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Use of real-time observations in an operational
ocean data assimilation system: the
Mediterranean case

N. Pinardi, C. Fratianni and M. Adani

20.1 INTRODUCTION

Real-time observations are essential for operational forecasting that in turn can be
used to predict changes of the state of the ocean and its associated biochemical fields.
In addition, real-time observations are useful to detect changes in the past with the
shortest delay, to standardize practices in data collection and to exchange data be-
tween remote regions of the ocean and seas. The drawback is that real-time observa-
tions could be less accurate chan their delayed mode counterparts due to the time
constraints for data dissemination. fn situ real-time data are usually decimated to be
transmitted in real time (loss of accuracy and resolution), whereas satellite dara are
corrected with approximate algorithms and less ancillary data. Delayed mode quality
control analysis increases the value of the observational data set, ﬂagging outliers and
producing climatological estimates of the state of the system. Thus real-time data,
together with a modelling system and the climatological estimates, can give also the
appropriate information for scientific studies and applications.

The principles of operational science started to develop in the 1940s and 1950s,
based on the combined use of real-time data and modelling systems that can extend
the information from observations in space and time. Operational science is based on
a sound knowledge of the dynamics and processes for the space/timescales of interest
and operational meteorology and oceanography have started to implement these prin-
ciples to weather and ocean forecasting.

In the past 20 years, operational meteorology has become a reality with a network of
in situ and satellite observations that has made the weather forecast capable of extend-
ing the theoretical limit of predictability of the atmosphere (only one-two days theoreti-
cally, now forecasts are useful for more than five days on average). Today meteorological
observations are mainly used in their assimilated form even if observations are still
collected for specific process-oriented studies. Recently the meteorological re-analysis
projects (Gibson et al., 1997; Kalnay et al., 1996) have released a wealth of data to be
understood and analysed. These data sets are coherent and approximately continuous
(daily), filling che observational gaps in space and time with a dynamical interpolation
scheme. The model and the real-time observations are fused in one best estimate of the
state of the system by data-assimilation techniques that have been developed to a great
dcgree of sophisticati()n in recent years (Lorenc, 2002). The rc—analysis data are now
forming, the basic reference data set to understand climate variability in the atmosphere
and upper oceans.
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Dynamical interpolation/extrapolation of observational data for operational
forecasting in the ocean began to be investigated at the beginning of the 1980s and the
first successful forecasts were carried out in the open ocean (Robinson and Leslie, 1985).
These exercises required real-time data that were initially collected with rapid ship sur-
veys realizing adaptive sampling schemes and collecting a combination of traditional
recoverable and expendable instruments (CTD, XBTs). At the same time but in a totally
independent way, shelf scale and coastal real-time data from moored and drifting sen-
sors such as meteorological buoys and sea-level stations started to be used for shelf scale
storm surge operational forecasting (Prandle, 2002). Operational oceanography is now
building on this experience and considers real-time measurements from opportunity
platforms and satellites in a manner very similar to operational meteorology.

This chapter aims to show the use of real-time observations in a state-of-the-art
ocean-predicting system realized in the Mediterranean. We discuss the pre-processing
schemes required to properly assimilate the observations into an operational nowcast-
ing/forecasting system, clucidate the role and impact of different observations in the
assimilation system and show the use of real-time data to evaluate the quality of the
modelling system.

We start with the description of the Mediterranean Forecasting System (MES)
real-time observing system and pre-processing quality control in Section 20.2, we then
describe the modelling and assimilation system in relation to the impact of different
real-time observations in Section 20.3. In Section 20.4 we evaluate the consistency,
quality and accuracy of the forecasting system using model-data intercomparison and
Section 20.5 offers conclusions.

20.2 REAL-TIME OBSERVING SYSTEM FOR OPERATIONAL
FORECASTING IN THE MEDITERRANEAN

Based on the earlier open ocean forecasting experience, a Mediterrancan Forecasting
System (MFS) began to be implemented in the Mediterranean basin, the topography
of which is reproduced in Figure 20.1. The average depth of the basin is 1,500 m and
in several regions we reach over 3,000 m. Thus the initial observing system was chosen
to be consistent with the main components of the Global Ocean Data Assimilation
Experiment (GODAE) observing system” (Smith and Lefevre, 1997).

The major elements are: (a) satellite remote sensing for sea surface height (SSH)
and sea surface temperature (SST); (b) voluntary observing ship (VOS) for tempera-
ture profiles (Rossby et al., 1995); (¢) moored buoy systems such as the TAO array
in the Pacific (McPhaden et al., 1995) but modified for the Mediterranean needs;
(d) subsurface drifting and profiling floats such as ARGO. In the Mediterranean all
these elements have been considered and implemented during the Pilot Project phase
of MES (Pinardi et al., 2003), with the exception of the ARGO Hoars that have been
implemented starting from October 2004, in the second phase of the MFS programme
(htep://www.bo.ingv.it/mfstep).

‘The design of the real-time observing system is based on knowledge of the large-
scale structure of the circulation. Figure 20.2 shows the simulated mean sea level from
1993 to 1999 with the operational Ocean General Circulation Model (OGCM) of
MES. The OGCM used is described in Pinardi et al. (2003), to which the interested
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Figure 20.1
Mediterranean bottom topography (1/60) in metres.

reader should refer for details. The basin scale circulation is characterized by large-scale
meridional SSH gradients that the observing system should sample. In addition, it is
composed of large-scale sub-basin scale gyres (cyclonic in the North and anticyclonic
in the south) that have intensified currents and open ocean jets at their borders. Most
of these sub-basin scale gyres have large amplitude variations at seasonal and interannual
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Figure 20.2

1993-99 average sea surface height (SSH) simulated by the MES
operational OGCM. The negative values correspond to SSH depressions
due to waters heavier than their surroundings; the positive values
correspond to warmer/fresher and lighter waters that ‘expand the water
column’.
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timescales (Korres et al., 2000; Molcard et al., 2002; Demirov and Pinardi, 2002) and
the large-scale observing system should resolve them.

Moreover, the primary productivity of the basin is low and inserts che Mediter-
ranean between the mid-latitude oligotrophic areas of the world oceans. This means
that coastal to open ocean gradients in primary productivity are large and chat the
open ocean regimes are characterized by a subsurface chlorophyll maximum. ‘Thus the
large-scale monitoring system should be able to monitor the open ocean biochemical
fluxes and this was initially decided to be done with the mooring system and the satel-
lite data (colour). In future, the multidisciplinary sensors will also be added o VOS
and subsurface autonomous vehicles, such as gliders.

In addition to oceanic data, the operational forecasting system requires real-time
atmospheric data sets from analyses and forecasts. This is an important data set and it
is also described in one of the following sections. The information content of all these
real-time data sets, and the quality control procedures and preprocessing needed before
these data can be inserted into the assimilation system, are described below.

20.2.1 Satellite data

Satellite SSH and SST data compose nowadays the basis for the real-time monitoring
of the open ocean and coastal areas. Even if the SSH data are not accurate enough
near the lateral boundaries of the tasin (data normally stop abour 20-30 km from the
coast), this data set is essential to initialize the internal flow field of local models and
give the correct open boundary conditions wherever necessary. SST instead is at high
resolution (1 km) and also high frequency (twice a day at least) and thus it is an impor-
tant component of the coastal and open ocean observing system.

Following Le Traon (2002) the altimetric signal can be decomposed into four parts:

SSH=N+n+2+ ¢, (20.1)

where Vis the geoid, 17 is the dynamic topography, X is the measurement errors (due to
orbit error, atmospheric corrections, etc.) and ¢ are the high-frequency components of sea
level due to tides and atmospheric surface pressure (sometimes a simple inverse barometer)
effects. We are interested in the 77 signal, which is connected to the wind and thermohaline
driven circulation. In this chapter we will assume that high-frequency effects are subtracted
before using the SSH data for assimilation. This choice is different in other parts of the
world ocean, where the high-frequency component of sea level can have very different am-
plitude. This makes it difficult to have a unique pre-processing scheme for altimetry, bur
several options should be made available to the operational community in the near future.

‘The dynamic topography contains the steric or baroclinic and barotropic signals, i.e.

0
1 1
H g o

H

0
J pdz (20.2)
O
where geostrophic balance has been assumed and the symbols are explained in the
footnote” (Pinardi et al., 1995). The first term on the right of (20.2) is the barotropic

""Symbols: p is the water density and p, its constant value, H is the bottom depth supposed to be constant,
fis the Coriolis parameter, g is the gravity acceleration, ¥ is the barotropic streamfunction in Sverdrup
;

“ - > ; = 1 . . . .
(10" Z~) defined as « = %Av *Vy and = — j idz" and R is the vertical unic vecror.
H
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Usc of real-time observations in an operational ocean data assimilation system

component while the last term is the bottom pressure. The integral in the middle term
is a ‘potential energy’ term, as defined by Mellor (1996), but we refer to it simply as the
baroclinic term.

The dynamic topography can be decomposed into a mean part 17, and the vari-
ability, indicated by 717 ‘and called sea level anomaly (SLA). Generally the geoid N is
not known with sufficient accuracy and it is then subtracted by taking the average of
the sea level along the tracks. This eliminates NV and the mean dynamic topography 77
from (20.1). Then only SLA observations are made available in real time and opera-
tionally. This is a major pre-processing of the SLA data, that requires the knowledgc of
the long-term mean of SSH along satellite tracks. Such mean contains both the geoid
and the mean dynamic topography and it is not possible to distinguish between them.
Only the addition of information from independent satellites, such as GOCE and
GRACE (Le Traon, 2002) that measure independently the marine geoid, will allow
the estimation of the mean dynamic topography from satellite observations. Several
attempts have been made in the past, using mainly large-scale geoid models and 77 situ
data but they are far from having enough accuracy to be used in real-time estimation of
along track SSH for assimilation into dynamical models. Thus in operational systems,
the real-time satellite altimetry data are given in terms of SLA, with or without the
high-frequency component, @, subtracted.

Two pre-operational satellites were working for the past 10 years, Topex/Poseidon
and ERS-2, and they covered the Mediterranean quite extensively (Figure 20.3). For
the Mediterrancan, the geoid and mean dynamic topography was calculated from the
average of along track SSH for the period 1993-99. SLA is then released weekly with
an estimate of the orbit error since the value of ~ depends above all on the precision
of the satellite orbit computation and this requires environmental ancillary data chat
are not available in real time (L¢ Traon and Ogor, 1998). It has been shown that the
accuracy of real-time SLA and delayed mode data is now comparable (Buongiorno
et al., 2003).

The SLA signal described by (20.2) contains the large-scale, slowly moving
components of the sea level, also called the geostrophic components of the sea
level. These components are mainly due to the seasonal thermohaline changes,
in turn due to air/sea buoyancy fluxes and their penetration in the water col-
umn. The baroclinic signals due to the air/sea physics (also momentum fluxes
due to wind stress) are strongly modulated by the mesoscale eddy field and the

-5 0 5 10 15 20 25 30 35

Figure 20.3
Topex/Poseidon and ERS-2 superimposed tracks with respectively
10- and 35-day repeating cycles, 2002.
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Figure 20.4

Schematic of the vertical displacement that correlates the surface elevation
with the isopycnal displacements (§4).
Source: Redrawn from Haines (2002).

sub-basin scale gyres that compose the Mediterranean Sea circulation structures
(Pinardi and Masetti, 2000). The barotropic signals are mainly wind driven and
they couple with the baroclinic effect at the eddy ficld space scales. Assimilating
SLA in a general circulation model, as described below, means that the model
should be corrected for this slowly moving component of the sea level. The typical
geostrophic relationship ac these time and space scales is that SLA is high where

subsurface temperature is also high, and vice versa. This means that the slope of

isotherms and SLA have an opposite sign. Haines (2002) showed this concept with
the diagram reproduced in Figure 20.4 where the surface elevation is correlated
with isopycnal depths (54).

Mellor and Ezer (1991) demonstrated for the first time that Sl A described by
(20.2) is strongly correlated to the thermocline depth in the Atlantic subtropical gyre
and Masina et al. (2001) showed that this is true also for the tropical regions of the
ocean. This means that this information should be used for insertion of the data
into an assimilation system. As seen from (20.2) all components of SLA are integral
quantities and assimilation should correlate the SLA signal with the model state vari-
ables, in particular temperature and salinicy profiles, either through the observational
operator /, described in the next sections, or with statistical correlations contained
in the background error covariance matrix. ‘The SLA for short-term forecasts is then
the integrated effect on the geostrophic timescales (approx. two to three days for the
Mediterranean) of thermocline displacements due to mesoscale or sub-basin scale
gyre variability.

‘The other real-time satellite data set thac is important for assimilation into fore-
casting models is the sea surface temperature (SST). This is the oldest real-time data
set available but pre-processing algorithms for the space radiometer signal are under
continuous development. The algorithms for SST retrieval from radiances use infor-
mation from in situ temperatures to calibrate the parameters of the algorithm itself,
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Use of real-time observations in an operational ocean data assimilation system

The most used sensor is AVHRR (Advanced Very High Resolution Radiometer), lown
by NOAA satellites, and the best algorichm both for the Mediterranean and the world
ocean is now the Pathfinder algorithm.” The algorithms can be applied rapidly to
night time and daytime images but the latter are more of a problem as sun glicter ef-
fects and high humidity in the air layer adjacent to the sea surface, especially in the
Mediterranean, can affect the SST signal received by the radiometer. A new project,
the Global High Resolution Sea Surface Temperature Pilot Project, is being launched
where the quality of AVHRR real-time data will be assessed for different users in the
context of GODAE.”

SST contains information about two major processes occurring in the ocean: the
first is the warming/cooling processes due to air/sea interaction physics and the second
is the mesoscale/gyre structures that produce local changes in temperature due to geo-
scrophic isotherm displacement. One example of the latter process is the detachment
of cold and warm core rings across the Gulf Stream front that produces SST anomalies
due to the dynamical instabilities of the oceanic jet that transfer water of different SST
properties across the Gulf Stream front.

With 1'cg;1rd to the air/sea interaction processes, another way to say that SST is
affected by exchange of heat at the air/sea interface is that SST contains the information
about the dynamics of the surface mixed layer. This layer can mask the geostrophic SST
contribution, as it happens for cold core rings that frequently, after their birth, have
their ‘geostrophic SST anomaly’ masked by intense air/sea interaction heat exchanges.

The most common way to use real-time SST or assimilate SST in operational
models is to use SST" to correct for inaccurate air/sea fluxes at the surface boundary of
the models. Normally the correction is carried out via a restoring term, also called a
nudging term, that adds to the heat Alux term, such as

2Q o
=Q-2%  (r-T
Q(',()IT aT I:I ( )

(20.3)

where ( is the net heat flux at the air/sea interface, 7" is the observed SST, 7is che
SST produced by the model when only @ is used. The coefhicient 1)/(})1,7,' in (20.3) is
taken to be constant and different values have been chosen from the basin scales to the

subregional Seas (Pinardi et al., 2003).
20.2.2  The in situ platforms and sensors

Onc of the main components of the i situ large-scale real-time monitoring system for
the world occan is based on the Voluntary Observing Ship (VOS) system that relys on
commercial ship lines for the deployment of expendable temperature sensors, such as
eXpendable Bathy Thermographs (XBT). The ship tracks implemented in the first phase
of MFS are reproduced in Figure 20.5: data were transmitted in real time from the ships
to the collecting centre (Manzella et al., 2003) and then to the modelling centre.

The temperature profiles on all tracks were taken outside the 200 m depth areas and
were collected down to 700 m to resolve the subsurface temperature maximum associ-
ated with the Levantine Intermediate Waters in the Western Mediterranean. These data
are normally decimated since the satellite telecommunication system used (ARGOS)
has a low transmission speed. This is done for the world ocean and it was also tried

PInformation available at: huep://podaac.jpl.nasa.gov/sst
“heep:/fwww.ghrsst-pp.org/
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Figure 20.5
VOS-XBT system set up from September 1999 to December 2000 in the
Mediterrancan.

for the Mediterranean. However, it was found that the standard automatic decimation
system for VOS did not cope for drastic changes in the vertical stratification, as they occur
in the Mediterranean. The worldwide VOS-XBT programme considers the transmission
only of 10-15 points along the temperature profile, computed at the profile’s inflection
points. When the vertical profiles become quasi-uniform with depth, many XBT samples
were badly decimated by the standard on board ship-softwarc. In the Mediterranean,
winter mixing is very intense and stratification is rapidly lost for about three months cach
year. The XBT automaric decimation algorithm is poorly adaptive to these conditions
and almost 30% of the data were lost duc to the decimation software failures.

Smith ec al. (1999) stated: ‘all upper ocean thermal data are to be distributed as
soon as is practical after measurements (preferably 12 hours). The strong preference is
to keep intervention to 2 minimum, perhaps just automated processes. ‘There should be
a well-supported second stream, which allows for improved quality control and scien-
tific evaluation of the data sets.” The MES VOS system started to send full resolution
profiles in real time and realized a new system of real-time data quality control that will
store quality checked XBT data in oceanographic archives (Manvzella et al., 2003).

'The near-real-time quality control procedure contains seven steps that in synthe-
sis are:

. position control;

. elimination ofspikes;

. interpolation at 1 m intervals;

. gaussian smoothing;

. general malfunction control;

¢ comparison with climarology;

. visual check, confirming the validity of the profiles and providing an overall con-
sistency.

The XBT data set is then inserted into the assimilation syscem. The vertical tempera-
ture profile is a basic state variable of the physical system, containing information
about several processes and in particular the vertical density distribution. In addition,
being the data collected in a section-like track, the temperacure field gradients along
track give approximately the geostrophic velocity field across the crack itself. In the
Mediterranean, as well as in other temperate scas, temperature should be adequarely
combined rto salinity to describe the basin water masses and derive the geostrophic ve-
locity field across the VOS ship track. Most of the data assimilation systems, as it will
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Use of real-time observations in an operational ocean data assimilation system

be seen later, can update both temperature and salinicty profiles starting from the single
temperature profile, keeping the historical water mass relationship in consideration.

Raicich and Rampazzo (2003) simulated the impact of VOS-XBT data in the
reduction of initial errors in the ocean general circulation model. It was found that
repeated long tracks, such as the trans-Mediterranean track going from Gibraltar to
Haifa, had a very positive impact on the error reduction due to the consistent improve-
ment of the geostrophic velocity field associated with the coherent temperature section
given by the track.

Another kind of observing system that nicely complements the VOS is the
moored buoy system. Such a system was first developed in real time for the Pacific
ocean (McPhaden et al., 1995) and the Bermuda testbed mooring (Dickey et al., 1998)
and is now being developed for other areas. The data collected by such a measuring
system are multidisciplinary and at high temporal frequency for the physical and bio-
chemical components of the marine ecosystem. These point-like measurements should
be mainly used as an independent data set to validate both model and data assimilation
components. For the Mediterranean such a system was first developed in the Cretan
Sea and it is described in Nitdis et al. (2003). Here it is sufhcient to say that the system
allows the correlation between the physical and biochemical components of the marine
ecosystem at high time frequency (normally a few minutes) to be explored for the first
time. A network of buoys is being developed under the second phase of MES.

Finally the ARGO profilers, collecting temperature and salinity profiles from 700 m
depth to the surface, have been deployed in the Mediterrancan.!"® This completes the
‘open ocean’ basic monitoring components for the region.

20.2.3 Atwmospheric forcing data

Ocean forecasts are driven by atmospheric forecasts. Atmospheric forcing is also used,
by means of ‘analyses’, during intermittent data assimilation steps. The atmospheric
analyses are an optimal combination of observations and atmospheric general circu-
lation models outputs, that is they are the best estimation of the past and present state
of the atmosphere. They have substituted for many purposes the direct observations
for the real-time assessment of the acmospheric state. These analyses are now pro-
duced twice a day by the major meteorological offices around the world."" Forecasts
are also produced at least twice a day from the major meteorological centres and the
accuracy of the analysis scheme is constantly increasing with time.

The atmospheric forcing for ocean models is derived from atmospheric sur-
‘face variables using interactive bulk formulas that relate the model SST with the air
temperature, relative humidity, cloud cover and winds at the sea surface (Castellari
ct al., 1998). The short-term occan forecast is driven by the atmospheric forecast sur-
face fields (sce Figure 20.6). Any error in the input of atmospheric data will affect the
quality of the ocean forecast. Some authors think that such error is large compared
with other errors, that is initial conditions specification, that it should specifically con-
sidered in the assimilation procedure. This error is mainly due to the offline coupling
between che atmosphere and the ocean, that is the atmospheric surface variables do not
see the ocean forecast SST" and currents since they are coupled after the atmospheric
forecast has been performed. "This is why the correction in (20.3) is usually applied to
the computed airfsea fluxes. Only fully or synchronous atmosphere-ocean coupling

" hep:/fwww.moon-occanforecasting.cu
"Cheep/fwww.cemwtling
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Schematic of the offline air/sca coupling for ocean forecasting.

Figure 20.6

will alleviate this error and scasonal forecasts are carried out nowadays with the fully
coupled ocean-atmosphere system without heat flux corrections.”™

The most inaccurate data set in metcorological models is the accumulated pre-
cipitation field that modifies the water flux into the ocean. However, this crror drives
very long-timescale ocean responses and short-term forecasting should not be greatly
affected by such inaccuracy. More important is the wind stress or momentum flux
error produced by the coarse atmospheric winds resolution and the bulk formula
parameterizations used at the air/sca interface. Such error impacts the U‘opical Pa-
cific prcdictability so that, in the past, a spcci;]l wind stress data set was dcvclopcd
to account for higher space and time frequency of the forcing (FSU tropical Pacific
winds, Legler et al., 1988). In the Mediterrancan several empirical factors were found
that normally increase the wind stress amplitude to reach better agreement between
modelled and measured waves (Cavaleri et al., 1992). The increased resolution of nu-
merical weather prediction models and the improvement in data assimilacion schemes
will make obsolete the use of such empirical factors. Recent developments have shown,
however, that the high wave number content of scatterometer winds (Milliff et al.,
1999) is far from being reproduced by the present atmospheric forecasting systems and
new blending procedures are being developed (Milliff et al., 2001) that produce high
wave number content wind fields to realistically force the ocean.

The timely provision of meteorological analyses and forecasts is at the basis of
real-time delivery of ocean forecasts. Future developments will involve the coupling
of high-resolution non-hydrostatic meteorological models with the occan counterpart,
but this crucial arca is still in its infancy.

"hrep/fwww.cemwtint/products/forecasts/seasonal/
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Use of real-time observations in an operational ocean data assimilation system

20.3 MODELLING AND ASSIMILATION SYSTEM

20.3.1 Combination of different sources of information: observations
and models

Gauss in 1809 wrote: ‘.. since our measurements and observations are no(hing more
than approximations to the truch, the same must be true of all the calculations rest-
ing upon them, and the highest aim of all computations made concerning concrete
phenomena must be to approximate, as ncarly as practicable, the truch.” With this
statement, he solved the problem of the determination of the planet’s motion by fitting
via the least-squares method several parameters to the measurements. Astronomical
theory gave insight on which parameters to fit and measurements determined their
optimal values. Both theory and measurements gave rise to the ‘best estimate’ of the
truth. In modern times, theory is substituted with numerical models based on the
general equations of hydrodynamics. Gauss's statement can be taken as che basis of
modern occanic and atmospheric estimation theory. In what follows we review the
work of Lorenc (2002) and Daley (1996) about data assimilation.

Data assimilation is defined by Lorenc (2002) as ‘the process of finding the model
representation which is most consistent with the observations’. This concept goes back
to Gauss's statement in the sense that in order to obtain the best estimate of reality, two
different approximations of truch are used, one from observations and the other from
the dynamical model. Data assimilation in the ocean and atmosphere fuses these two
approximations of rcali[y in an oplimal estimate of truth with a lcast—squurc method
approach (errors should be unbiased, random and normally distributed).

In atmospheric and occanic data assimilation systems, the ‘truth’ or ‘true
state’ is generally assumed to be a state of the atmosphere or the ocean that has
the fast motion filtered out (sound waves and fast barotropic gravity waves are not
considered). Furthermore, the atmosphere and the ocean are considered to be close
to horizontal non-divergence (geostrophic approximation) and the flow is assumed
to be ‘smooth’, that is sharp changes are not allowed within few model grid points.
This means chat observations, taken at finite time and space resolution, can give
information about the truth and the model needs to have appropriate parameteriza-
tions of sub-grid scale phenomena that will not drive the solution too far from the
geostrophic balance.

Let us take the ‘truce’” ocean state vector to be

(20.4)

O@:zg<cm—{

where the symbols indicate (from top to bottom): three-dimensional fields of tem-
perature, salinity, zonal, meridional, vertical velocity components, water density and
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two-dimensional fields of barotropic streamfunction (defined in Note 97) and free
surface elevation or SSH. Some of these state variables are prognostic, that is their time
evolution can be described by an equation containing their time rate of change, some
are simply diagnostic, such as density, vertical velocity and free surface elevation. Ver-
tical velocity is diagnostic because the hydrostatic approximations has been adopred
in the OGCM; SSH is considered to be diagnostic as we regard it as only the slowly
moving component of sea level and fast barotropic external gravity waves are filtered
out. SSH can be mathematically a prognostic variable but we consider in the data as-
similation that the true state of the ocean contains only the diagnostic components of
SSH as written in (20.2).

Suppose that we have two approximations of X which we now consider only ro
be a scalar value X, corresponding to one of the state variables contained in (20.4) at
one single grid point. The first approximation is a numerical model solution, called
X", with an error E? = X? — X and the second is an observarion, called Y, with an
associated error E" =Y — X, occurring at the same location of the model firsc guess.
We assume that the error probability distribution is Gaussian, i.c.

/)(E):—]—c_[ ;“] (20.5)

ov2n

where g2 = (FW and the brackets indicate the expectation operator (Daley, 1996). The
joint probability distribution for the two approximations to truth is:

Mg
- ) + >
1 [ 20, 20 ]
c b o
o0 2%

If we want to make this probability maximum, we need to impose that the expo-
nent in (20.6) has a minimum value. Calling the exponent [, written as

PEP) p(E®) = (20.6)

1 le)_ X 2 yo_x 2
o atex X
2 o o

b o

, (20.7)

the minimum is achieved at the value X", so-called analysis, that is:

a b G[: 0 b -
Xt = x| (v - x?). (20.8)
Gf + 0
D O
The second term berween brackerts is called the mz’sﬁl,Y“*X", that is che dif-
ference between the model solution and the observations. The analysis value, or
best estimate X, is then the weighted average of the first guess, X" and che misfic
between the observations and the model. The misfit clearly cannot be very large and
y ) g
this means that the model and the observations should be as close as possible. This
means that model should be quite realistic, reproducing the ‘bulk’ of the physical
processes contained in the darta.
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Use of real-time observations in an opcrational ocean data assimilation system

In general, the observations will be at different locations with respect to the model
grid points and they could be related to state variables contained in X by a complex
operator (indirect measurements of state variables). This means that in general we can
write the misfit as:

d=Y"- H(X") (20.9)

where / is the observational operator and d, Y*, X" are now multivariate vectors in
the four-dimensional space. Normally H is an interpolation from the model grid to the
observational point but in case of diagnos[ic quantities, such as SSH, it can be a non-
linear operator containing a combination of X" state variables. The gcneralimtion of
(20.7) and (20.8) considering (20.9) for the fully multivariate case are

[= %[(X" —X) BT(X" = X) (Y = H(X) RT(Y - H(X)):l (20.10)

X' =X+ K(Y* ~ H (X)), (20.11)
where
K =BH’ (HBH’ +R)™ (20.12)

is the Kalman gain matrix. In (20.12) the observational operator appears as the linear-
ized operator, H of A. The l)ackground error covariance matrix is then defined as:

B:<<x“—x>(x“—x>" > (20.13)

which represents the error variance for all the model state variables and their cross-
correlation. The observational error covariance matrix is represented by R.

The similarity between the simple form of weights in (20.8) and (20.11) should
be noted: in both cases the wcighr on the misfit is given \)y the error in the back-
ground field divided by the sum of the error in the observations and the error in
the background field again. If the time variations of B are parameterized only by
changcs in the variance of the error ficlds, chen the form (20.12) defines an oprimal
interpolation (O1) scheme. The essence of sequential data assimilation is to find a
sound representation of the multivariate aspects and space-time variability of B.
Normally the variations and the multivariate character of B is chosen a priori, on
the basis of the knowledge of the relevant processes included in the model and in
the observations.

Evaluation of (20.11) can be done ‘intermittently’, collecting observations within
a certain interval of time and inserting them at the end of such interval. Figure 20.7
illustrates a [ypicul intermittent assimilation cycle that in the zltmosphcrc is taken to be
12 or 6 hours, while for the ocean it is gencrally taken to be several days (Pinardi et al.,
2003). In the ;1[11103})1101‘& Fol'cc;lsting community, the continuous data assimilation
or variational assimilation scheme (D;llcy, 1996) is now used but it is not described
here.

Figure 20.7 illustrates the analysis and forecast cycle for a generic time interval
Atr. Every interval cycle, (20.12) is evaluated and the dynamical model is initialized

745



Real-time Coastal Observing Systems

/ /c} e ™
> X
/<0° e //db‘.,/ ;‘
<Q° i //o"e'///
N A4
7 NS
Ve /
t— At s t /
i Y
e \\\
/ Collection of,
real-time

N obs.ervationsl;‘
\ \ggrmg At/ P ,
\ T ’
A\ doo
Analysis/nowcast time:
melding of model and
data

Figure 20.7
Intermittenc analysis-forccast cycle.

with X". The ocean forecast is started using forecasted surface atmospheric parameters
and solving for several time steps, &¢, a nonlinear equation:

X (e +81)= MX' (), (20.14)

where M is the state transition matrix corresponding to the model equations (belong-

ing to the OGCM in this case). The background or forecast fields X predicted by

(20.14) is used as a first guess, in the successive At assimilation cycle, to compute a
a

new X'.

20.3.2 What does it mean to assimilate different data sets and correct
model state variables?

The quality and efficiency of the estimation algorithm outlined above is clearly con-
nected to the details of the background error covariance matrix, B. First of all, we do
not know the truth of X contained in (20.13) and thus scveral approximations are
normally taken. To estimate B we can consider

B:<(x"—x")(x"—x")’> (20.15)
or

B:<<X“—>_<")<X"—>‘<“)’> (20.16)
or

B=((Y" ~?“)<Y“—?“>">, (20.17)

where the ‘bar’” above the state vectors indicates a suitable time mean. ‘The brackets
indicate the ensemble mean of the different realizations available to estimate B. Let
us discuss in turn cach of these approximations. The first in (20.15) indicates thar
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the error is estimated from the difference between the forecast and the analysis:
this will give the most adequate approximation to (20.13). The second and the
third approximations contained in (20.16) and (20.17), mean cthat the error is due
to the variance containing part of the state variables with respect to a predefined
mean. From a mathematical point of view, the worse approximation to B is given
by (20.17) as we assume that the variance contained in the observations is the same
as in the model. However, most practical data assimilation systems use (20.17) to
estimate B as the model could have drifted from reality and the use the covari-
ances deduced from the model itself could affect the efficiency of the assimilation
system (20.11).

Hereafter, we consider that B is calculated from a torm of either (20.16) or (20.17),
which we now rewrite as

B:<)~(’ )~(’>

where the primes now indicate anomalies with respect to a suitable mean and X can be
either model or observational fields. The important information contained in B is the
cross-correlation between all the state variables of our system. In other words, B is mul-
tivariate and composed of block matrices:

() (s (T
(sT) ($8) .. (s'm)

B=| (U'T) (uw) e b (20.18)

W) (rs) . ()
where the tides have been neglected for simplicity and several sub-matrices have not
been explicitly written in (20.18). Each block is quite dense but banded, it contains the
variance of the error associated with each field and it represents the cross-correlation
between state variable errors in space. ‘The brackets indicate a given ensemble average
as before.

For the ocean, De Mey and Benkiran (2002) suggested a possible expression for
B, thatis

{
B=FBrF, (20.19)

where F contains multivariate vertical empirical orchogonal functions (v-EOF) and
Br is a two-dimensional correlation matrix, normally computed from analytical
expressions. ‘This means that horizontal and vertical components of the error covari-
ance matrix have been separated. Such separation is allowed in the open ocean and it
was found to work especially for quasigeostrophic assimilation of SSH (De Mey and
Robinson, 1986).

The separation of B into vertical and horizontal modes allows control of the dom-
inant structures of the background crror field, as in the ocean the vertical part has a
low vertical modal structure while the horizontal part can be quite complex, espe-
cially near the coastal margins. In horizontal, the open ocean auto-correlation scales
of temperature, salinity and dynamic height fields (Nictis et al., 1993) is given by the
‘exponential correlation function’, that is
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X .
Clxay)=Al1=1= e 2 (20.20)
a
where for the horlzontal zero crossing distance and the correlation decay scale, respec-
tively, r~ = x" + v is the square of the distance measured in a (x, ) coordinate plane
and A is the variance of the field. This form is used in the Br matrix.

In the vertical, the error field is dominated by errors in the mixed layer and in
the thermocline, where the highest temporal variance of the X fields is found. A low
vertical error modal structure is to be expected in view also of the fact chat temperature
and salinity profiles, as well as dynamic height, are dominated by the first baroclinic
modes (Masina and Pinardi, 1994) and background correlation errors may reflect the
incorrect energy content of these modes.

Thus the separation (20.19) can be rewritten in mathematical form as

B x y,A 21* \c 1/) (20.21)

where F/ are the vertical modes ;md C their respective horizontal structure.
Equivalence (20.19) and (20.21) cannot be shown to be true in general but they are
convenient approximations of the B matrix thac show cthicient assimilation of ocean
data, as we show later. These ad hoc formulations should also be tried for ecosystems. in
order to control the model structure of the corrections for the relevant state variables.
‘The F matrix represents then the vertical error variability in all the state variables
and their vertical cross-correlation. If we substitute (20.19) into (20.12) we obtain

K=FBrF ' (HFBrF'H +R)". (20.22)

The three-dimensional estimation problem contained in (20.22) can now be decreased
in order due to the fact that F can be described by FOF. In fact, the relevant vertical EOFs
(-EOF) will cerrainly be less than che number of vertical model levels used for the estima-
tion of the correlation martrix F. The physical reason for this is that the temperature vari-
ance below the thermocline is low and, on subscasonal timescales, the variability berween
the surface and the intermediate and deep water are uncorrelated. In turn this means that
the number of.signiﬁcam v-EQOFs to represent the state variable variance in the vertical is
less than the number of model levels. Normally if the model levels are 1, the vertical EOF
explaining most of the variance are only #, with #{(m, as shown by Sparnocchia et al.
(2003). 'Thus we can use a ‘reduced order space’ for the v-EOF, that is thc first # modes
accounting for most of the variance. The estimation problem is then given by

Kl{()()l - '[E Kr

R (20.23)
Kr=BrF H (HFBrF'H' +R)
where now the dimensions of E are much less chan in F.

[t is now easy to understand thac, even if the misfit in (20.9) is given for few state
variables, the correction in (20.11) will be carried out for all the state variables con-
tained in Xh, given that we consider all the cross variances between state variables. This
might not be wise every time, and several cross-corrclations could be ¢liminated on
the basis of the specific data set used or physical assumptions. For example, in the case
of temperature observations it is not advisable o usc the cross-correlation of <\|l"l">.
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that is to change the stream function on the basis of temperature data. This correlation
in fact cannot be understood on the basis of sound physical processes within the limit
of the data availability and the processes represented in a primitive equation model.'”
In general this correlation is small but this cannot be guaranteed « priori because it
depends on the details of how we calculate B and in any case its presence in B will in-
troduce noise in the analysed field. Thus for every data set to be assimilated, we could
study the most important cross-correlations to be considered.

20.3.3 Example 1: assimilation of satellite altimetry only

Let us suppose that we have only SSH observations and that K contains F defined as
follows:

(1) (178") <T"P’>
A= (5"1"> <S’S’> <S"l”> (20.242)
(qﬂ'r') <‘I"S'> <‘l"‘P’>

A=FAF'",

where A contains only the vertical multivariate covariances and F are the v-EOF of A.

This means that the SSH misfic will be projected into temperature, salinity pro-
files and y amplitudes and that the corrections will be done on three model state
variables, not the SSH itself. This is another way of saying that SSH in assimilation
should be considered as a diagnostic variable. Another interesting correlation matrix
tor SSH assimilation is

(1) (rs) (T7w) (1)
W (ST) () (sw) (s (20.24b)

()

(')

The vertical modes of the correlation matrix (20.25b) are forced to be covariant
also with SSH anomalies. In MES, we use the v-EOF constructed from the state vector

T

X' =| |from both the form (20.2424) or (20.24b). The reason for using the covariance

v
n

A primitive equation system is composed of the Navier-Stokes equations considering the Boussinesq and
hydrostacic approximartion. For che ocean, incompressibility is also assumed. These equations contain
physical pracesses such as baroclinic instabilicy chac transter energy beeween baroclinic (temperature-
dominated) and barocropic modes (vertical integral of velocity field represented by the streamfunction).
‘The baroclinic instabilicy process is connected to horizontal gradients of temperature and verti-
cal gradients of che velocity field bue not simply o the temperature anomaly. Thus using the simple
correlation berween wemperauare and streamtunction field does not accurately represent the baroclinic
process and this corrclation should be disregarded if the only information is from temperacure profiles.
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between all these fields is connected to the analytical expression (20.2), where we see
that SLA is a complicated function of all the 7, § and ¥ modecl variables.

Following the geostrophic relationship written in (20.2) the observarional
operator H contains explicitly that expression (Demirov et al., 2003). In this way
we ensure that the correction is carried out on the model state variables 7, S and w
weighted by their respective scaling coefficients that produces the correct value for
1 or the SSH. The same procedure and understanding should pave the way for the
assimilation of other observations that use the observational operator and the cross-
correlations contained in B to transform the measurement information into the state
variables contained in X".

As an example of application of this concept for the assimilation of SSH, Masina
et al. (2001) computed cross-correlations between " and 77 only. The derived profiles,
also called ‘synthetic XBTs" in the paper, were assimilated in a global model with a
two-dimensional variational algorichm. The success of their assimilation is based on
the fact that SSH is strongly correlated to vertical profiles of temperature and salinity
below the mixed layer and that it was possible to derive an error estimate for the syn-
thetic XBT. This is another way to express the relationship of Figure 20.4 and reduce
the order of F.

In conclusion, the degree with which onc observed state variable controls the
changes or updates on the other state variables is given by the degree of correlation
between the errors in the state variables and the projection of F on H.

20.3.4 Example 2: assimilation of temperature profiles only

In the Mediterranean and the world’s occans, XB'T profiles are collected in real time,
as cxplaincd in previous sections, and thus assimilation of this data sec is a priority for
any forecasting system.

This time the vertical model error covariance matrix can be now taken to be

A= <<iT'>> </;:3 ‘ (20.25)
\>

which we also call the “vertical water mass cross-correlation matrix’. Again, F arc the
v-EOF of A. Thus for assimilation of XBT in the Mediterrancan, bivariate v-EOF were
computed as EOF of (20.25) considering the several subregions of the basin, where
different water masses can be identified. The state variable anomalies were computed
using historical data (Sparnocchia etal., 2003).

‘The v-EOF for summer and for the Levantine basin region are shown in Figure 20.8.
We note the presence of the high values of the errors in the 50 m surface layer correspond-
ing to a well-known subsurface low salinity signal, normally referred o as Atlantic Water.
The first salinity EOF changes of sign below 50 mand presents a subsurface maximum
correspondent to the Levantine Intermediate Water signal. Thus, looking at the v-EOFs it
is possible to recognize the major surface and intermediate water masses of the Mediter-
ranean Sea where variance of the temperature and salinity signal is contained and thus, in
our interpretation, also the model errors. In conclusion, a misfitin temperature will induce
corrections in salinity thac have a known water mass 7-5 relationship contained in F.

To conclude, let us discuss the assimilation of SST obscervations. 1f A were full,
then the misficin SST would induce changes in the whole water column for T, S, U,
V. and others, and this is clearly not representative of a realistic occan process, except
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Figure 20.8

A, First three summer scason temperature bivariate v-EOF for the
Levantine basin region in the Mediterrancan (cast of 30°E and north

of 307N}, calculated by Sparnocchia ctal. (2003) from historical
hydrographic data. The three modes account for more than 80% of the
temperature-salinity variance in the water column.

B, First three summer scason salinity bivariate v-EOF for the Levantine
basin region in the Mediterrancan (cast of 30°E and norch of 30°N)
caleulated by Sparnocchia cral. (2003) from historical hydrographic dara.
The three modes account for more than 80% of the temperature-salinicy
variance in the water column.
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for few limited areas (deep convection areas) and severe winter periods. On the other
hand, the error cross-correlation between state variables is the only information that
allows a change in the prognostic state variables on the basis of a limited amount
of observed state variables. In the case of SST, it is advisable to carefully study the
assimilation impact on the complete state vector before using automatically a full
state F vector in B.

20.3.5 Example 3: assimilation of combined altimetry and temperature
profiles

Having decided the satellite altimerry and temperature profiles assimilation as-
sumptions, MFS has implemented a combined assimilation of both measurements
using a two-step approach, described below (Demirov et al., 2003). The method is
based on the hypothesis that it is important to maintain the different expressions
of A and thus F for the two kind of measurements, as they contain different physi-
cal information about the water column stratification. The multivariate v-EOFs for
Y. T,S are used for assimilation of SLA and the bivariate 7, S v-EQFs are used for
assimilation of XBT profiles. This way cach data st is assimilated with its optimal
vertical error modes.

In order to combine the two assimilation procedures we envisage the follow-
ing steps, illustrated in Figure 20.9. The time window of assimilation is two weeks
and an analysis is calculated once a week (day ‘J" in the diagram). Both past and
future observations with respect to J are considered, that is the Ol is used in the
‘smoother mode’. One week we use only SLA observations to generate the present
week analysis starting from the previous week analysis which instead assimilated
only XBT observations. After the first cycle it will be unimportant which data set
is assimilated first and each week the analysis will benefic from both SLA and XB'I
observations.

The working of the combined assimilation of satellite and temperature profiles
is shown in Section 20.5 where the comparison between the observed, modelled and
corrected profiles, by means of (20.11), is given.

Analysis day ‘J’

W Assimilation of SLA

Figure 20.9

Combined assimilation of XBT and SLA profiles used in the MES
opcm(i()nal assimilation system.

Spurce: Demirov et al. (2003).
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20.4 THE COASTAL FORECASTING AND ASSIMILATION
PROBLEM

The MES approach to coastal forecasting uses nesting and downscaling of the large-scale
flow field up to the required resolution. Coastal environmental forecasting will make
use of the analysed physical flow fields to advect passive or active tracers in the coastal
areas with the maximum accuracy. Specifically MES could provide a basis to examine
the transport and fate of planktonic populations and dissolved constituents in the water
column. Potential users would greatly benefit from an explicit statement of the space and
timescales over which the MES can provide realistic estimates of transport. The benefic
from MEFS is maximum when the variability will be forced heavily by the offshore forcing,
which is the case for several coastal regimes in the Mediterranean and the world ocean.

In a recent review paper, Pinardi et al. (2006) have shown that more than half of
the Mediterrancan coastal areas are limited by narrow shelves that allow for strong con-
trol by the open ocean flow field. In addition, large portions of the coastal areas do not
have any local runoff control mechanism and thus coastal productivicy will be totally
dominated by the discharges from coastal towns and offshore inputs of nutrients. In
the latter case, a system such as MES is crucial to understand the primary productiv-
ity of the coastal areas. Even in extended shelf areas, the remote effects of open ocean
ecosystem structure cannot be neglected to understand coastal productivity. This is
cvident for the case of Adriatic mucilage phenomena where it is believed that the arrival
from the open ocean areas of highly refractory dissolved material could influence ag-
gregation rates of particles in the water column and thus influence the mucilage itself.

MES has also developed the coastal downscaling and the necessary data assimila-
tion for the shelf and coastal domains of interest. In particular, we refer here to the
Adriatic coastal arcas where a 5 km OGCM was nested within the MFS OGCM in
order to arrive properly to the near coastal areas (Oddo et al., 2005). In addicion, the
assimilation system described above for temperature profiles was applied to coastal
CTD profiles (measuring both salinity and temperature) collected in the very near
coastal arcas in order to control the near-shore coastal field. Tt was found cthar the
separation of vertical and horizontal modes of the background error covariance ma-
trix allowed a consistent assimilacion even in complicated coastal dynamical regimes
(Grezio and Pinardi, 2006). In future the coastal data assimilation system may be
different from the open ocean one allowing for the higher space and time variability of
the background error covariance matrix in these regions.

20.9% FORECAST CONSISTENCY, QUALITY AND ACCURACY

In this section we show how to carry out an assessment of the quality and accuracy of

the assimilation system using three basic indicators:

. Consistency indicator: the qualitacive (visual) correspondence of circulation struc-
tures in the analysis fields with features known from phenomenological studies
or obscrvations only.

. Quality indicator: comparison between observations and model before data
insertion. This indicator can be expressed in terms of the root-mean-square of the

misfit, defined by
rms_mistic(d) = ~/1\7\/Z d’



Real-time Coastal Observing Systems

1
nms_misfit(d) = \Z d’,
Iy

and d is defined by (20.9) and the sum is done over different realizations in space
at a given time.
*  Accuracy indicator: comparison between analysis and forecast, i.e. forecast skill

score. Two can be defined: 1
(@) the first is rms_fcst()(b -X*) = N\IZ( X - X*)?, referred to simply as

rms of forecast error;

2
(b) the second is rms_persl:Xb -X*'(r= O)] = i\/Z[Xb -X'(t= O)] , rms
of persistence error. b
Figure 20.10 shows the comparison for April 2002 of SLA from the forecast sys-
tem analyses with respect to objective analysis done only with the satellite data. In both

Monthly model average SLA April 2002 (cm)

Monthly data average SLA April 2002 (cm)

5W 5%  10°E 15 20°%E 25°E 30°E 35°E
2 -5 -0 -5 0 5 10 15 20

Figure 20.10
Correspondence between A, model; B, satellite objective analysis of SLA
(cm) for the month of April 2002.
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Figure 20.11

Comparison between model temperature before data insertion,

temperature observation, model corrected solution for 11 March 2003.

The star in panel A indicates the position of the observation along a

VOS line.

estimates we recognize the cyclonic anomaly area in the Ionian, which is known from
other data to be dominant in these years.

More important is the quality indicator and the study of the structure of the mis-
fit. We show an example of misfit for the case of XBT profiles (Figures 20.11, 20.12)
and SLA (Figure 20.13).

Figure 20.11 shows the observed profile, the model profile before data insertion
and the corrected profile or analysis done with (20.11). The model profile is shifted
towards the observed one and the misfit is of the order of —0.5°C. This is a good result
for the data-assimilation scheme, confirming that the assumptions made for F and B

XBT cruises - 20030311
45; T

Number of profiles = 38

15 20
SF T ; T T
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120} e

280{- soxbassns =
* observed
480 ® pre-ass
775[ : : : : L_¥ postass
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MISFIT profiles

Figure 20.12

Comparison between model temperature before data insertion,
temperature observation, model corrected solution and vertical misfit
for 11 March 2003. The star in panel A indicates the position of the
observation along a VOS line.
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Figure 20.13

Model and observational SLA values along a Topex/Poscidon track
on 19 February 2002. Panel B shows the model solution before data
insertion with superimposed observations for each point of the track
from point A to B.

are generally correct. However, Figure 20.12 shows that sometimes the assimilation
fails to produce a sensible corrected profile. In fact the new profile is closer in absolute
value to the observations but it overshoots the observed one and has a noisy vertical
structure. We argue that this is due to the inadequate choice of v-EOF for this region
and for this time of the year. This points out to the fact that B should be more space
and time varying while in our case we have a unique v-EOF for the whole southern
Adriatic area and for the three months of the winter season. Future improvements
include v-EOF that are calculated point by point and with higher time frequency
(monthly and interannually).

In Figure 20.13 we show the misfit and the comparison of the model solution
versus observations before data insertion. We see that the model follows quite closely
the altimeter track values but misfit is still of the order of 5-10 cm which is large with
respect to the Mediterranean anomaly signal which varies between £ 30 cm.

A global quantitative estimation of the quality of the forecasting system may
come from the average of the rms_misfit and nms_misfit for the whole Mediterranean
region as shown in Figures 20.14 and 20.15, for SLA data and XBT respectively.
In Figure 20.14 we note that the 7ms_misfit error varies from months to months
indicating that the temporal scale of variability is not correctly captured by the
model and not correctly inserted in the analysis by the assimilation scheme. We
suppose that a shorter assimilation cycle (now one week) could improve this situation.
The rms of misfit for the XBT (Figure 20.15) at 30 m indicates the reasonable value
of 0.6°C. This is also decreasing rapidly with the continuous insertion of data after
September 1999. Another important issue in assimilation is concerned with the length
of time it will take the system to ‘converge’ towards the observations after the initial
time when model and data are added together. This is a difficult question to analyse
here but our estimate is that several months are needed to show the improvement, as
we show in Figure 20.15. This naturally will depend also on the data scarcity and
the measuring network.
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Figure 20.14

A, weekly number of SLA data points for Topex/Poseidon altimeter every
two weeks with overlaid the nms_misfic.

B, rms_misfit for the period January 2002 to January 2003.

[
]
-4

~

250+ E

[

=3

>
T
i

Number of data
§ o
=
T T
L H
-
nms

wn
>
5

0 L 0
1 Sep 1999 1 Jan 2000 1 Jun 2000

w
in

w
in o in o
T
L

rms (°C)

A il ol A
n =
T
1

5

IOSep 1999 1 Jan 2000 1 .‘l un 2000
Figure 20.15
A, weekly number of XBT data used in the analysis with overlaid the
nms_misfit for temperature at 30 m.

B, rms_misfit for the period September 1999 to June 2000.

757



Real-time Coastal Observing Systems

3

Figure 20.16
10 days root-mean-square (rms) forecast error growth for the weekly
forecasts in 2000, ar different deprhs.

Last but not least, the accuracy indicator is shown in Figure 20.16. As described
in Demirov et al. (2003) in MFS we use to run a simulation experiment between the
analyses that are done one week apart. Since this is donc in delayed mode, atmospheric
forcing analyses are used to force the ‘hindcast’ between analyses. The error grows
with time almost linearly at the surface. At the levels below, the data insertion occur
intermittently every week and thus the error suddenly grows at day 7 of cach 10-day
forecast. Between day 1 and day 7, the forecast error growth is duc only to the differ-
ent atmospheric forcing used in the forecast and the hindcast. The value of the rms
temperature forecast error is reasonable showing that the atmospheric forecast forcing
is capable of reproducing some of the essential features of the atmospheric variability
of the region. Demirov et al. (2003) compare this rms forecast error with the rms per-
sistence error and show that the latter is always higher chat the former. This basically
shows that the forecast is needed in order to reach reasonable accuracy in the 10-day
predictions.

20.6 DISCUSSION AND CONCLUSIONS
"This chapter has described the occan state estimation problem set up in the MFS

operational scheme. Apart from the necessary regionalization issues, a few general
statements about assimilation of real-time data have been made.
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First of all, it is recognized that sophisticated preprocessing of satellite and in
situ dara is needed before observations can be inserted into the model. Above all, the
quality control procedures should be as much as possible automatic and consistent with
the physical assumptions made in the assimilation scheme. One of these assumptions is
that the observations contain only the slow timescale variability (larger timescales than
the day) and thus high-frequency signals should be climinated from the data 4 priori.

Second, we have seen that the assimilation quality and practice is connected to
the assumptions made to calculate B, the form chosen for H and the kind of data that
we assimilate. ‘The multivariate character of B should be carefully checked against
physical processes that are contained in the cross-correlations induced by the inserted
data. The time and space variability of B is generally underestimated in present sys-
tems, like the Mediterrancan Sea, and inconsistencies may occur that will not produce
the optimal merging of background or model data with observations.

Order reduction of F is strongly recommended especially if it can be done, as
in the ocean physics, on the basis of process assumptions. The vertical thermohaline
structure of the ocean is low mode, with few vertical EOF modes expressing a big part
of the variance of the crror ficld in the vertical. Thus separation of B into vertical and
horizontal structures seems to be advisable. However, the v-EOF are horizontally non-
homogeneous and that effect should be considered. As an example of more recent de-
velopments, we show in Figures 20.17A and 20.17B the percentage variance explained
by the first bivariate v-EOF mode of A written as in (20.25) considering the defini-
tion (20.16) and different mean fields subtracted. The figures show that, depending
on which X" is used, the percentage variance explained by the first v-EOF changes as
well as its horizontal distribution. A is constructed from a 35-day temporal time series
of X" subtracting X" calculated by a mean over several years (a cl1matologlml X") for
Figure 20.17A and only a 35-day mean for Figure 20.17B. It is important to note that
several regions have almost 100% variance explained by only one bivariate EOF but this
value changes depending on which average is subtracted. In Figure 20.17B, the areas
with a lnoc proportion of variance explained by the first EOF have changed extension,
and more modcs are needed in general to explain the same variance in the case of Figure
20.17A.

Schemes for ecosystem data assimilation of the same complexity of the physical
state estimation problem discussed here are being developed. However, it is recom-
mended that the structure of B for these systems is studied in detail, in particular
because biogeochemical observations are much more scarce in space and time than
observations for the physical state variables.

Let us make an example of how matrix B could look in ecosystem data assimila-
tion. First of all the state vector could be indicated by:

X=|N (20.26)

where this time the biochemical state variables, Chl, chlorophyll concentration, N,
dissolved nutrients, Z, zooplankton biomass and D, detritus, have been introduced in
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Variance first v-EOF (%)

Variance first v-EOF (%)

40 50 60 70 80 T 100

Figure 20.17

A, percentage of variance (colours of the palette) explained by bivariate
v-EOF calculated from a 35-day time series of temperature and salinity
profiles at each model grid point — matrix of (20.26) — and with a
climatological monthly mean value of T,S subtracted at each level to
compose A.

B, percentage of variance (colours of the palette) explained by bivariate
v-EOF calculated from a 35-day time series of temperature and salinity
profiles at each model grid point (matrix of (20.26)) and with the 35-day
mean value of T,S subtracted at each level to compose A.

addition to temperature, T. Chlorophyll concentration here is a model state variable
which corresponds to a phytoplankton group and its concentration may be thought to
be proportional to the phytoplankton biomass. Decomposing the B matrix into hori-
zontal and vertical modes, we now take a possible definition of A and F as follows:
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(rr)

(Chl'T’)  (Chl’ Chl)
A= (NT) (NCh) (N'N) .. (20.27)
(z1) (zaw) (ZN) (77)

(D1)  (D'an’) (D'NY) (D'z) (D'DY)

and
.
A=FAF (20.28)

F is then a vector containing the v-EOF of A.

We have explicitly written only half of the matrix because we know that is symmetric.

Let us consider the satellite ocean colour transformed into surface chlorophyll as the

input observational data set. If the analysis system (20.11) is used, then the chlorophyll

misfit will produce corrections on all the system state variables listed in (20.26) and F

will infer the vertical corrections to be introduced, as in the case of the physical system

explained above.
The matrix (20.27) expresses the vertical covariance between T, N, Z, D and

Chl state variables. The auto-correlation for Chl is a very important part of the matrix

(20.27): it means that surface chlorophyll will produce a vertical profile of chlorophyll,

sometimes containing a subsurface chlorophyll maximum if the statistics allows it. The

other cross-correlations can be interpreted as follows:

*  the covariance between T and Chl points to the functional relationship between
photosynthetic activity corresponding to a representative phytoplankton group
and water temperature. This correlation may be weak in subtropical regions;

*  the covariance between Chl and N points to the functional relationship between
the dissolved nutrients and chlorophyll concentration changes. This covariance
in the vertical will have a subsurface maximum in open ocean areas while it will
be surface intensified in coastal areas;

*  the covariance between Chl and D points to the functional relationship between
detritus variance (related to the mortality rate of the phytoplankton in simple
models) and chlorophyll variance. This cross-correlation is complicated since
there is a delayed response of detritus to the increase in chlorophyll error vari-
ance;

*  the covariance between zooplankton variance and chlorophyll is also very com-
plex, as again the covariance has a time delay.

Simplifying the structure of (20.27) could involve the deletion of the cross-correlations

between Chl and all the other ecosystem state variables except Chl itself, N and T. This

will produce corrections by (20.11) on only three of the system state variables given
in (20.26) while the others will be changed by the model time stepping, as given by

(20.14). In this way the corrections to the detritus and zooplankrton, in response to

the insertion of surface chlorophy” observations, will be made following the dynami—

cal equations contained in the ecosystem model, after chlorophyll and nutrients have
been updated by the observations in the whole water column. This scheme seems to be
reasonable instead of changing the zooplankton biomass directly as a consequence of

a change in surface chlorophyll: this operation in fact may not be justified within the

limits of the assimilation cycle chosen and the dynamical response of the system.
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Ecosystem data assimilation is at its infancy but the premises of a workable data
assimilation system for the physical components of the marine environment makes it
possible to think that in the next years primary production estimates in the ocean will
benefit from the optimal merging of observations and predictive ecosystem models.
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