote ensemble standard deviation.
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Figure 5.3: Location of ARGO ( red crosses ) and XBT ( blue points ) profile from April
18th to December 14th 2006 in the Mediterranean Sea.

5.2 Temperature and Salinity forecast errors

The aim of this work is two-folded; first we want to understand if the perturbation of the

air-sea fluxes produced by the BHM winds is able to generate a stochastic ocean response

that is informative of the model error; second we want to use the ocean ensemble variance

produced by the BHM ensemble to calculate the the background error covariances to be

eventually used by the assimilation scheme.

To understand the MFS forecast skills we compare the data with the model forecast

fields interpolated on the position and time of the XBT and ARGO profiles computed for

the 36 ensemble forecast in 2006.

A relatively large data-set of ARGO and XBT vertical profiles was collected during the

time period covered by this study; figure 5.3 shows the spatial distribution of temperature

and salinity profiles. The availability of a large data set makes feasible to analyse the

ensemble properties against the forecast errors for a time period that covers a complete

cycle of formation and destruction of the thermocline in the Mediterranean Sea.

Figure 5.4 show the results of this comparison for the Eastern Mediterranean Sea for

the whole period of the ensemble forecasting experiment. The model-data intercomparison

is carried out only in the vertical direction since all the data and interpolated model fields

were horizontally averaged.
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The observed temperature ( panel a of figure 5.4 ) presents a sharp vertical gradient

that appears to be smoothed in the model temperature vertical profile ( panel b of the

same figure). The model is generally colder than observations, in particular it is not able

to properly reproduce the temperature maximum that is recorded by XBT and ARGO

profiles in September.

Panel c of figure 5.4 shows the salinity field as viewed by ARGO floats. We recognise in

the observations the high surface salinity signal that is controlled by summer evaporation.

Below the surface salty waters there is a layer of relatively fresh water that is produced by

the horizontal advection of Modified Atlantic Water from Gibraltar. The deep high salinity

layer is characterised by Levantine Intermediate Water that is formed in the Rhode gyre

and advected in all the Mediterranean Sea ( Demirov and Pinardi 2002 [24]) . The model

underestimates the high salinity observed values ( see panel d of figure 5.4 ) suggesting that

the crude parametrization of the water fluxes is affecting the quality of the reconstructed

salinity even if observations are assimilated.

The ability of the MFS forecasts to reproduce the observations depends on the perfor-

mance of the ocean model and the assimilation scheme. The work of Tonani et al. ( 2007

[91]) shows that during summer the MFS ocean model lacks the high evaporative com-

ponents of the heat fluxes and that the parametrization of the upper mixed layer physics

does not reproduce well the relative deep, saline and hot mixed layer. On the other hand

the assimilation does not fully correct the model fields.

The parametrization of the background error covariance matrix plays a key role on

the performances of on Optimal Interpolation scheme such SOFA that is used by MFS.

The work of Dobricic et al. [26] proved that a better representation of the background

error improved the skills of the MFS analyses. Here we want investigate the possibility to

extract valuable information from the ensemble variance that is generally interpreted as a

proxy for model error.
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Figure 5.4: Mean temperature and salinity profile for the period May to December 2006.
a) ARGO and XBT temperature [◦C]. b) Ensemble Mean forecast temperature [◦C]. c)
ARGO salinity [psu]. d) Ensemble mean forecast salinity [psu].
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5.2.1 Estimates of Temperature and Salinity vertical errors covariances.

The RMS of the model error is compared with the standard deviation of the ocean ensemble

and with a statistics derived from the vertical EOFs used in the assimilation scheme.

We then define three different representations of the model vertical error:

• RMS misfit; for each forecast cycle we compute the RMS of the misfits between the

control forecast and data. The control run is the deterministic forecast produced with

ECMWF winds. The measurements are XBT and ARGO profiles of temperature

and salinity. We average the RMS along the vertical direction.

• BHM ensemble spread; this quantity is the standard deviation of the ensemble mem-

bers around the ensemble mean. We evaluate this quantity at the observation loca-

tions and then we average for all the data that fall into the forecast window grouping

by vertical levels.

• EOF spread; the MFS assimilation scheme, described in Appendix B, uses vertical

EOFs to represent the vertical model errors. For each temperature and salinity pro-

file we compute the standard deviation of an ensemble drawn from the multivariate

normal distribution prescribed by the EOFs

e ∼ N(0, SjtΛjtSTjt)

where e is background model error, the matrix S contains 20 vertical temperature

and salinity EOFs and Λ is the eigenvalue matrix. The index j = 1, . . . , 13 and t =

1, . . . , 4 refers to the region and the season to which the profile belongs. The profile

of the ensemble standard deviation are interpolated at the depth of the observations

and then averaged for all the data that fall into the 10 day forecast cycle grouping

by vertical levels.

In figure 5.5 we intercompare the different model vertical errors for the temperature.

A clear maximum is present at the depth of the upper thermocline. As the summer season

advances the mixed layer depth and the location of maximum temperature error deepens.
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Overall we observed a difference of 30 m in the position of the error maxima between June

and October.

The spread of the BHM and EOF underestimate the amplitude of the background

model error by an order of magnitude.

The BHM ensemble spread a structure of vertical error that mimics the behaviour of

the background model error. The EOFs spread presents a limited time variability since

the EOFs are only updated with a seasonal frequency and amplitude are underestimated

by a factor 20. The true variability of the EOF ensemble spread seems also shifted in

the with respect to the temperature misfit. During summer the RMS of misfits present

an intensification of the surface signal that does not appear in neither the BHM or EOF

spread.

The maximum amplitude of salinity misfit errors are recorded between September and

October. The salinity RMS of misfit has a constant maximum at sea surface. During

late summer and autumn we observe a vertical penetration of salinity error down to 50

m. Generally we observe salinity errors of 0.1 PSU down to 200 m. The BHM ensemble

spread amplitude is one order of magnitude less than the misfit error and the the highest

salinity spread is recorded in mid-September, in good agreement with the timing of the

maximum model error.The salinity EOF spread generated by the vertical EOFs has a

smaller amplitude than BHM but shows a vertical penetration that is comparable with

the salinity model error. The EOF spread does not show any surface intensified signal.
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Figure 5.5: a) RMS Temperature misfit [◦C] for the period May to December 2006. b)
Temperature BHM ensemble spread [◦C] for the same time period. c) Temperature EOF
ensemble spread [◦C]. See text for details.
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Figure 5.6: a) RMS Salinity misfit [psu] for the period May to December 2006. b) Salinity
BHM ensemble spread [psu] for the same time period. c) Salinity EOF ensemble spread
[psu]. See text for details.
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5.2.2 Likelihood estimates of vertical error covariances

Ensemble techniques are commonly used as a step in data assimilation ( see Ensemble

Kalman Filter [33] ) to approximate the time varying model error covariance matrix. In

this section we estimate the ability of the BHM ensemble to mimic the background model

error in theoretical framework. We compute the likelihood of the observed temperature

and salinity misfits for two prediction models that are different on the specification of the

error covariance matrix.

The likelihood model has a long history in statistics and it is mathematically optimal

in the sense that the estimates of parameters of calibration model that are fitted by

maximising likelihood are the most accurate possible ( Casella and Berger, 2002 [11] ).

The likelihood estimates are an intuitive way to compare stochastic predictions. In our

case we assume that the likelihood functions are Gaussian, then we write:

L =
1√

2π|Σ|
e−

1
2
(y−Hx)T(HΣHT)−1(y−Hx) (5.1)

where Σ is the covariance matrix, || is the determinant operator, y is the observed profile

of temperature or salinity or both, x is the temperature and salinity model vector and

H is the observational operator with dimension m × n where m is length of y and n the

dimension of the model vertical profile. The covariance matrix in the likelihood has been

projected in the observation space using the operator H.

Two covariance model were tested here:

• BHM Ensemble Covariance; given a set of m realisation of the model state vector

X = {X1, X2, . . . , Xm} we define the anomaly vector as X ′ = X − X, where X is

the ensemble mean. Then we compute the covariance matrix as:

ΣBHM =
1
m
X̃ ′kX̃

′T
k + σI (5.2)

where X̃k is a reconstruction of the anomaly state vector with a truncated number of

EOFs, we retain m−2 singular vectors. To ensure that the explained the covariance
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matrix is full rank we add a diagonal term that is scaled as:

σ = Tr(X ′X
′T −XkX

′T
k )/m (5.3)

where Tr is the trace. Since the MFS assimilation scheme implements a separation

of vertical and horizontal components of the error covariance matrix, we evaluate a

vertical covariance matrix locally at each point on the horizontal plane.

• Covariance; given the set of EOF U used by the operational assimilation scheme we

write:

ΣEOF = UΛ2UT + τI (5.4)

where U are the vertical temperature and salinity EOFs, Λ is the eigenvalue matrix

and τ is a scaling factor that represents the unresolved variance and ensures the

matrix is full rank. For each season and each region there is a set of 20 EOFs.

Then the EOF covariance model is build according to the position and time of the

observed data.

The validation experiment worked in the following way. For each ensemble cycle we

collected all the temperature and salinity profiles y = {y1, y2, . . . yN} and their model

counterparts x = {x1, x2, . . . , xN} at the nearest grid point. The total likelihood is defined

as:

Ltotal =
T∏
i=1

Ni∏
j=1

Li (5.5)

where Li was defined in equation 5.1 and the index i spans the N = 36 ensemble forecast

cycles and j the number of the available profile of temperature and salinity. For practical

reasons, instead of maximising the product of the likelihood, we will minimise the sum of

negative likelihood logarithm.

As we discussed in the previous section both the ensemble spread and the EOFs un-
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derestimate the expected model error, see figure 5.5 and 5.6. Then we can isolate two

separate problem; what is the best scaling factor for the covariances matrices and which

covariance model better reproduces the structure of the background errors.

Figure 5.7 the negative log likelihood for BHM and EOF covariance models as a func-

tion of a scaling factor α . The minimum of the likelihood functions is reached between

15 and 20 confirming the substantial underestimation of the model error that affect the

two estimates.

The probability gain can be defined as the difference between the likelihood of the

stochastic estimates:

PG = LBHM − LEOF (5.6)

Figure 5.8 shows the sign of the probability gain for the 36 forecast cycles for each of the

13 regions of the Mediterranean Sea. The probability gain is computed comparing LBHM

and LEOF at the local minimum of the likelihood function with respect to the scaling

factor α. The error covariance matrix derived from the ocean ensemble is generally a

better estimate of the model error than the EOFs. From mid August to mid October in

almost all regions the BHM covariance performs better, while during late spring is the

EOF model that wins in the western regions ( add region map ).
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Figure 5.7: Negative Log Likelihood as a function of the α scaling coefficient for BHM
and EOF covariance matrices computed for the period August to December 2006. The
minimum of the function indicates the optimal value for α.
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Figure 5.8: Upper panel: the 13 Mediterranean regions. Lower panel: Probability gain
divided in the 13 region of the Mediterranean Sea. Red boxes BHM wins, grey boxes EOF
wins.
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5.3 Sea Level Anomaly forecast errors

The SLA data used by MFS are along track measurement from two satellite missions:

Jason 1 and Geosat Follow On (GFO). The SLA data are post-processed in order to

provide a homogenous and inter-calibrated data set; the global crossover calibration is

described by La Traon 1995 ( [47]) and La Traon et Ogero ( 1998 [50] ). The data set is

also corrected to account for inverse barotropic and tidal effects and for the signal due to

tropospheric and ionospheric contamination ( Le Traon and Gauzelin [48] ). The along

track data then are re-sampled at 7 km resolution and a 7 year SSH mean ( corresponding

to the period 1993-1997 ) is removed to provide Sea Level Anomaly (SLA) data.

The SLA model values are computed with reference to a mean dynamic topography

level that was calculated by Rio et al. ( 2007 [81] ) on the basis of a ocean general circula-

tion model simulation for the period 1993-1997 corrected by surface velocity observations

by drifter and SLA satellite measurements.

The normalised time series of basin averaged misfit errors and BHM ensemble spread

are shown in figure 5.9. The mean value of misfit errors is 5.4 ± 0.7133 [cm], while the

mean ensemble spread is one order of magnitude less being 0.3672 ± 0.0983 [cm]. The

time series of misfit errors and ensemble spread have a correlation coefficient of 0.37. The

maximum of the ensemble spread time series is reached between August and September,

while the maximum misfit error is observed between November and December.

5.3.1 Estimates of horizontal error covariances

In order to evaluate the spatial patterns of the ensemble spread and misfit errors we

divided the re-forecast experiment in three parts; April to June, July to September and

October to December. For each of the period we computed the average SSH model field,

the mean ensemble spread, the mean Kinetic Energy derived from geostrophic velocities

and the mean misfit between model and satellite SLA.
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Figure 5.9: Time Series of normalised background model error ( dark solid line ) and
ensemble spread ( red dashed line ) for SLA. The normalisation of the time series is
computed subtracting the mean and dividing by standard deviation; mean spread 0.3672±
0.0983[cm] , mean error 5.4± 0.7133[cm]
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The averages are performed on the prediction fields using the last 7 days of the forecast

window. We skipped the first 3 days of forecast to avoid double-counting of the overlapping

days between two consecutive forecast cycles.

In figure 5.10, 5.11 and 5.12 we show that the SSH ensemble spread is mostly con-

centrated in the Western basin, Ionian and Aegean Sea. The Tyrrhenian, the Adriatic

Sea and large portion of the Levantine basin show a low ensemble variability. The maxi-

mum amplitude in the ensemble spread is reached in summer between July and September

where maximum spread was also observed in temperature and salinity.

From April to June the maximum ensemble spread is found in the Alborean Sea and

along the Algerian Current that are well-known regions of meso-scale activity; panel c

of figure 5.10 shows that the regions of maximum ensemble spread are also interested by

high values of KE. However the correlation between spread and KE do not extend to the

Eastern basin.

The along track misfit errors are plotted in panel d of figure 5.10; we consider the sub-

sample of satellite data that were also used by the assimilation scheme in order to have a

reference for the amplitude of model error. We observe up to 11 cm of rms between model

and satellite SLA; we consider significant any misfits grater then 2-3 cm that is taken as

the reference measurement error. Maximum errors are found in the Western basin along

circulation structures that also show larger ensemble variance, while the Levantine basin

presents generally lower error and ensemble variance.

During the summer the maximum KE patterns are associated with jet-currents. The

most energetic structures include the Liguro-Provencal and the Algerian Current, a large

KE signal is observed in the gyres of the Alborean Sea and along the western coast of

Sardinia, see panel a and c of figure 5.11. The maximum ensemble spread is found in

the northern part of the Gulf of Lion gyre, where the Liguro-Provencal current detaches

from the coast. However the high ensemble spread region covers almost uniformly the

northern part of the Western basin suggesting that the ocean spread is generated by a

differential breaking of summer stratification produced by stochastic BHM winds. The

satellite data indicate that the regions of maximum model errors are in good agreement
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with the patterns of high ensemble spread; the major difference is found in the eddy field

of the Algerian Current that shows large model error but weak ensemble spread. In the

Levantine basin we observe an intensification of jet currents like the Mid-Mediterranean

Jet and the Asia Minor Current flowing along the southern coast of Turkey; also the

Ierapetra Gyre appears to be intensified with respect to the previous months ( see panel

a and c of figure 5.11 ). None of this structures are found in the ensemble spread that

appears to be weak in all the Eastern basin. The model error appears to be un-correlated

to the ensemble spread.

The third period of the analysis present similar SSH and KE patterns to the previous

months, see panel a and c of figure 5.12. Again the Eastern Mediterranean present a weak

signal in the ensemble spread suggesting the BHM winds are not an effective perturba-

tion of the Levantine basin dynamics. High values of model errors are found within the

Ierapetra Gyre that is totally absent in the ensemble spread map.

The results of the comparison between background model error and ensemble spread

are less intuitive than what the vertical errors for temperature and salinity. In the previous

section we showed that the vertical structure of the ensemble spread is a good representa-

tion of misfit model errors, showing better skills than EOFs in a likelihood sense. For the

SLA spread we can not draw a similar conclusion; in fact a further complication is present

due to the uncertainty on the mean dynamic topography (Dobricic et al 2005 [26]).

5.4 Summary

In this Chapter we presented an analysis of the relation between misfit errors and ensemble

spread. A large set of observation of temperature, salinity and SLA was used to evaluate

the misfit errors and their seasonal variations.

The analysis of temperature and salinity profiles showed interesting similarity between

the BHM vertical ensemble spread and the misfit error structure. In particular the BHM

spread reproduces the deepening of maximum temperature error that is related to the

depth of the thermocline. In the contest of an Optimal Interpolation scheme we suggest
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that the ocean spread generated by BHM winds can be used to prescribe the error covari-

ance matrix and its temporal evolution; this idea was tested on a theoretical framework

computing the likelihood of the observed misfit using two error covariance matrices; the

covariance matrix derived from the 10 BHM ocean members and the covariance matrix

built using the EOF currently used in the MFS assimilation scheme. Overall the BHM

ensemble provides a better representation of background model error than the EOF.

The results of the SLA comparison shows that the BHM ensemble spread generally fails

to represent the areas of maximum misfit errors in particular in the Levantine basin. The

presence of strong biases in the estimation of background error due to the uncertainty in

mean dynamic topography field only partially explain the observed results. The horizontal

covariance structure of the model error seems not be easily represented. It is useful to

remind that the MFS assimilation scheme uses Gaussian homogeneous functions that

depends only on the distance between points. The ensemble spread seems at this point

not capable to give a better estimates of the horizontal model errors.
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Chapter 6

Conclusions and Future Directions

In this work we presented a new methodology for ocean ensemble forecasting. The novelty

consists in the derivation of an “objective” method to represent the uncertainty of the

winds at the sea surface. Using a Bayesian approach in a similar contest to the work

of Royle et al. (1999 [83]) and Berliner and Wikle 2007 ( [6] ) we derive a Bayesian

Hierarchical Model (BHM) to represent the full posterior distribution of the wind forcing

given the available data ( see Chapter 3 ). The BHM proved to be able to effectively meld

the ECWMF winds with high-resolution scatterometer observations. The final BHM wind

product is i) well anchored to the mean atmospheric flow that is depicted by ECMWF

and ii) represents the uncertainty of the wind forcing at the small spatial scales that are

unresolved by state of the art Numerical Weather Prediction systems.

The posterior distribution of the wind field derived from a BHM has been sampled to

force an ensemble of ocean forecast (Chapter 3). The BHM winds generate an ocean initial

condition perturbation that is constrained by the assimilation of in-situ ocean data and

that concentrates the ocean uncertainty in the eddy field. The differential Ekman pumping

that is produced by the BHM winds produces modification in the vertical stratification of

the water column. Marshall et al. (2002 [59] ) suggested that the restoring force that is

exited by vertical advection is the baroclinic instability . Then BHM wind perturbation,

acting on the vertical stratification of the fluid, is able to generate a large ocean ensemble

variability even in the short time scale of the forecast.
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The relation between ensemble variance and forecast error has been studied in the

last part of this work ( Chapter 5 ). The results of the analysis of temperature and

salinity data are encouraging and indicate that the forecast error is likely to be larger

where the ocean ensemble variability is stronger. We tested this hypothesis in a likelihood

sense and we concluded that the BHM ensemble provides a better representation of model

background error than the statistics that are currently used in the assimilation scheme of

the Mediterranean Forecasting System. However a similar conclusion can not be drawn

for the horizontal structure of background model error.

Numerous directions of development are left open. In particular we identify in the

integration between data assimilation and ensemble forecast the added value of this work

that need to be further expanded. The Bayesian sequential filtering reduces the data

assimilation step to the identification of the weights to be associated with the members

of an ensemble forecast. This technique is extremely power since it does not require any

assumption of normality and linearity but it is prohibitive in high-dimensional problems.

However the introduction of new sampling schemes ( Merwe et al. 2000[60], Andrieu et

al. 2003 [2] and Berliner and Wikle 2007 [6] ) and the increased computational power that

is provided by sharing computation network such the Grid provide the theoretical and

technical framework to develop new high-dimensional Monte Carlo applications.
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Appendix A

Full Conditional A1-E1

In this appendix we present the formulation of the full conditional distributions that enter
the Gibbs sampler for the BHM version A1-E1. The Gibbs sampler can be implemented
following the pseudo-code presented in section 2.5.3. See Chapter 3 for a description of
all the random variables that enter the full conditional distributions.

1. Full conditional for U

[U t|·] ∝ [St|U t, σ2
s ][At|U t, σ2

a]
[U t|P t, θux, θuy, σ2

u]

the full conditional for U is a normal distribution:

[U t|·] ∼ N(A−1B,A−1)

where:

A = K ′sKs/σ
2
s +K ′aKa/σ

2
a + I/σ2

u

B = St
′

uKs/σ
2
s +At

′

uKa/σ
2
a

+(θuxDxP
t + θuyDyP

t)′/σ2
u

2. Full conditional for V

[V t|·] ∝ [St|V t, σ2
s ][At|V t, σ2

a]
[V t|P t, θvx, θvy, σ2

v ]

the full conditional for V is a normal distribution:

[V t|·] ∼ N(A−1B,A−1)

where:

A = K ′sKs/σ
2
s +K ′aKa/σ

2
a + I/σ2

v

B = St
′

v Ks/σ
2
s +At

′

vKa/σ
2
a

+(θvxDxP
t + θvyDyP

tDy)′/σ2
v
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3. Full Conditional for α

[αt|·] ∝ [Atp|Kp(µ+ Φαt), σ2
ap]

[U t|µ+ Φαt, θux, θuy, σ2
u]

[V t|µ+ Φαt, θvx, θvy, σ2
v ]

[αt|λ]

the full conditional for α is a normal distribution:

[α|·] ∼ N(A−1B,A−1)

where:

A = Φ′K ′pKpΦ/σ2
ap + Φ′(θuxDx + θuyDy)′(θuxDx + θuyDy)Φ/σ2

u +

Φ′(θvxDx + θvyDy)′(θvxDx + θvyDy)Φ/σ2
v + Λ−1

b = (Atp −Kpµ)′KpΦ/σ2
ap +

(U t − (θuxDx + θuyDy)µ)′(θuxDx + θuyDy)Φ/σ2
u +

(V t − (θvxDx + θvyDy)µ)′(θvxDx + θvyDy)Φ/σ2
v

4. Full conditioanl for λi

[λi|·] ∝
T∏
t=1

([αt|Λ])[λi]

the full conditional for λi is an Inverse Gamma:

[λi|·] ∼ IG(ξ, r)

where:

ξ =
T

2
+ ξprior

r =
1

rprior
+

1
2

T∑
t=1

(αti)
2

5. Full Conditional for σ2
u

[σ2
u|·] ∝

T∏
t=1

([U t|P t, θux, θuy, σ2
u])[σ2

u]

the full conditional for σ2
u is an Inverse Gamma:

[σ2
u|·] ∼ IG(ξ, r)
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ξ =
kT + L

2
+ ξprior

r =
1

rprior
+
T+L∑
t=1

(U t − (θuxDxP
t + θuyDyP

t)′

(U t − (θuxDxP
t + θuyDyP

t)

6. Full Conditional for σ2
v

[σ2
v |·] ∝

T∏
t=1

([V t|P t, θvx, θvy, σ2
v ])[σ2

v ]

the full conditional for σ2
u is an Inverse Gamma:

[σ2
v |·] ∼ IG(ξ, r)

ξ =
kT + L

2
+ ξprior

r =
1

rprior
+
T+L∑
t=1

(V t − (θvxDxP
t + θvyDyP

t)′

(V t − (θvxDxP
t + θvyDyP

t)

7. Full Conditional for σ2
ap

[σ2
ap|·] ∼ IG(ξ, r)

the full conditional for σ2
u is an Inverse Gamma:

[σ2
ap|·] ∼ IG(ξ, r)

where:

ξ =
kT + L

2
+ ξprior

r =
1

rprior
+
T+L∑
t=1

(Atp −KpP
t)

8. Full Conditional for θux

[θux|· ∝
T∏
t=1

([U t|P t, θux, θuy, σ2
u])[θux|µθux

, σ2
θux

]

the full conditional for θux is a Normal Distribution:

[θux|·] ∼ N(A−1B,A−1)
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where:

A =
T∑
t=1

(P t
′
D′xDxP

t)/σ2
u + 1/σ2

θux

b =
T∑
t=1

((U t − θuyD′yP t)′DxP
t)/σ2

u + µθux/σ
2
θux

9. Full Conditional for θuy

[θuy|· ∝
T∏
t=1

([U t|P t, θux, θuy, σ2
u])[θuy|µθuy , σ

2
θuy

]

the full conditional for θuy is a Normal Distribution:

[θuy|·] ∼ N(A−1B,A−1)

where:

A =
T∑
t=1

(P t
′
D′yDyP

t)/σ2
u + 1/σ2

θuy

b =
T∑
t=1

((U t − θuxD′xP t)′DyP
t)/σ2

u + µθuy/σ
2
θuy

10. Full Conditional for θvx

[θvx|· ∝
T∏
t=1

([V t|P t, θvx, θvy, σ2
v ])[θvx|µθvx

, σ2
θvx

]

the full conditional for θvx is a Normal Distribution:

[θvx|·] ∼ N(A−1B,A−1)

where:

A =
T∑
t=1

(P t
′
D′xDxP

t)/σ2
v + 1/σ2

θvx

b =
T∑
t=1

((V t − θvyD′yP t)′DxP
t)/σ2

v + µθvx
/σ2

θvx

11. Full Conditional for θvy

[θvy|· ∝
T∏
t=1

([V t|P t, θvx, θvy, σ2
v ])[θvy|µθvy

, σ2
θvy

]

the full conditional for θvy is a Normal Distribution:

[θvy|·] ∼ N(A−1B,A−1)
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where:

A =
T∑
t=1

(P t
′
D′yDyP

t)/σ2
v + 1/σ2

θvy

b =
T∑
t=1

((V t − θvxD′xP t)′DyP
t)/σ2

v + µθvy/σ
2
θvy
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Appendix B

Ocean model set-ups and data
assimilation scheme

B.1 Model Equation

The Navier Stokes equations and a non-linear equation of state are used to describe the
ocean dynamics. In order to make the problem treatable we adopt the following assump-
tion:

• Buissinesq approximation: density variation are considered only for their contribu-
tion to the buoyancy force

• hydrostatic hypothesis: the vertical velocity equation is reduced to a balance between
buoyancy force and pressure gradient

• the geopotential surfaces are assumed to be spheres and the gravity field is assumed
parallel to the earth’s radius, then the equation are written in spherical coordinate
(λ, φ, z) where λ is longitude, φ latitude and z is depth

• thin-shell approximation: the ocean depth is neglectable compared to the earth
radius

• turbolent closure approximation: the small scale processes like turbolent fluxes are
expressed in terms of the large-scale dynamics.

• incompressibility approximation: the divergence of the velocity vector is assumed to
be zero.

The momentum equations for the zonal and meridional velocity components u and v,
the hydrostatic equation for pressure p, the continuity equation, the conservation equation
for potential temperature T and salinity S and the state equation for density ρ define a set
of 7 equations that together with their boundary conditions describe the ocean dynamic.
Those equation are analytically written as:

∂u

∂t
= (ζ + f)v − w∂u

∂z
− 1

2 a cosφ
∂

∂λ
(u2 + v2) (B.1)

− 1
ρ0 a cosφ

∂p

∂λ
−Alm∇4u+

∂

∂z
(Avm

∂u

∂z
)
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∂v

∂t
= −(ζ + f)u− w∂v

∂z
− 1

2 a
∂

∂φ
(u2 + v2) (B.2)

− 1
ρ0 a

∂p

∂φ
−Alm∇4v +

∂

∂z
(Avm

∂v

∂z
)

∂v

∂t
= −ρg (B.3)

1
a cosφ

(∂u
∂λ

+
∂

∂φ
[cos φv]

)
+
∂w

∂z
= 0 (B.4)

∂T

∂t
= − 1

a cosφ

[ ∂
∂λ

(Tu) +
∂

∂φ
(cos φTv)

]
− ∂

∂z
(Tw) (B.5)

− AlT∇4T +AvT
∂2T

∂z2

∂S

∂t
= − 1

a cosφ

[ ∂
∂λ

(Su) +
∂

∂φ
(cos φSv)

]
− ∂

∂z
(Sw) (B.6)

− AlS∇4S +AvS
∂2S

∂z2

ρ = ρ(T, S, p) (B.7)

where a is the earth radius; f = 2 Ω sinφ is the Coriolis term with constant earth
radius rate Ω; ρ0 is the reference density. In equation B.1 and B.2, that are here written in
their vorticity form ( see Pedlosky 1987 [72] ), the terms Alm and Avm are the horizontal
and vertical eddy viscosity and ζ is the vorticity and it is defined as:

ζ =
1

a cosφ

(∂v
∂λ
− ∂

∂φ
(u cosφ)

)
In equation B.5 and B.6 the terms AvT , AvS and AlT , AlS are the vertical and horizontal
diffusivity for the temperature and salinity tracers.

The ocean model OPA version 8.2 described in Madec et al. ( 1998 [56]) discretizes
equation B.1 to B.7. Here we use the free-surface implementation; in the following η stands
for sea surface height and it is a prognostic variable.

B.2 Boundary and Initial Conditions

The depth of the ocean bottom z = −H(λ, φ), the sea surface height z = η(λ, φ, t) and
the coastlines define the ocean boundaries. Since this work deals with wind perturbations
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we will concentrate on the description of the air-sea interaction, namely the boundary
conditions at z = η.

The surface boundary condition for momentum is:

Avm
∂uh

∂z
|z=η =

τ

ρ0

where τ = (τu, τv) represents the zonal and meridional wind stress components and uh =
(u,v). The wind stresses are derived from wind at 10 m height U10 = (U10,V10) following
the bulk aerodynamic formula suggested by Smith (1980 [86]):

τ = ρaCD|U10|U10

where ρa is the air density and CD is the drag coefficient that is derived using the Heller-
mann and Rosenstein approximation [39] that relates the drag coefficient to the wind speed
and the air-sea temperature difference.

The boundary condition for heat flux is:

AvT
∂T

∂z
|z=0 =

Q

ρ0Cp

where Cp [J/kg/◦K] is the ocean heat capacity constant and Q [W/m2] is the heat budget
and consists of the solar radiation flux QS minus the net long-wave radiation flux QB,
the latent heat flux QE and the sensible heat flux QH . The details of the heat fluxes pa-
rameterization are described in Castellari et al. ( 1998 [12]). The heat fluxes are affected
by wind perturbation through two processes; wind speed is an input in the parameteriza-
tion scheme of sensible and latent heat; variations of sea surface temperature due to wind
driven circulation affect the parameterization schemes of sensible and latent heat and the
net outgoing long-wave flux.

The water flux boundary condition states that a particle of water can enter or escape
the sea surface only through precipitation or evaporation:

w =
Dη

Dt
− (E − P )

P and E are precipitation and evaporation; D is the total derivative D
Dt = ∂

∂t + uh · ∇.
The salinity boundary condition is coupled to the water flux by the E − P term:

ρ0A
vS ∂S

∂z
|z=0 = (E − P )Sz=0ρ0

where Sz=0 is the model surface salinity.
The unreliability of precipitation data over the oceans has led to alternative formulation

of the surface fluxes dependent on evaporation and precipitation . A Newtonian relaxation
to monthly mean salinity S∗ has been used to replace E − P :

E − P =
1
ρ0γ

S − S∗

S

where γ [m2s/kg] is the salinity relaxation term that defines the strength of the constraint.
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At the ocean bottom there is an insulating condition for heat and salt. The vertical
boundary condition for momentum is a function of a drag coefficient and it takes in
consideration the effect of eddy kinetic energy due to tides. The bottom flow is required
to obey the no-normal flow condition. The lateral boundary condition is no-slip with
insulating walls for heat and salt.

The initial condition for the ocean simulation are taken from existing analysis field
produced by MFS.

B.3 Sub grid scale parametrization

The vertical mixing coefficient is parametrized as a function of the Richardson number
using the Pakanowsky and Philander-PP ( 1981 [71]) scheme:

AvT =
10−2

(1 + 5(N2/(∂U/∂z)2))2
+ (1.5× 10−4)

Avm =
AvT

(1 + 5(N2/(∂U/∂z)2))2
+ (3× 10−4)

The horizontal eddy viscosity Alm and diffusivities AlT , AlS are set constants.

B.4 Model Implementations

Two different set ups of OPA Ocean General Circulation Model (OGCM) were used in
this study:

• MFS1671: it is the operational model used within MFS project. It has 72 vertical
levels and a horizontal resolution of 1/16 X 1/16 degrees. The model domain covers
the Mediterranean Sea and a portion of the Atlantic ocean, see panel a of figure
B.1. The coastlines resolves 49 islands and the bathymetry was derived from Digital
Bathymetric Data Base. The lateral boundary of the model in the Atlantic box
are closed and the model fields in proximity of the boundary are relaxed toward
climatology at all depths ( see Tonani et al. [91] for details on the sponge layer).
A climatological wind forcing is applied in the Atlantic box region. The horizontal
eddy viscosity and diffusivity are set to 5× 109[m4/s] and 3× 109[m4s] respectively.

• MFS471: it is a low resolution set up expecially developed to decrease the amount of
computational resources needed for a single integration. It has 72 vertical levels and
an horizontal resulution of 1/4 X 1/4 degrees. The geographical domain covered by
the MFS471 implementation includes a smaller Atlantic Box that extends to 9.5W,
see panel b of figure B.1. In the Atlandic box the model fields are relaxed toward
climatology and forcing is switched off. The coastlines resolves 6 islands and the
bathymetry has been interpolated from the MFS1671 bathymetry. The horizontal
eddy viscosity and diffusivity are set to 5×1010[m4/s] and 3×1010[m4/s] respectively.

Both models were coupled with the MFS operational assimilation scheme.
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Figure B.1: a) MFS1671 bathymetry and domain MFS1671 [m]. b) same for MFS471.
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B.5 Assimilation Scheme

The MFS applies a multivariate optimal interpolation scheme that is based on the System
for Ocean Forecasting and Analysis (SOFA) that was originally developed by De Mey and
Benkiran (2002 [23]). The initial set up for the Mediterranean is described in Demirov et
al. (2003 [25]), while further development where introduced by the work of Dobricic et al.
(2005 [26] ).

The optimal interpolation scheme is an approximation of the Kalman filter ( Kalman
1960 [41] ) where the time evolving error covariance matrix is replaced by a background
error covariance matrix. The analysis are estimated correcting the background model
fields xb with increments that depends on available observations y. This can be written
as:

xa = xb +K[y−H(xb)]
K = BHT (HBHT +R)−1

where xa is the analysis field and H is a non-linear observational operator that move the
model state vector to the observations. The matrix K is known as Kalman Gain and it
is defined by a linear combination of the background error covarinace B, the linearized
observational operator H and the observational error covariance R. The insertion of an
observation y will impact the state vector xb according to the distance between observation
and the model grid points and the multivariate correlations. The information necessary
to perform these two tasks are contained in the error covariance matrix. To explain this
we look at the increment part of the assimilation scheme:

δw = BHT (HBHT +R)−1 d

all the terms (HBHT + R)−1d are defined in the observation space; the misfit d = (y −
H (xb)) is weighed by the measurement error and by the model covariance reduced by
the observational operator H and its adjoint HT to the observation location and kind.
Assume that d is a scalar temperature misfit, then the H operator and its adjoint HT

reduces HBHT to a scalar that retains only the variance of model temperature on the
required position. The correction c = (σ2

b + σ2
r )
−1 d is then defined by the misfit and the

amplitude of model and observation variance. The term HT move the correction back to
the model grid points that are directly interested by the observation and then the matrix
B expand the increments in space and on the other variables of the model state vector.
This is the only mechanism by which information can be transferred from observed to the
unobserved variables ( Ricci et al. 2004 [80]).

B.6 The background error covariance matrix

In SOFA the error covariance matrix is seperated in horizontal and vertical components:

B = STBrS
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where S contains the vertical multivariate error covariances that are represented by Em-
pirical Orthogonal Functions (EOFs) , and Br is defined as:

Br = Λ1/2CΛ1/2

where C are the horizontal covariances modelled as Gaussian function of distance and Λ
are the eigenvalues of the vertical EOFs. The Empirical Orthogonal Functions analysis,
also known as the Principal Components analysis, is a widely used tool in atmospheric
sciences and oceanography (Lorentz 1956 [52], 1998 Preisendorfer [78],Sparnocchia et al.
2003 [87] and many others) . This method is commonly used to reduce the dimension of
the problem and to transform interdependent coordinates into significant and independent
patterns ( De Mey and Benkiran 2002 [23]).

B.7 Vertical EOF

The fundamental assumption underneath the computation of the vertical structure of the
background error covariance matrix is that the variability of the model field in a long
simulation is a statistical representation of the model error. This approach is alternative
to the usage of misfit between in-situ data and model fields that was at basis of the work
of Sparnocchia et al. ( 2003 [87] ). The usage of model simulation presents the advantage
that all the cross-covariance between variable of the state vector can be estimated, where
in-situ data allow only the estimation of temperature and salinity covariances in a limited
set of locations in the basin where CTD or ARGO profile are available.

Given the separation between vertical and horizontal scales it would be sufficient to
specify a single vertical structure of the background covariance matrix and apply it to
whole basin. However given the high variability of the water masses of the Mediterranean
Sea this approach prove to be ineffective. Separate sets of EOFs were computed for 13
regions of the Mediterranean Sea on the basis of a model simulation ranging from 1993
to 1999. Each EOF is multivariate and was build from a singular value decomposition of
the matrix X = {x1, . . . ,xN} whose column are the multivariate vertical state vector for
each point of the model grid belonging to a certain region. For instance the column k is:

xk =
[δη
ση
,
δψ

σψ
,
δT1

σT
, . . . ,

δTn
σT

,
δS1

σS
, . . . ,

δSn
σS

]T
were η is the sea surface height, ψ is the stream function, T1, . . . , Tn are temperature values
along the vertical profiles and similarly for salinity S; δ indicates the difference between
the daily averaged field and the seasonal mean the anomaly and the standard deviation
σ is used here to non-dimensionalize the state vector. An additional scaling factor was
applied to accounts for geometric considerations; for a detailed description of the method
see Dobricic et al. 2005 [26]. The stream function φ was diagnostically computed from
the barotropic velocity.

The OI scheme relies on the specification of a background covariance matrix that is
constant in time, i.e the assimilation scheme do not evolve the error covariance according to
the insertion of data and the integration of the dynamical operator. Anyway the seasonal
variability was captured grouping the EOFs in blocks that accounts for the 4 seasons.
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Appendix C

A Grid application to ocean
ensemble forecasting

Here I present a review of the work I have co-authored ‘Very Large ensemble ocean fore-
casting experiment using the Grid computing infrastructure’ [74]. Some of the results that
were omitted in the paper for synthesis sake are presented here.

C.1 The ocean model and ensemble method

The model used in this experiment is a copy of the MFS operational system from July
2005. It is a MOM1.1 ocean model (1984 [18]) implemented in the Mediterranean at
1/8◦ × 1/8◦ resolution and 31 levels in vertical. Results from this model implementation
are described in Pinardi and Masetti ( 2000 [75]) and Demirov et al. ( 2003 [25]). The
model equations are the rigid-lid approximation to the primitive equations for oceanic
fluids. The ocean state variable that are forecasted are temperature, salinity, density,
pressure, three velocity components and sea level. The size of the problem in terms of
dimension of the state vector is somewhat like 107 and it is comparable in size to a coarse
resolution global ocean model. The atmospheric forcing is provided by the European
Centre for Medium-range Weather Forecast (ECMWF) at a resolution of half a degree.

A random perturbation scheme of the initial condition is used here to generate an
ensemble of ocean forecast. A detailed description of the scheme can be found in Chapter
3.

C.2 The Italian Grid Infrastructure

The ensemble experiment was carried out on a distributed computing network, the so-
called Grid ( Foster and Kesselman 1999 [35] ). This system is characterised by the
implementation of a Grid Production Framework that is oriented on large-scale resource
sharing and high performances applications, making this approach different from conven-
tional distribuited computing.

The institutions that participate in creating and maintaining the Grid infrastructure
are dived in abstract entities called Virtual Organisations (VO); each VO groups into the
same administrative domain users and resources.
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The Italian Grid infrastructure is made of 30 sites that are equipped with Computing
Elements (CE) formed by 10 to hundreds of nodes that are called Worker Node (WN).
Each CE also provide a disk-based storage service that is organised in Storage Elements
which capacity range from hundreds of gigabytes up to hundred of terabytes. The CEs
are the entry points of queues that are managed by Local Resources Management System
(LRMS). The jobs are submitted to the CEs by a Resource Broker (RB) to which the user
can connect through a User Interface (UI). The experiment described in this section were
run on a maximum number of 15 different sites.

C.3 Ensemble Forecast Experiment

A total of 67 ensemble forecast experiments have been carried out at different hours and
week days over a period of 20 days in order to test the Grid efficiency through its normal
workload cycle. No special arrangement has been made to the Grid configuration and
operation policies for this experiment. Each ensemble forecast experiment is designed
to launch 1000 jobs within a total time of five hours, after which the jobs are deleted
without paying any attention to their status. The ensemble forecast experiments were
done following a 3 phases procedure:

• Phase 1:

the model input files and the executable code are uploaded to the closest SE be-
longing to the INFN-CNAF CE in Bologna. Then the SE replicates these file to 15
sites that are distributed over the national territory. The input file replication avoid
the bottleneck due to multiple and simultaneous request from hundreds of WNs to
a single SE. This is a crucial point because we observed a significant percentage of
failures (up to 10%) that are due to unsuccessful copies of input files. The size of
files that are transferred is in the order 100 Mb.

• Phase 2:

the jobs are submitted to a INFN-CNAF RB that looks for the best available CE
to execute the jobs. The RB interrogates an Information Service that provide the
status of computational and storage resources and the File Catalogue that provide
information on the location of the required data. A quasi-parallel submission of 1000
jobs on the WNs is handled by the LRMS. The jobs are submitted only to the CEs
that belong to the same farm of the SE were the input file are located.

• Phase 3:

each time a job finished, a procedure for the downloading the model output files
is activated. Only a limited portion ( 1MB ) of the output file produced by the
ocean simulation is recovered. All the jobs that are still pending after 5 hours are
cancelled.

The wall-clock-time for 67 ensemble forecast experiments in shown in Figure C.1. The
results indicate that a minimum number of 200 jobs were finished in 2 hours and at
least 450 in five hours. The user can specify to the RB the requirements that need be
address in order to submit a job to a certain CE. In this experiment we imposed very
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Figure C.1: Numeber of member jobs successfully carried out from 67 ensemble experi-
ments launched on the Grid as a function of time. Each experiment is set to last maximum
5 hours and should run as much as 1000 jobs. The central black curve is the average.

generic constraint to ensure the largest usage of Grid CE and reasonable efficienty. We
requirement imposed were that at least a CPU is free on the CE and the time limit of
the queues is greater then 80 minutes. Figure C.2 shows how the jobs were distributed
on the Grid network. The large farmer T1 INFN sustained more then the 40 % of the
overall work load, but nevertheless the importance of all the other smaller CEs overcome
in importance the single contribution of the T1 farm.

The ensemble experiments never used more the 20% of the Grid computing resources.

C.4 Results

We present the results for one single experiment of the 67 produced, the forecast from
16 to 25 November 2005. In this analysis we concentrate on the Sea Surface Height
(SSH) field that is two-dimensional field ( small in term of data retrieving ) but it is
highly informative about ocean circulation since the horizontal gradients of SSH are in
balance with the geostrophic velocities. These consideration justified to working choice
to retrieve only the SSH field and discard the rest of the 3-dimensional model output.
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Figure C.2: Overall job distribution on the 20 Computing Elements of Italian Grid that
were used throughout the 67 experiments.

Since this experiment mainly concerns the technical aspects of using the GRID as a tool
for ensemble forecasting we presents only a limited analyses of the oceanographic results;
in particular we will be dealing with the ensemble spread that is defined as the standard
deviation of the ensemble members around their mean.

The initial perturbation is in the order of few tens of centimetres and it is homoge-
neously distributed in the deep part of the basin, see panel a of figure C.4. After ten day
of forecast the ensemble spread reaches values of several centimetres ( up to 4 cm , see
panel b of figure C.4 ) that are in agreement with the analysis error standard deviation
that was estimated to be 5 cm for a three year period ( Dobrici et al. 2005 [26] ). The
spatial distribution of ensemble standard deviation at the end of the 10 days of forecast
is limited in extent and it is concentrated along strong current jets, frontal structures and
eddy borders. While the initial perturbation do not present a connection to the dynam-
ical structure of circulation, the final ensemble spread is clearly connected to regions of
strong ocean dynamics. The areas where we observe a maximum growth of the initial
perturbations are thought to be the least predictable regions of the flow field.

Figure C.3 shows the growth of the ensemble standard deviation for areas having
different ensemble spread on the last day of the forecast. The growth of initial condition
perturbation is almost linear in all cases after the 2 day. Within the first day we observe
a fast growth of the ensemble standard deviation that is probably due to geostrophic
adjustment. The region with maximum perturbation growth account for less of 2% of the
total area of the Mediterranean Sea, where in the largest part of the domain we actually
observe a decrease of the amplitude of the initial signal.

The large computing power provided by the Grid allowed us to test the sensitivity of
the ensemble spread along with the size of the ensemble. Figure C.5 show the ensemble
standard deviation at the forecast end ( for the same experiment ) for three ensemble sizes;
10, 50 and 200 members. The fact that the experiment with 100 members is qualitatively
equal to the 1000 members case presented in figure C.4 indicates a clear saturation of the
ensemble variance after a few hundred members. Such number is clearly a function of the
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perturbation scheme and the ocean model but recent work on storm surge indicates a that
a few hundreds members would saturate the ensemble standard deviation ( Lamourou et
at. 2006 [43] ).

C.5 Discussion

In this experiment we have shown a large ensemble experiment carried out with a state of
the art operational forecasting system. The forecast was performed with a primitive equa-
tion, eddy permitting model. We showed that the ensemble variance saturates at roughly
200-300 members and that it concentrates in region of high dynamics of the Mediterranean
circulation that account for a small portion of the basin. All the consideration about the
relevance of this information in terms of model error and predictability are left to Chapter
3 and 4 of this thesis.

The major aim of this work was to demonstrated that a very large ocean ensemble
activity can be sustained by the Italian Grid in normal work-load conditions. Approxi-
mately 500 members can be executed in operational wall clock time, i.e. within 5 hours
after the submission of the first job.
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Figure C.3: The growth in amplitude of the standard deviation (std) for the 10 days
ensemble forecast experiment with 500 members. Different curves are averages done in
regions of figure C.4 with different std at day 10.
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Figure C.4: The amplitude and structure of the standard deviation at forecast day 1 (a)
and 10 (b) for sea surface height. The 500 members ensemble mean has been subtracted
and the units are cm.
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Figure C.5: The amplitude and structure of the standard deviation at forecast day 10 for
sea surface height computed with 10 members (a), 100 members (b) and 200 members (c).
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