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Abstract. Based on a novel estimation of background-error
covariances for assimilating Argo profiles, an oceanographic
three-dimensional variational (3DVAR) data assimilation
scheme was developed for the northwestern Pacific Ocean
model (NwPM) for potential use in operational predictions
and maritime safety applications. Temperature and salinity
data extracted from Argo profiles from January to Decem-
ber 2010 were assimilated into the NwPM. The results show
that the average daily temperature (salinity) root mean square
error (RMSE) decreased from 0.99 ◦C (0.10 psu) to 0.62 ◦C
(0.07 psu) in assimilation experiments throughout the north-
western Pacific, which represents a 37.2 % (27.6 %) reduc-
tion in the error. The temperature (salinity) RMSE decreased
by ∼ 0.60 ◦C (∼ 0.05 psu) for the upper 900 m (1000 m). Sea
level, temperature and salinity were in better agreement with
in situ and satellite datasets after data assimilation than be-
fore. In addition, a 1-month experiment with daily analy-
sis cycles and 5-day forecasts explored the performance of
the system in an operational configuration. The results high-
lighted the positive impact of the 3DVAR initialization at
all forecast ranges compared to the non-assimilative experi-
ment. Therefore, the 3DVAR scheme proposed here, coupled
to ROMS, shows a good predictive performance and can be
used as an assimilation scheme for operational forecasting.

1 Introduction

Operational prediction systems for forecasting waves, cur-
rents and sea level variations are fundamental for mar-
itime safety, serving a wide range of applications such as
search and rescue, oil spill, tourism-oriented bulletins, cli-

mate change monitoring and many other downstream appli-
cations, eventually through downscaling the forecasts into
coastal hydrodynamic models. The Chinese Global Opera-
tional Oceanography Forecasting System (CGOFS), which is
run at the National Marine Environmental Forecasting Cen-
ter of China (NMEFC), predicts physical properties of the
global oceans, such as temperature, salinity, current, wave
and sea ice. The CGOFS consists of a suite of nested model
configurations. The operational northwestern Pacific Ocean
model (NwPM) is a regional model at the CGOFS, which
is based on the Regional Ocean Model System (ROMS),
a free-surface, primitive equation ocean circulation model
formulated using terrain-following coordinates. It produces
daily analyses and forecasts, up to 5 days ahead, of the main
ocean variables and provides boundary conditions for the
East China Sea model (ECSM) and the South China Sea
model (SCSM). It thus represents a fundamental ingredient
in the operational marine environment and disaster forecast-
ing chain and alert systems developed at the NMEFC.

Ocean forecasts require the specification of initial and
boundary (at the surface and laterally) conditions. The ac-
curacy of the forecasts depends on the accuracy of the initial
and boundary conditions. While lateral and surface boundary
conditions are usually taken from a global (or coarser resolu-
tion) ocean model and meteorological analyses and forecasts,
respectively, data assimilation is a widely used and effective
way of producing the best estimates of the state of the phys-
ical system to be used as initial conditions in the prognostic
model.

Many data assimilation methods have been developed
for combining model and observational data. These can be
broadly split into three approaches: Kalman filter and de-
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rived schemes, generally known as sequential schemes (Da-
ley, 1991); optimal interpolation; and three-dimensional and
four-dimensional variational methods (3DVAR and 4DVAR;
Lorenc, 1986). The variational methods are based on the min-
imization of a cost function that weights the differences be-
tween the analysis and the observations and the differences
between the analysis and a priori knowledge of the state of
the ocean, namely the background, typically from a previous
forecast. The ensemble Kalman filter (EnKF) was introduced
by Evensen (2003) to avoid the explicit temporal propagation
of error covariances in the Kalman Filter, replacing it with
covariances derived from an ensemble system. Depending on
the resolution of the ocean configuration and computational
resources, the EnKF may not be suitable for operational fore-
casting systems. As an approximation of EnKF, an ensemble
optimal interpolation (EnOI) scheme was applied to ROMS
to assimilate the along-track sea level anomaly (SLA) (Lyu et
al., 2014). ROMS is also equipped with a 4DVAR assimila-
tion method (Tshimanga et al., 2008; Moore et al., 2011),
which might be too computationally demanding for high-
resolution configurations in the northwestern Pacific Ocean.
3DVAR represents a sound compromise between the sophis-
tication and computational requirements of the assimilation
scheme.

Operational oceanography has benefited from the develop-
ment of data assimilation schemes such as EnOI, EnKF and
3DVAR, which have led to improved forecast skill scores.
There are two main advantages of variational schemes over
other methods. Firstly, the variational solution uses all obser-
vations simultaneously, whereas the EnOI technique requires
the data selection into artificial subdomains. Second, balance
constraints, e.g., geostrophy and hydrostatic balances, can be
embedded into the definition of the balance operators that
is implicit in the background-error covariance formulation
(e.g., Weaver et al., 2005).

Despite such advantages, variational methods still have
weaknesses. For instance, given both imperfect observations
and prior (e.g., background) information as inputs to the as-
similation system, the quality of the output analysis crucially
depends on the appropriateness of prescribed errors, which,
unlike EnKF, are usually defined as stationary errors and only
include seasonal variations.

The 3DVAR data assimilation method is widely used in
oceanic operational forecasting systems at both global (e.g.,
Storto et al., 2011; Waters et al., 2015) and regional scales
(e.g., Li et al., 2008; Dobricic and Pinardi, 2008). In this
study we adapted an oceanographic three-dimensional vari-
ational data assimilation scheme called OceanVar (Dobricic
and Pinardi, 2008) to the ROMS model in order to assimi-
late temperature and salinity (T/S) measurements from Argo
profiles into the CGOFS northwestern Pacific Ocean fore-
casting system. Although ROMS comes with a 4DVAR sys-
tem, we adopted a less computationally demanding scheme,
which may be inexpensively applied in the future in the pro-
duction of long-term assimilation experiments (reanalyses).

The lack of tangent-linear propagation (4DVAR) in our sys-
tem is compensated for by an accurate and locally varying
definition of background-error covariances. The daily fre-
quency of the assimilation cycle of 3DVAR is also expected
to limit the potential advantages of a more expensive 4DVAR
scheme.

To better illustrate and evaluate the performance of the as-
similation scheme, the NwPM implements an eddy-resolving
resolution. This system will be used in the future to increase
the quality of initial conditions for daily forecasts, whose
production has already started within CGOFS (v1.0).

The paper is organized as follows. Section 2 describes the
components of the data assimilation scheme for assimilating
Argo profiles in the northwestern Pacific. The results from
data assimilation experiments are presented in Sect. 3, focus-
ing on the performance of 3DVAR. Section 4 discusses the
performance of the system in an operational configuration.
Finally, Sect. 5 presents the conclusions.

2 Model configuration and data assimilation

2.1 Model configuration

The ocean model used in this work is ROMS (Schepetkin
and McWilliams, 2005; Malcolm et al., 2009), a free-surface
and primitive equation ocean circulation model formulated
using terrain-following coordinates, which is widely used in
oceanographic studies (Wang et al., 2012; Lyu et al., 2014).
The model domain is the northwestern Pacific Ocean, which
extends from 8◦ S to 52◦ N and from 99 to 160◦ E, as shown
in Fig. 1a. The horizontal resolution is 1/20◦ in both zonal
and meridional directions. There are 30 vertical sigma lay-
ers. The maximum depth is set to 7000 m for stability pur-
poses. The bathymetry used here is derived from GEBCO
(General Bathymetric Chart of the Oceans; IOC, IHO, and
BODC, 2003), a global 30 arcsec gridded bathymetry, which
was supplied by the Intergovernmental Oceanographic Com-
mission and International Hydrographic Organization. In or-
der to reduce the influence of seamounts on the model stabil-
ity, the bathymetry was low-pass filtered. Three parameters
can be used in the model to smooth the bathymetry. Firstly,
the slope parameter (r = grad(h) h−1) maximum value for
bathymetry; secondly, the number of passes of a selective fil-
ter that reduces the isolated seamounts on the deep ocean;
and lastly, the number of passes of a Hanning filter at the
end of the smoothing procedure to ensure no noise in the
bathymetry. In our configuration, these parameter values are
0.25, 12 and 4, respectively, based on a compromise between
model stability and closeness to the real topography.

The model is initialized from rest using the monthly cli-
matological air–sea flux from the Comprehensive Ocean–
Atmosphere Data Set (COADS; Clark et al., 1996) with a 10-
year spinup in order to obtain a fairly stable initial state. From
January 1990 to December 2009, momentum and buoyancy
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Figure 1. (a) Topography of the model region (depths in meters); the dotted line is the location of the 136◦ E section. (b) Horizontal
distributions. (c) Temporal evolutions of Argo profiles used in this paper. The black line and the short dashed line represent the number of
Argo floats and observations, respectively.

air–sea fluxes were derived from the 6-hourly NCEP Cli-
mate Forecast System Reanalysis (CFSR) product (Saha et
al., 2010). The model configuration implements open bound-
ary conditions. Water level, temperature, salinity and velocity
at the open boundaries are derived from Simple Ocean Data
Assimilation (SODA; Carton and Giese, 2008). Monthly cli-
matological freshwater inflows from the Yangtze River, Pearl
River and Mekong River with zero salinity and monthly vary-
ing temperatures are prescribed at the upstream boundaries.
Considering the previous validation exercises (Wang et al.,
2016), the model gives a good simulation of northwestern
Pacific Ocean, especially in the subtropical Pacific region.
The initial conditions for both the control (i.e., without as-
similation) and the assimilation experiments are provided by
the simulated ocean state valid on 1 January 2010. The con-
trol experiment for 2010 without data assimilation provides
a basis for comparison.

The assimilation corrections are performed daily, using all
the Argo profiles in the previous 1-day assimilation time win-
dow. The ocean model is used to bring the ocean fields 1 day
forward in time.

There are three main steps in the system as shown in Fig. 2:
(a) preparation of temperature and salinity observations from
Argo profiles; (b) integration of the NwPM model using the
previous analysis increments to correct the initial conditions
and calculation of misfits; (c) running the data assimilation
system to produce the analysis increments for the next model
integration. The misfits are computed online by the model
during step (b). As the misfits come from Argo floats and
are evaluated during the model integration (i.e., before be-
ing incorporated into the data assimilation system in the next
analysis step), they represent a fairly independent dataset for
the validation, because their subsequent measurements are
sampled at different locations. Thus the temporal correlation
of the observational error can be reasonably assumed to be
negligible.

2.2 Observational data for assimilation

Argo is a global array of free-drifting profiling floats that
measures the temperature and salinity of the upper 2000 m of
the ocean. Figure 1b and c show the horizontal distributions
and temporal evolutions of the Argo profiles in 2010, respec-
tively. The profiles are quality-controlled and disseminated
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Figure 2. Flow chart of the system: Tn represents the system running date and Tn+1 represents the next system running date.

by Ifremer/CORIOLIS (Cabanes et al., 2013). The Argo net-
work provides a fair coverage in the northwestern Pacific re-
gion and south of the Sea of Japan. Only a few Argo profiles
are available in the northern region of the South China Sea.
From January to December 2010, there were 9101 (1011064)
T/S profiles (observations) available in the northwestern Pa-
cific domain. In order to control the quality of observations,
maximum thresholds for misfits are set up, equal to 5.0 ◦C
and 0.5 psu for temperature and salinity observations, respec-
tively. In the future, nonuniform thresholds may be imple-
mented to account for the nonhomogeneous background er-
rors in the NwPM domain.

2.3 Assimilation algorithms

The basic goal of the 3DVAR system is to provide an “op-
timal” estimate of the true oceanic state at analysis time
through solving the assimilation problem by minimizing the
following cost function (e.g., Ide et al., 1997):

J (x)= Jb+ Jo (1)

=
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2

[
H(x)− yo]T

R−1 [
H(x)− yo]

,

where x is the unknown ocean state, equal to the analysis xa

at the minimum of J ; xb is the background, which is an a
priori estimate of the state of the ocean (in our case a one-
day forecast from the previous analysis and forecast cycle);
yo is the vector of the observations; H(x) is the (nonlinear)
observation function that projects the model field x to the
observation space; and B and R are the covariance matri-
ces of the background and observation errors, respectively.
Equation (1) is linearized around the background state (e.g.,
Lorenc, 1997) into the following form:

J (δx)=
1
2
δxTB−1δx+

1
2
(Hδx− d)TR−1 (Hδx− d), (2)

where d = [yo
−H(xb)] is the misfit, H is the tangent-

linear version of H(x), linearized around xb, and δx =

x− xb calculates the analysis increments. The lineariza-
tion of H(x) in Eq. (2) ensures that the cost function is
quadratic. The misfits are evaluated online by the model,
taking the background at the same time as the observa-
tion, namely using the so-called first guess at appropri-
ate time (FGAT) scheme. The minimization is performed

over the model space defined with depth levels, thus requir-
ing interpolation from – and to – the vertical sigma coor-
dinates used by ROMS before – and after – the analysis
step. The quasi-Newton L-BFGS algorithm (limited-memory
Broyden–Fletcher–Goldfarb–Shanno; Byrd et al., 1995) is
used to minimize the cost function, thus producing the op-
timal analysis.

The background term of the cost function is pre-
conditioned via a control variable transformation (Lorenc,
1988); i.e., the cost function is minimized over the control
variable u, with δx = Uu and B= UUT . The transformation
also avoids the explicit inversion of B. The cost function thus
becomes

J =
1
m2
uT u+

1
2
(HUu− d)TR−1 (HUu− d) . (3)

The formulation of the background-error covariance Bis thus
simplified to the definition of the square-root background-
error covariance operator U (see next section).

2.4 Background-error covariance matrix

The specification of the background-error covariance matrix
is one of the most important aspects affecting the perfor-
mance of any variational data assimilation system. There-
fore, an appropriate background-error covariance matrix is
crucial for our 3DVAR system. The formulation of the back-
ground term of the cost function is described in Dobricic and
Pinardi (2008). The background-error covariance matrix is
decomposed into horizontal correlations and vertical covari-
ances, which are assumed to be independent of each other,
i.e., separable, namely U= UhUv .

For the vertical component of the background-error co-
variance matrix, monthly multivariate empirical orthogo-
nal functions (EOFs) are used as in Barker et al. (2004),
namely Uv = E31/2, where columns of E contain multivari-
ate eigenvectors and 3 is a diagonal matrix containing the
associated eigenvalues. The EOFs are calculated from the
model daily means of a full-resolution simulation covering
1995–2005 and contain covariances of sea level, temperature
and salinity.

For the northwestern Pacific region, seasonal differences
of the model errors are large. Therefore, we adopted monthly
sets of EOFs to construct the vertical background-error co-
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Figure 3. Distribution of yearly mean background-error standard deviation reconstructed from the EOFs: (a) sea level (m), (b) sea surface
temperature (◦C) and (c) sea surface salinity (psu). Areas shallower than 200 m are masked out; (d) eigenvalues corresponding to the first
20 EOFs.

variance matrix. Each monthly set consists of 20 EOFs with
100 z levels in the vertical. To compute EOFs over depth lev-
els, we interpolate the EOFs computed on sigma levels to
depth levels. This strategy resulted in cheaper calculations
and less noisy background-error profiles than the eigen de-
composition over model fields previously interpolated onto
depth levels. The horizontal correlation operator (Uh) as-
sumes a Gaussian shape for the correlation, with a uniform
correlation radius that is given as an input parameter and
equal to 4.2 km based on a set of sensitivity experiments.
These experiments demonstrated that 4.2 km provides bet-
ter skill scores than shorter or longer correlation radii (not
shown). A first-order recursive filter is used to approximate
the Gaussian shape horizontal covariances.

Figure 3 shows the map of the yearly mean background-
error standard deviation reconstructed from the EOFs, where
Fig. 3a refers to sea level (m), Fig. 3b to temperature (◦C)
at surface and Fig. 3c to salinity (psu) at the surface. Back-
ground errors peak east of Japan in the Kuroshio area for

all ocean variables. In terms of salinity, notable errors are
also visible in the tropical part of the northwestern Pacific
domain, which are linked to the large variability in the air–
sea water fluxes. Figure 3d shows the yearly mean eigen-
values of all EOFs, where the first and second EOFs ac-
count for 33.7 and 15.0 % of the background-error matrix, re-
spectively. The figure exemplifies the strong nonhomogene-
ity of background-error variances, leading to the need for our
point-wise definition of background-error covariances.

3 Model validation

This section reports the results of the assimilation of in situ
data from January to December 2010. We discuss the valida-
tion of the assimilation experiment and simulation (or con-
trol) experiment, where the simulated fields and the analysis
fields are called SFs and AFs, respectively.
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Figure 4. Vertical distribution of misfits for temperature (a, in ◦C) and salinity (b, in psu): the red line represents the AF bias, the black line
represents the SF bias, the orange dotted line represents the misfits of AF and the gray dotted line represents the misfits of SF.

3.1 Comparison with profiles

To validate the multivariate assimilation scheme, Argo pro-
files are used for validation. Argo misfits are independent
observation–model departures because they are evaluated be-
fore being incorporated into the assimilation system.

3.1.1 Vertical distribution of T /S errors

To validate the performance of the assimilation system, the
vertical distribution of T/S errors are compared. Figure 4
shows the vertical distribution of T/S misfits computed with
Argo profiles and model simulations from the SFs and AFs.
The results show that the AF run significantly reduces the
biases in SF, from more than 0.7 ◦C (0.02 psu) to less than
0.2 ◦C (0.01 psu) for temperature (salinity) at depths below
300 m, especially around the ocean mixed layer depth. T/S
biases decrease with the depth: in the water deeper than
1000 m, biases become very small, as expected from the de-
creased variability of T/S.

In order to further validate the vertical distribution of T/S
misfits, we compared the vertical distribution of T/S root
mean square error (RMSE) and mean absolute error (AE).
Figure 5 shows the RMSE and AE of temperature and salin-
ity misfits for AFs and SFs. They have a similar vertical
structure: the AF run has a significantly lower RMSE and AE
than the SF run. In terms of temperature, as shown in Fig. 5a,
the maximum RMSE of temperature errors is around a depth

of 150 m, which corresponds approximately to the depth of
the mixed layer. The improvement rate (RMSE decrease) af-
ter assimilation can reach up to 50 % at depths of around
10 m and higher than 30 % at depths shallower than 600 m.
The RMSE decreased by ∼ 0.60 ◦C for the upper 900 m, but
a slight deviation of ∼ 0.015 appears from 900 to 1500 m.
For salinity, as shown in Fig. 5b, the RMSE of misfits de-
crease considerably after assimilation, especially at depths
shallower than 600 m. The RMSE decreased by ∼ 0.040 psu
for the upper 1000 m, but a slight deviation of ∼ 0.002 ap-
pears from 1000 to 1500 m.

3.1.2 Temporal evolution of the RMSE of temperature
and salinity

To investigate the performance of the assimilation system
over time, we compared the temporal evolution of T/S
RMSE. Figure 6 shows the time evolution of T/S RMSE
calculated from AF and SF. Figure 6a shows that the reduc-
tion in temperature RMSE grows with time and become in-
creasingly smaller for the AF run. On average, the RMSE
decreases from 0.988 ◦C in the SF run to 0.620 ◦C in the AF
run, i.e., a 37 % reduction occurs. Figure 6b shows that the
reduction in salinity RMSE is quite stable. On average, the
RMSE decreases from 0.098 in the SF run to 0.071 psu in
the AF run, i.e., a 28 % reduction.
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Figure 5. The vertical RMSE and AE for temperature (a, in ◦C) and salinity (b, in psu): the black solid line represents the RMSE of AF, the
gray solid line represents the RMSE of SF, the black dotted line represents the AE of AF and the gray dotted line represents the AE of SF.

3.2 Comparison with satellite data

3.2.1 Comparison with temperature

To evaluate the performance of the assimilation system on
temperature, independent satellite sea surface temperature
data (OISST, 1/4◦× 1/4◦; Reynolds et al., 2007) are used for
validation. Figure 7 shows the monthly mean average SST
differences from OISST calculated from SF (Fig. 7a) and AF
(Fig. 7b), where 1, 2, 3 and 4 represent January, April, July
and October, respectively. The results show that the AF run
reduces the SST bias from 1.21 to 1.07 ◦C in most of the
northwestern Pacific, especially the tropical zone and south
and east of Japan. Also in the Sea of Japan, there is a visi-
ble improvement. However, there are still regions with biases
larger than 1.5 ◦C, especially around the Kuroshio extension,
likely due to the inaccuracies in the air–sea fluxes in this re-
gion.

3.2.2 Comparison with sea level anomaly

To evaluate the performance of the assimilation system on
sea level, independent Archiving, Validation and Interpreta-
tion of Satellite Oceanographic data (AVISO, 1/4◦× 1/4◦; Le
Traon et al., 2003) were used for validation. Figure 8 shows
monthly mean average SLA differences from AVISO calcu-
lated from SF (Fig. 8a) and AF (Fig. 8b), the numbers have
the same meanings as in Fig. 7. The results show that the in
situ observation assimilation (AF run) reduces the SLA bias
from 11.8 to 11.1 cm in the northwestern Pacific. As Fig. 8
shows, the SLA bias is reduced after data assimilation in

most of the northwestern Pacific, especially the tropical area.
However, there are large biases in the region of the Kuroshio
Extension, which are difficult to correct without directly as-
similating altimetry data.

Figure 9 shows the time evolution of SLA RMSE calcu-
lated from AF and SF. On average, the RMSE decreases from
13.1 cm in the SF run to 12.8 cm in the AF run. Because the
greatest errors occur in the region of the Kuroshio Extension
as shown in Fig. 8, the RMSE decreases from 10.6 cm in the
SF run to 9.6 cm in the AF run, i.e., a 9.4 % reduction, when
this region (30–40◦ N, 135–160◦ E) is masked out.

3.3 Comparison with reprocessed datasets

Consistency checks were carried out by comparing the SF
and AF monthly mean temperature and salinity with the
EN4.0.2 (1◦× 1◦; Good et al., 2013) datasets, which are ob-
jective analyses that incorporate all in situ hydrographic pro-
files. In this section, the salinity error calculated by the model
output for AF and SF and the in situ reprocessed dataset for
EN4.0.2 will first be compared at the surface. Secondly, the
T/S error will be validated at the 137◦ E section, which has
a long time series of in situ observations.

3.3.1 Comparison with salinity at surface

To validate the sea surface salinity (SSS), Fig. 10 shows
the monthly mean average SSS bias computed from SF
(Fig. 10a) and AF (Fig. 10b) with respect to EN4.0.2, where
the numbers have the same meanings as in Fig. 7. As shown
in Fig. 10, there are many regions, especially near the Equa-
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Figure 6. Temporal evolution of temperature (a, in ◦C) and salinity (b, in psu). The RMSE is computed against the Argo profiles for the AF
(black solid line) and SF (gray dotted line).

Figure 7. Monthly mean temperature bias at surface (in ◦C) for (1) January, (2) April, (3) July and (4) October: (a) SST error calculated by
SF and OISST; (b) SST error calculated by AF and OISST. Depths below 200m are masked out.

tor, with a bias larger than 0.3 for both the SF run and AF
run. The results show that the reduction in SSS bias is, on
average, from 0.363 to 0.308 psu (i.e., a reduction of 15.2 %)
in October (Fig. 10a4 and b4). Due to the lack of observa-
tions, no significant improvements occur in the South China
Sea.

3.3.2 Comparison at 137◦ E section

To validate the vertical properties of the system, temperature
and salinity sections of 137◦ E are presented. The section is
chosen because of the long time series of in situ observations.

Figures 11 and 12 show the temperature and salinity distri-
butions of AF (Figs. 11a, 12a) and EN4.0.2 (Figs. 11b, 12b),
wherein the numbers have the same meanings as in Fig. 7
for the upper 1000 m. For temperature (Fig. 11), the vertical
distribution of the AF run has a structure similar to the re-
processed dataset. The April and July penetrations of the 18◦

isotherm in AF have the same depth as EN4.0.2, while SF
does not reproduce these features. Also for salinity (Fig. 12),
during the spring and summer seasons the AF run has a bet-
ter performance in reproducing the vertical shapes of salinity,
especially in the northernmost area of the domain.
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Figure 8. Monthly mean sea level anomaly (SLA) bias (in meter) for (1) January, (2) April, (3) July and (4) October: (a) SLA bias calculated
by SF and AVISO; (b) SLA bias calculated by AF and AVISO. Depths below 200 m are masked out.

Figure 9. Temporal evolution of SLA RMSE (in meters). RMSE
computed with the AVISO dataset for the AF (solid line) and SF
(dotted line). The black line represents the RMSE in the entire do-
main and the gray line represents the RMSE in the region without
the Kuroshio Extension (NKE).

4 Discussion

4.1 Fitting the analyses with observations

Following the assimilation scheme in Sect. 2.1, the Argo mis-
fits are independent observations that can be used for valida-
tion. In order to evaluate the greatest potential for the system,
another analysis and forecast scheme was set up, illustrated
by the dotted line in Fig. 2. Compared to the original scheme
(AF), the analysis increments are used to correct the initial
conditions of the model at the beginning of the assimilation
time window. Therefore, two sets of misfits are available, be-
fore (bDA) or after (aDA) the data assimilation correction,

respectively, i.e., before or after being incorporated into the
system. To investigate the performance of this scheme, we
assimilated Argo profiles in December 2010. Meanwhile, a
control run (CTRL) without data assimilation was performed
for validation purposes.

Figure 13a, b show the RMSE vertical profiles of temper-
ature and salinity for the AF, bDA, aDA and CTRL runs.
Here the profiles are not independent because they have been
already assimilated into the model. The aDA therefore pro-
vides a consistency check of the assimilation system rather
than independent validation metrics. For temperature, the
data assimilation led to a large improvement within the top
800 m. On average, the RMSE for temperature was 0.58 ◦C
for AF, 0.60 ◦C for bDA, 0.40 ◦C for aDA and 0.68 ◦C for
CTRL. For salinity, the RMSE of aDA decreased, particu-
larly in the top 600 m. The aDA run performed better than
the other runs, but there were slight deviations for water
deeper than 1000 m. On average, the RMSE for salinity was
0.069 psu for AF, 0.070 psu for bDA, 0.056 psu for aDA and
0.081 psu for CTRL. By comparing the two schemes, skill
score improvements were not fully satisfactory for the re-
gions shallower than 1000 m. In the future, we plan to retune
the vertical EOFs in the shallow areas.

Figure 13c, d show the time evolution of T/S RMSE
for the AF, bDA, aDA and CTRL runs. The difference be-
tween the simulation with and without assimilation grows
with time. In terms of temperature (Fig. 13c), on 31 Decem-
ber 2010, the RMSE decreased from 0.97 ◦C in the CTRL run
to 0.73 ◦C in the AF run, 0.75 ◦C in the bDA run and 0.46 ◦C
in the aDA run. Regarding salinity (Fig. 13d), the RMSE de-
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Figure 10. Monthly mean salinity bias at surface (in 1): (1) January, (2) April, (3) July and (4) October: (a) SSS error calculated by SF and
EN4.0.2, (b) SSS error calculated by AF and EN4.0.4. Depths below 200 m are masked out.

Figure 11. Distribution of temperature (in ◦C) at transect of 137◦ E: (a) AF, (b) SF and (c) EN4.0.2 for (1) January, (2) April, (3) July and
(4) October.
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Figure 12. Distribution of salinity (in psu) at transect of 137◦ E: (a) AF, (b) SF and (c) EN4.0.2 for (1) January, (2) April, (3) July and
(4) October.

creased from 0.095 psu in the CTRL run to 0.081 psu in the
AF run, 0.077 psu in the bDA run and 0.063 psu in the aDA
run. Overall, the improvement in the data assimilation system
was ∼ 0.46 ◦C (0.06 psu) for temperature (salinity).

4.2 Operational forecast experiment

In order to discuss the performance of data assimilation in
operational configurations, an experiment was set up for 2–
31 December 2010. The analysis frequency was daily, with
daily forecasts of up to 5 days. Figure 14 shows the tempo-
ral evolution of T/S RMSE in comparison with a control run
without data assimilation. The results show that the reduction
in T/S RMSE with respect to the control experiment was in-
creasingly less significant with the increase in forecast time,
but it was smaller than the CTRL run RMSE in most cases,
especially in the second half of the experiment. In terms of
temperature, on average, the RMSE was 0.761, 0.773, 0.781,
0.782 and 0.801 ◦C for the first, second, third, fourth and
fifth day forecast, respectively, i.e., always smaller than the
RMSE of the CTRL run, which was equal to 0.873 ◦C. Re-
garding salinity, on average, the RMSE was 0.0846, 0.0858,
0.0863, 0.0867 and 0.0875 psu for the five forecast days, re-
spectively, i.e., performing better than the CTRL run (with
a RMSE of 0.0926 psu). We can thus conclude that the data
assimilation system significantly improves the prediction re-
sults for up to 5 days. Overall, the 3DVAR assimilation sys-

tem can be used as an assimilation scheme for operational
forecasting.

5 Conclusions

We have implemented a 3DVAR scheme in ROMS that as-
similates temperature and salinity observations from Argo
profiles. This work represents a first step towards a fully op-
erational analysis and forecast system developed at NMEFC
for use in maritime safety applications. The data assimilation
system was implemented in an eddy-resolving configuration
of the northwestern Pacific from January to December 2010.
A specific feature of our 3DVAR system is the separation of
the background-error covariance matrix into vertical and hor-
izontal modes in order to reduce the size of the data assimila-
tion problem. Horizontal correlations are modeled as Gaus-
sian functions through a first-order recursive filter, while ver-
tical covariances are estimated from a long-term model sim-
ulation and formulated as monthly sets of EOFs.

After assimilating the Argo profiles, the average daily
temperature (salinity) RMSE decreased from 0.988 ◦C
(0.098 psu) to 0.620 ◦C (0.071 psu) in the assimilation exper-
iment throughout the northwestern Pacific Ocean. The tem-
perature RMSE decreased by ∼ 0.60 ◦C for the upper 900 m.
In addition, the salinity RMSE decreased by ∼ 0.040 psu for
the upper 1000 m.
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Figure 13. Vertical (a, b) and temporal (c, d) evolution of T/S RMSE: green solid line represents the RMSE of the AF run, the blue solid
line represents the RMSE of bDA run, the red dotted line represents the RMSE of the aDA run and the black dotted line represents the RMSE
of CTRL run.

Figure 14. Temporal evolution of temperature (a) and salinity (b) RMSE with 5-day forecasting experiment: dark blue bar represents the
RMSE of first-day forecast, the light blue bar represents the RMSE of the second-day forecast, the emerald bar represents the RMSE of
third-day forecast, the orange bar represents the RMSE of fourth-day forecast, the red bar represents the RMSE of fifth-day forecast and the
solid line represents the RMSE of CTRL run.
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The OISST satellite-derived datasets (SST) and AVISO
(sea level anomaly) and temperature and salinity objective
analyses from EN4.0.2 were collected for validation. A com-
parison of these datasets showed that the data assimilation
provides a beneficial effect for the sea level, temperature and
salinity at the surface in the model region. By comparing
the assimilation experiment with the reprocessed dataset, the
data assimilation provided a good reproduction of the ver-
tical structure across the data-rich transect at 137◦ E. This
led to a correct representation of the penetration of the 18◦

isotherm in the northern part of the domain during the spring
and summer seasons.

The potential of the data assimilation system was also dis-
cussed by assessing the assimilation experiments with val-
idating observations before and after their ingestion in the
system. The results show that the minimum RMSE the assim-
ilation system is able to reach is ∼ 0.46 ◦C for temperature
and ∼ 0.06 for salinity. However, the improvements in the
data assimilation system are not completely satisfactory be-
low 1000 m. In order to better simulate the T/S in the depths
below 1000 m, a further retuning of the vertical EOFs may
be necessary to avoid spurious analysis increments at depth.

The assimilation system was also tested in an operational
framework for a 1-month period, where daily analysis cycles
and 5-day forecasts were produced. The 3DVAR initializa-
tion improved the short-term predictability in the northwest-
ern Pacific Ocean. It led to skill scores that beat those of a
non-assimilative experiment for all 5 forecast days.

Overall, the 3DVAR assimilation system performed well
in the assimilation experiment. All these results encourage
the implementation of the system in an operational envi-
ronment for maritime safety applications. In further exper-
iments, we plan to extend the assimilated observing net-
works to sea level anomaly and sea surface temperature data
from satellites. This may alleviate the biases occurring in the
mesoscale active region of the Kuroshio extension due to in-
accuracies in the air–sea exchange fluxes and limitations in
capturing the eddy-dominated ocean dynamics in that region.

6 Data availability

The Argo profiles, which are quality controlled and dissem-
inated by Ifremer/CORIOLIS, are described in Cabanes et
al. (2013) and cover from 1995 to now. The atmosphere
forcing data are from CFSR/NECP (Saha et al., 2010) and
cover 1979 to now. The SODA dataset is described in
Carton and Giese (2008) and is available from 1970 to
2010. The bathymetry data are obtained from the British
Oceanographic Data Center (BODC). This version of the
GEBCO_08 grid was released in November 2010 with a ver-
sion code of 20100927. Information on the dataset is given
by Hall (2002). The satellite daily OISST is described in
Reynolds et al. (2007). The MGDSST is provided by JMA
(Japan Meteorological Agency) and is described in Kurihara

et al. (2006). The title of the reprocessed dataset is EN4.0.2,
which is described in Good et al. (2013) and covers 1900
to 2015. The SLA dataset, which is provided by AVISO, is
described in Le Traon et al. (2003).
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