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Abstract. We present a newly developed upper-thermocline,
open-ocean biogeochemical flux model that is complex and
flexible enough to capture open-ocean ecosystem dynamics
but reduced enough to incorporate into highly resolved nu-
merical simulations and parameter optimization studies with
limited additional computational cost. The model, which
is derived from the full 56-state-variable Biogeochemical
Flux Model (BFM56; Vichi et al., 2007), follows a bio-
logical and chemical functional group approach and allows
for the development of critical non-Redfield nutrient ratios.
Matter is expressed in units of carbon, nitrogen, and phos-
phate, following techniques used in more complex models.
To reduce the overall computational cost and to focus on
upper-thermocline, open-ocean, and non-iron-limited or non-
silicate-limited conditions, the reduced model eliminates cer-
tain processes, such as benthic, silicate, and iron influences,
and parameterizes others, such as the bacterial loop. The
model explicitly tracks 17 state variables, divided into phy-
toplankton, zooplankton, dissolved organic matter, particu-
late organic matter, and nutrient groups. It is correspondingly
called the Biogeochemical Flux Model 17 (BFM17). After
describing BFM17, we couple it with the one-dimensional
Princeton Ocean Model for validation using observational
data from the Sargasso Sea. The results agree closely with
observational data, giving correlations above 0.85, except for
chlorophyll (0.63) and oxygen (0.37), as well as with corre-
sponding results from BFM56, with correlations above 0.85,
except for oxygen (0.56), including the ability to capture
the subsurface chlorophyll maximum and bloom intensity.
In comparison to previous models of similar size, BFM17

provides improved correlations between several model out-
put fields and observational data, indicating that reproduc-
tion of in situ data can be achieved with a low number of
variables, while maintaining the functional group approach.
Notable additions to BFM17 over similar complexity models
are the explicit tracking of dissolved oxygen, allowance for
non-Redfield nutrient ratios, and both dissolved and partic-
ulate organic matter, all within the functional group frame-
work.

1 Introduction

Biogeochemical (BGC) tracers and their interactions with
upper-ocean physical processes, from basin-scale circula-
tions to millimeter-scale turbulent dissipation, are critical for
understanding the role of the ocean in the global carbon cy-
cle. These interactions cause multi-scale spatial and tempo-
ral heterogeneity in tracer distributions (Strass, 1992; Yoder
et al., 1992; McGillicuddy et al., 2001; Gower et al., 1980;
Denman and Abbott, 1994; Strutton et al., 2012; Clayton,
2013; Abraham, 1998; Bees, 1998; Mahadevan and Archer,
2000; Mahadevan and Campbell, 2002; Levy and Klein,
2015; Powell and Okubo, 1994; Martin et al., 2002; Ma-
hadevan, 2005; Tzella and Haynes, 2007) that can greatly
affect carbon exchange rates between the atmosphere and
interior ocean, net primary productivity, and carbon export
(Lima et al., 2002; Schneider et al., 2008; Hauri et al., 2013;
Behrenfeld, 2014; Barton et al., 2015; Boyd et al., 2016).
There are still significant gaps, however, in our understand-
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ing of how these biophysical interactions develop and evolve,
thus limiting our ability to accurately predict critical ex-
change rates.

Better understanding these interactions requires accurate
physical and BGC models that can be coupled together. The
exact equations that describe the physics (e.g., the Navier–
Stokes or Boussinesq equations) are often known and physi-
cally accurate solutions can be obtained given sufficient spa-
tial resolution and computational resources. Due to the vast
diversity and complexity of ocean ecology, however, even
when only considering the lowest trophic levels, accurately
modeling BGC processes can be quite difficult. Put simply,
there are no known first-principle governing equations for
ocean biology.

As such, two different approaches to modeling BGC pro-
cesses are often used when faced with this challenge. The
first is to increase model complexity and include equations
for every known BGC process. Often, these models include
species functional types or multiple classes of phytoplank-
ton and/or zooplankton that each serve specific functional
roles within the ecosystem, such as calcifiers or nitrogen fix-
ers. The justification for this approach is that particular phy-
toplankton and zooplankton groups serve as important sys-
tem feedback pathways, and that without explicit represen-
tation of these feedbacks, there is little hope of accurately
representing the target ecosystem (Doney, 1999; Anderson,
2005). In many cases, these models also contain variable
intra- and extracellular nutrient ratios, which are important
when accounting for different nutrient regimes within the
global ocean and species diversity of non-Redfield nutrient
ratio uptake (Dearman et al., 2003).

Although these more complex models are typically highly
adaptable and are often able to capture different dynamics
than those for which they were calibrated (Blackford et al.,
2004; Friedrichs et al., 2007), these more complex models
contain many more parameters than their simplified coun-
terparts. Moreover, many of the parameters, such as phy-
toplankton mortality, zooplankton grazing rates, and bacte-
rial remineralization rates, are inadequately bounded by ei-
ther observational or experimental data (Denman, 2003). Be-
cause of the increased complexity of such models, it is also
often difficult to ascertain which processes are responsible
for the development of a particular event (e.g., a phytoplank-
ton bloom), and so these models can be ill suited for process
studies. Lastly, while these highly complex models are reg-
ularly used within global Earth system models (ESMs), they
are typically prohibitively expensive to integrate within high-
fidelity, high-resolution physical models. Examples of such
models are those used to enhance fundamental understanding
of subgrid-scale (SGS) physics in ESMs and to assist in the
development of new SGS parameterizations (Roekel et al.,
2012; Hamlington et al., 2014; Suzuki and Fox-Kemper,
2015; Smith et al., 2016, 2018).

In broad terms, the second common BGC modeling ap-
proach is focused on substantially decreasing model com-

plexity and severely truncating the number of equations
used to describe the dynamics of an ecosystem. Such ap-
proaches include the well-known nutrient–phytoplankton–
zooplankton–detritus class of models. These models have
significantly fewer unknown parameters and can be more
easily integrated within complex physical models. Their sim-
plicity also enables greater transparency when attempting to
understand the dominant forcing or dynamics underlying a
particular event. While they are often capable of reproducing
the overall distributions of chlorophyll, primary production,
and nutrients (Anderson, 2005), such simplified models have
been shown to underperform at capturing complex ecosys-
tem dynamics, and often struggle in regions of the ocean for
which they were not calibrated (Friedrichs et al., 2007).

Although both of these general BGC modeling approaches
have their respective advantages, particularly given their dif-
ferent objectives, the difference between lower-complexity
BGC models used in small-scale studies and the more com-
plex BGC models used in global ESMs poses a problem.
In particular, the difficulty in directly comparing the two
types of models makes the process of “scaling up” newly de-
veloped parameterizations or “downscaling” BGC variables
within nested-grid studies much more challenging. This mo-
tivates the need for a new BGC model that is reduced enough
to be usable within high-resolution, high-fidelity physical
simulations for process, parameterization, and parameter op-
timization studies but is still complex enough to capture im-
portant ecosystem feedback dynamics, as well as the dynam-
ics of vastly different ecosystems throughout the ocean, as
required by ESMs.

To begin addressing this need, here we present a
new upper-thermocline, open-ocean, 17-state-variable Bio-
geochemical Flux Model (BFM17) obtained by reducing
the larger 56-state-variable Biogeochemical Flux Model
(BFM56) developed by Vichi et al. (2007). Most high-
fidelity, high-resolution physical models are capable of inte-
grating 17 additional tracer equations with limited additional
computational cost. Following the approach used in BFM56
(Vichi et al., 2007, 2013), a biological and chemical func-
tional family (CFF) approach underlies BFM17, where mat-
ter is exchanged in the model through units of carbon, nitrate,
and phosphate. This permits variable non-Redfield intra- and
extracellular nutrient ratios. Most notably, BFM17 includes
a phosphate budget, the importance of which has historically
been underappreciated even though observational data have
indicated its potential importance as a limiting nutrient, par-
ticularly in the Atlantic Ocean (Ammerman et al., 2003). To
reduce model complexity, we parameterize certain processes
for which field data are lacking, such as bacterial remineral-
ization.

In the present study, we outline, in detail, the formula-
tion of BFM17 and its development from BFM56. We cou-
ple BFM17 to the 1-D Princeton Ocean Model (POM) and
validate the model for upper-thermocline, open-ocean condi-
tions using observational data from the Sargasso Sea. We also
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compare results from BFM17 and the larger BFM56 for the
same upper-thermocline, open-ocean conditions. As a result
of the focus on upper-thermocline, open-ocean conditions,
further assumptions have been made in deriving BFM17
from BFM56, such as the exclusion of any representation for
the benthic system and the absence of limiting nutrients such
as iron and silicate.

It should be noted that the primary focus of the present
study is to introduce the viability of BFM17 as an accurate
BGC model for high-resolution, high-fidelity simulations of
the upper ocean used in process, parameterization, and pa-
rameter optimization studies. This is accomplished here by
comparing results from BFM17 to results from observations
and BFM56; as such, here we only consider one open-ocean
location (i.e., the Sargasso Sea). Although the model must
also be applied at other locations to determine its general ap-
plicability, its ability to reproduce important and difficult key
behaviors in the Sargasso Sea supports its use as a process
study model. The correspondence between BFM17 and the
more general BFM56 also provides confidence that the re-
duced model will prove effective at modeling other ocean
locations and conditions, and exploring the range of appli-
cability of BFM17 remains an important direction for future
research. We also emphasize that relatively limited calibra-
tion of BFM17 parameters has been performed in the present
study. Most parameters are set to their values used in the
larger BFM56 (Vichi et al., 2007, 2013), and optimization of
these parameters over a range of ocean conditions is another
important direction of future research, for which BFM17 is
ideally suited.

Finally, we note that other similarly complex BGC models
have been calibrated using data from the Sargasso Sea, such
as those developed in Levy et al. (2005), Ayata et al. (2013),
Spitz et al. (2001), Doney et al. (1996), Fasham et al. (1990),
Fennel et al. (2001), Hurtt and Armstrong (1996), Hurtt and
Armstrong (1999), and Lawson et al. (1996). However, each
of these models employs less than 10 species and none use
a CFF approach or include oxygen, a tracer that is histor-
ically difficult to predict. Although some of these models
employ data assimilation techniques (e.g., Spitz et al., 2001)
and produce relatively accurate results, most leave room for
improvement. With a minimal increase in the number and
complexity of the model equations, such as those associ-
ated with tracking phosphate in addition to carbon and ni-
trate, and by including both particulate and dissolved organic
nutrient budgets, we anticipate that a significant increase in
model accuracy and applicability might be achieved over pre-
vious models of similar complexity. Additionally, with this
increase in model complexity, the disparate gap between the
complexity of BGC models used in small- and global-scale
studies is reduced, thereby simplifying up- and down-scaling
efforts. This last point is emphasized here by the good agree-
ment between results from BFM17 and BFM56.

In the following, BFM17 is introduced in Sect. 2, with
detailed equations and parameter values provided in Ap-

pendix A. Results from a zero-dimensional (0-D) test of
BFM17 are provided in Appendix B. In Sect. 3, BFM17 is
coupled to the 1-D POM physical model. A discussion of the
methods used to calibrate and validate the model with ob-
servational data collected in the Sargasso Sea is presented in
Sect. 4. Model results, a skill assessment, a comparison to
results from BFM56, and a brief comparison to other similar
BGC models are discussed in Sect. 5.

2 Biogeochemical Flux Model 17 (BFM17)

The 17-state equation (BFM17) is an upper-thermocline,
open-ocean BGC model derived from the original 56-state
equation model (BFM56) (Vichi et al., 2007, 2013), which
is based on the CFF approach. In this approach, functional
groups are partitioned into living organic, non-living organic,
and non-living inorganic CFFs, and exchange of matter oc-
curs through constituent units of carbon, nitrogen, and phos-
phate. To date, there are no other BGC models with this or-
der of reduced complexity using the CFF approach, making
BFM17 unique and able to accurately reproduce complex
ecosystem dynamics.

BFM17 is a pelagic model intended for oligotrophic re-
gions that are not iron or silicate limited and is obtained
from the more-complete BFM56 by omitting quantities and
processes assumed to be of minor importance in these re-
gions. We have developed BFM17 primarily for use with
high-resolution, high-fidelity numerical simulations, includ-
ing large eddy simulations (LESs) used in process, parame-
terization, and parameter optimization studies. As such, we
do not validate the efficacy of BFM17 as a global BGC
model, and note that it is missing potentially important pro-
cesses for such an application, which we elaborate on shortly.
We also note that we compare BFM17 to the original BFM56
in Sect. 5 to demonstrate that, although it is reduced in com-
plexity, BFM17 is equally appropriate for use in seasonal
process, parameterization, and optimal parameter estimation
studies for which a more complex model such as BFM56
may be too computationally expensive. Nevertheless, given
the agreement between the BFM17 and BFM56 results in
Sect. 5, there is reason to believe that BFM17 may have po-
tential as a global BGC model, and the examination of the
broader applicability of BFM17 is an important direction for
future research.

In BFM17, the living organic CFF is comprised of single-
phytoplankton and zooplankton living functional groups
(LFGs); these two groups are the bare minimum needed
within a BGC model and already account for six state equa-
tions (corresponding to carbon, nitrogen, and phosphate con-
stituents of both groups). The baseline parameters used in
BFM17 are those detailed in Vichi et al. (2007), and a
complete list of the model parameters is provided in Ap-
pendix A. Parameters used in the representation of phyto-
plankton loosely correspond to the flagellate LFG in BFM56,
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while the zooplankton parameters correspond to the micro-
zooplankton LFG. The only relevant difference with respect
to Vichi et al. (2007) is related to the choice of the phyto-
plankton specific photosynthetic rate (r(0)P in Table A3 of Ap-
pendix A); in this case, the new value was chosen according
to the control laboratory cultures of Fiori et al. (2012).

Within BFM17, we track chlorophyll, dissolved oxygen,
phosphate, nitrate, and ammonium, since their distributions
and availability can greatly enhance or hinder important bio-
logical and chemical processes. Dissolved oxygen is of par-
ticular interest, because it is historically difficult to predict
using BGC models of any complexity. This is likely due, in
part, to missing physical processes in the mixing parameter-
izations used in global and column models. This provides
motivation for the present study, since a primary goal in the
development of BFM17 is to create a BGC model that can be
used in combination with high-resolution, high-fidelity phys-
ical models (e.g., those found in LES) to understand the ef-
fects of these physical processes and how they can be more
accurately represented in mixing parameterizations.

Dissolved and particulate organic matter, each with their
own partitions of carbon, nitrogen, and phosphate, are also
included in BFM17 to account for nutrient recycling and car-
bon export due to particle sinking. Another primary goal of
developing BFM17 is to explore how spatially decoupled (or
“patchy”) processes, such as the sinking of organic matter
and the subsequent upwelling of multiple recycled nutrients
(not just nitrate) affect the fate and distribution of a phyto-
plankton bloom.

Lastly, remineralization of nutrients is provided by param-
eterized bacterial closure terms, thereby reducing complexity
while still maintaining critical nutrient recycling. The related
parameter values (see Table A5 in Appendix A) were chosen
according to Mussap et al. (2016), who carried out sensitiv-
ity tests to evaluate the many parameter values found in the
literature.

Iron is omitted from BFM17, limiting the applicability of
the model in regions where iron components are important,
such as the Southern Ocean and the tropical Pacific. Thus,
if used in such regions, at least a fixed concentration of iron
may be needed (although this method has not yet been val-
idated within BFM17). Top-down control of the ecosystem
in the form of explicit predation of zooplankton is also not
included. Instead, a simple constant zooplankton mortality
is used, as this is a complicated process and understand-
ing where to add this closure and where to feed the partic-
ulate and dissolved nutrients from this process in a lower-
complexity model is not well understood. However, the ad-
dition of a top-down closure term was tested, and no ma-
jor differences were observed in the model results. Conse-
quently, it was assumed that the constant mortality term was
sufficient for this model, similar to other models of this com-
plexity (Fasham et al., 1990; Lawson et al., 1996; Clainche
et al., 2004). Additionally, the benthic system within BFM56
(Mussap et al., 2016) has been removed. It is assumed that

within the upper thermocline of the open ocean, the ecosys-
tem is not substantially influenced by a benthic system and
any water-column influences from depth can be taken into ac-
count using boundary conditions (such as those discussed in
Sect. 4). As such, we cannot attest to the accuracy of BFM17
in shelf or coastal regions.

In summary, notable novel attributes of BFM17, in com-
parison to other models of comparable complexity, are the
use of (i) CFFs for living organisms, including two LFGs for
phytoplankton and zooplankton, (ii) CFFs for both particu-
late and dissolved organic matter, (iii) a full nutrient profile
(i.e., phosphate, nitrate, and ammonium), and (iv) the track-
ing of dissolved oxygen. A summary of the 17 state variables
tracked in BFM17 is provided in Table 1, and a schematic of
the CFFs and LFGs used in BFM17, along with their inter-
actions, is shown in Fig. 1. The detailed equations compris-
ing BFM17, as well as all associated parameter values, are
presented in Appendix A. Results from an initial 0-D test of
BFM17 are provided in Appendix B.

3 Coupled physical–biogeochemical flux model

As a demonstration of BFM17 for predicting ocean biogeo-
chemistry in oligotrophic pelagic zones, here we couple the
model to a 1-D physical mixing parameterization and make
comparisons with available observational data in the Sar-
gasso Sea. In order to focus on the upper-thermocline, open-
ocean regime for which BFM17 was developed, the physical
model only extends 150 m in depth and diagnostically calcu-
lates diffusivity terms based upon prescribed temperature and
salinity profiles from the observations. While a 1-D physical
model is unlikely to resolve all processes relevant for biogeo-
chemistry in the upper thermocline, we have made additions,
such as large-scale general circulation and mesoscale eddy
vertical velocities, as well as relaxation bottom boundary
conditions for nutrient upwelling, to better represent missing
processes.

For all equations here and in Appendix A, we adopt the
same notation style used for BFM56 in Vichi et al. (2007),
Mussap et al. (2016), and the BFM user manual (Vichi et al.,
2013) for consistency and clarity. The coupled physical and
BGC model is a time–depth model that integrates in time the
generic equation for all biological state variables, denoted
Aj , given by

∂Aj

∂t
=
∂Aj

∂t

∣∣∣∣
bio
−

[
W +WE+ v

(set)
] ∂Aj
∂z

+
∂

∂z

(
KH

∂Aj

∂z

)
, (1)

where Aj are the 17 state variables of BFM17, the first term
on the right-hand side accounts for sources and sinks within
each species due to biological and chemical reactions (as
represented by the equations comprising BFM17 and out-
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Table 1. Notation used for the 17 state variables in the BFM17 model, as well as the chemical functional family (CFF), units, description,
and rate equation reference for each state variable. CFFs are divided into living organic (LO), non-living organic (NO), and inorganic (IO)
families.

Symbol CFF Units Description Equation

PC LO mg C m−3 Phytoplankton carbon (A5)
PN LO mmol N m−3 Phytoplankton nitrogen (A6)
PP LO mmol P m−3 Phytoplankton phosphorus (A7)
Pchl LO mg Chl am−3 Phytoplankton chlorophyll (A8)
ZC LO mg C m−3 Zooplankton carbon (A31)
ZN LO mmol N m−3 Zooplankton nitrogen (A32)
ZP LO mmol P m−3 Zooplankton phosphorus (A33)

R
(1)
C NO mg C m−3 Dissolved organic carbon (A41)
R
(1)
N NO mmol N m−3 Dissolved organic nitrogen (A42)
R
(1)
P NO mmol P m−3 Dissolved organic phosphorus (A43)
R
(2)
C NO mg C m−3 Particulate organic carbon (A44)
R
(2)
N NO mmol N m−3 Particulate organic nitrogen (A45)
R
(2)
P NO mmol P m−3 Particulate organic phosphorus (A46)

O IO mmol O2 m−3 Dissolved oxygen (A47)
N (1) IO mmol P m−3 Phosphate (A48)
N (2) IO mmol N m−3 Nitrate (A49)
N (3) IO mmol N m−3 Ammonium (A50)

Figure 1. Schematic of the 17-state-equation BFM17 model. The dissolved organic matter, particulate organic matter, and living organic
matter CFFs are each comprised of three chemical constituents (i.e., carbon, nitrogen, and phosphorus). The living organic CFF is further
subdivided into phytoplankton and zooplankton living functional groups (LFGs).
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lined in Appendix A), W and WE are the vertical veloci-
ties due to large-scale general circulation and mesoscale ed-
dies, respectively, v(set) is the settling velocity, and KH is
the vertical eddy diffusivity. Although the BFM17 formula-
tion and model results are the primary focus of the present
study, we also perform coupled physical–BGC simulations
using BFM56 for comparison. Equation (1) applies to all 17
state variables in BFM17, as well as to all 56 state variables
in BFM56. Consequently, the only differences between the
biophysical models with BFM17 and BFM56 are the num-
ber of state variables being tracked and the equations used
to calculate the biological forcing terms. The specific forms
of Eq. (1) for each of the 17 species in BFM17 are dis-
cussed in Appendix A, and the specific forms of this equation
for each of the 56 species in BFM56 were previously dis-
cussed in Vichi et al. (2007). The parameters used in BFM56
correspond to the values provided in Tables A3–A5 of Ap-
pendix A, with the remaining undefined parameters (since
BFM56 includes many more model parameters than BFM17)
based on values from Mussap et al. (2016).

The range of values forW andWE in Eq. (1) is included in
Table 2 and the corresponding depth profiles are discussed in
Sect. 4.3. The settling velocity, v(set), in Eq. (1) is only non-
zero for the three constituents of particulate organic matter,
and its value is given in Table 2. We assume v(set)

= 0 for
zooplankton, since zooplankton actively swim and oppose
their own sinking velocity. Finally, KH in Eq. (1) is calcu-
lated by the model and is described in more detail later in
this section.

To obtain the complete 1-D biophysical model, BFM17
has been coupled with a modification of the three-
dimensional (3-D) POM (Blumberg and Mellor, 1987) that
considers only the vertical (specifically, the upper 150 m of
the water column) and time dimensions; that is, the evolution
of the system in the (z, t) space. It is well known that the
primary calibration dimension in marine ocean biogeochem-
istry is along the vertical direction, as shown in several pre-
vious calibration and validation exercises (Vichi et al., 2003;
Triantafyllou et al., 2003; Mussap et al., 2016).

The 1-D POM solver (POM-1D) is used to calculate the
vertical structure of the two horizontal velocity components,
denoted U and V , the potential temperature, T , salinity,
S, density, ρ, turbulent kinetic energy, q2/2, and mixing
length scale, `. In this model adaptation, vertical tempera-
ture and salinity profiles are imposed from given climatolog-
ical monthly profiles obtained from observations, as previ-
ously done in Mussap et al. (2016) and Bianchi et al. (2005).
POM-1D directly computes the time evolution of the hori-
zontal velocity components, the turbulent kinetic energy and
the mixing length scale, all of which are used to compute
the turbulent diffusivity term,KH , required in Eq. (1). In this
configuration, POM-1D is called “diagnostic” since temper-
ature and salinity are prescribed. Furthermore, pressure ef-
fects are neglected in the density equation and the buoyancy

gradients and temperature are used in place of potential tem-
perature since we consider only the upper water column.

A detailed description of POM can be found in Blumberg
and Mellor (1987), and in the following we simply provide
a description of the physical model and equations solved in
POM-1D. In diagnostic mode, as used in the present study,
POM-1D solves the momentum equations for U and V given
by

∂U

∂t
− fV =

∂

∂z

(
KM

∂U

∂z

)
, (2)

∂V

∂t
+ fU =

∂

∂z

(
KM

∂V

∂z

)
, (3)

where f = 2�sinφ is the Coriolis force,� is the angular ve-
locity of the Earth, and φ is the latitude. The vertical viscos-
ity KM and diffusivity KH are calculated using the closure
hypothesis of Mellor and Yamada (1982) as

KM = q l SM , (4)
KH = q l SH , (5)

where q is the turbulent velocity and SH and SM are stability
functions written as

SM [1− 9A1A2GH ]− SH
[
(18A2

1+ 9A1A2)GH

]
= A1

[
1− 3C1− 6A1/B1

]
, (6)

SH [1− (3A2B2+ 18A1A2)GH ]= A2
[
1− 6A1/B1

]
. (7)

The coefficients in the above expressions are
(A1,B1,A2,B2,C1)= (0.92,16.6,0.74,10.1,0.08), with

GH =
l2

q2
g

ρ0

∂ρ

∂z
, (8)

where ρ0 = 1025 kg m−3, g = 9.81 m s−2. Following Mellor
(2001), GH is limited to have a maximum value of 0.028.
The equation of state relating ρ to T and S is non-linear
(Mellor, 1991) and given by

ρ = 999.8+ (6.8× 10−2
− 9.1× 10−3T

+ 1.0× 10−4T 2
− 1.1× 10−6T 3

+ 6.5× 10−9T 4)T

+ (0.8− 4.1× 10−3T + 7.6× 10−5T 2

− 8.3× 10−7T 3
+ 5.4× 10−9T 4)S

+ (−5.7× 10−3
+ 1.0× 10−4T

− 1.6× 10−6T 2)S1.5
+ 4.8× 10−4S2 , (9)

where the polynomial constants have been written only up
to the first digit. For a more precise reproduction of these
constants, the reader is referred to Mellor (1991). Finally, the
governing equations solved to obtain the turbulence variables
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Table 2. Values, units, and descriptions for parameters used in the combined physical–BFM17 model.

Symbol Value Units Description

v(set)
−1.00 m d−1 Settling velocity of particulate detritus

W −0.02–0 m d−1 Imposed general circulation vertical velocity
WE 0–0.1 m d−1 Imposed mesoscale circulation vertical velocity
λO 0.06 m d−1 Relaxation constant for oxygen at bottom
λN (1) 0.06 m d−1 Relaxation constant for phosphate at bottom
λN (2) 0.06 m d−1 Relaxation constant for nitrate at bottom
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where Kq = κ KH is the vertical diffusivity for turbu-
lence variables, κ = 0.4 is the von Karman constant, and
W̃ =

[
1+E2`

2/κ2 (1/|z| + 1/|z−H |)2
]

with (E1,E2)=

(1.8,1.33). In Eqs. (10) and (11), the time rate of change
of the turbulence quantities is equal to the diffusion of turbu-
lence (the first term on the right-hand side of both equations),
the shear and buoyancy turbulence production (second and
third terms), and the dissipation (the fourth term). This is a
second-order turbulence closure model that was formulated
by Mellor (2001) as a particular case of the Mellor and Ya-
mada (1982) model for upper-ocean mixing.

Boundary conditions for the horizontal velocities U =
(U,V ) and the turbulence quantities are

KM
∂U

∂z

∣∣∣
z=0
= τw , (12)

KM
∂U

∂z

∣∣∣
z=zend

= 0 , (13)(
q2,q2`

)∣∣∣
z=0
=

(
B

2/3
1
|τw|

Cd
,0
)
, (14)

(q2,q2`)|z=zend = 0 , (15)

where τw = Cd|uw|uw is the surface wind stress, uw is the
surface wind vector, Cd is a constant drag coefficient chosen
to be 2.5×10−3, and z= 0 and z= zend denote the locations
of the surface and the greatest depth modeled, respectively.

For all variables except oxygen, surface boundary condi-
tions for the coupled model variable Aj are

KH
∂Aj

∂z

∣∣∣∣
z=0
= 0 . (16)

By contrast, the surface boundary condition for oxygen has
the form

KH
∂O

∂z

∣∣∣∣
z=0
=8O , (17)

where 8O is the air–sea interface flux of oxygen computed
according to Wanninkhof (1992, 2014). The bottom (i.e.,
greatest depth) boundary conditions for phytoplankton, zoo-
plankton, dissolved organic matter, and particulate organic
matter are

KH
∂Aj

∂z

∣∣∣∣
z=zend

= 0 . (18)

This boundary condition was chosen since it allows removal
of the scalar quantity Aj through the bottom boundary of
the domain. This can be seen by integrating Eq. (1) over the
boundary layer depth using the boundary condition above,
giving

∂

∂t

z=0∫
z=zend

Ajdz=
[
W +WE+ v

(set)
]
Aj
∣∣
z=zend

, (19)

where the biological part of Eq. (1) has been neglected and
the resulting temporal change in the integrated scalar Aj is
negative since |(W+WE)|< |v

(set)
|, as shown in Table 2. For

oxygen, phosphate, and nitrate, the bottom boundary condi-
tions are

KH
∂Aj

∂z

∣∣∣∣
z=zend

= λj

(
Aj
∣∣
z=zend

−A∗j

)
, (20)

where λj and A∗j are the corresponding relaxation velocity
and observed at-bottom boundary climatological field data
value, respectively, of that species. Base values for the relax-
ation velocities are included in Table 2. Lastly, the bottom
boundary condition for ammonium is

KH
∂N (3)

∂z

∣∣∣∣∣
z=zend

= 0 . (21)
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Since observations of ammonium concentration in the ob-
servational area are not available, this choice is based on
the assumption that the nitrogen diffusive flux from depth
to the surface (euphotic) layers occurs mostly in the form of
a nitrate flux, consistent with the concepts of “new” and “re-
generated” production, as described by Dugdale and Goering
(1967) and Mulholland and Lomas (2008).

4 Field validation and calibration data

4.1 Study site description

Field data for calibration and validation of BFM17
are taken from the Bermuda Atlantic Time-series Study
(BATS) (Steinberg et al., 2001) and the Bermuda Testbed
Mooring (BTM) (Dickey et al., 2001) sites, which are lo-
cated in the Sargasso Sea (31◦40′ N, 64◦10′W) in the North
Atlantic subtropical gyre. Both sites are a part of the US Joint
Global Ocean Flux Study (JGOFS) program. Data have been
collected from the BATS site since 1988 and from the BTM
site since 1994.

Steinberg et al. (2001) provide an overview of the biogeo-
chemistry in the general BATS and BTM area. Winter mixing
allows nutrients to be brought up into the mixed layer, pro-
ducing a phytoplankton bloom between January and March
(winter mixed layer depth is typically 150–300 m). As ther-
mal stratification intensifies over the summer months, this
nutrient supply is cut off (summer mixed layer depth is typi-
cally 20 m). At this point, a subsurface chlorophyll maximum
is observed near a depth of 100 m. Stoichiometric ratios of
carbon, nitrate, and phosphate are often non-Redfield and, in
contrast to many oligotrophic regimes, phosphate is the dom-
inant limiting nutrient (Fanning, 1992; Michaels et al., 1993;
Cavender-Bares et al., 2001; Steinberg et al., 2001; Ammer-
man et al., 2003; Martiny et al., 2013; Singh et al., 2015).

4.2 Data processing

The region encompassing the BATS and BTM sites is char-
acterized as an open-ocean oligotrophic region that is phos-
phate limited. This region has thus been chosen for ini-
tial testing of BFM17 due to the prevalence of oligotrophic
regimes in the open ocean and to demonstrate the ability
of BFM17 to capture difficult non-Redfield ratio regimes
(which occur in phosphate-limited regions). The BATS/BTM
data have also been collected over many years, providing
long time series for model calibration and validation.

Data from the BATS/BTM area are used in the present
study for two purposes: (i) as initial, boundary, and forc-
ing conditions for the POM-1D biophysical simulations with
BFM17 and BFM56, and (ii) as target fields for validation of
the simulations. In addition to the subsurface BATS data, we
also use BTM surface data, such as the 10 m wind speed and
photosynthetically active radiation (PAR). For each observa-
tional quantity, we compute monthly averages over 27 years

for the BATS data and 23 years (not continuous) for the BTM
data. Additionally, we interpolate the BATS data to a verti-
cal grid with 1 m resolution. We subsequently smooth the in-
terpolated data, using a robust locally estimated scatterplot
smoothing (LOESS) method, to maintain a positive buoy-
ancy gradient, thereby eliminating any spurious buoyancy-
driven mixing due to interpolation and averaging.

Figure 2 shows the monthly climatological profiles of tem-
perature and salinity from the BATS data (maximum mixed
layer depth from the climatology is approximately 149 m,
which was calculated based upon a 0.2 kgm−3 increase in
density from the surface value), as well as the PAR and
10 m wind speed from the BTM data. The same monthly
averaging, vertical interpolations, and smoothing used for
the physical variables are also performed for biological vari-
ables, which largely serve as target fields for the validation
of BFM17.

4.3 Inputs to the physical model

The physical model computes density from the prescribed
temperature and salinity, and surface wind stress from the
10 m wind speed; temperature, salinity, and wind speed are
all provided by the BATS/BTM data. The model also uses
these data in the turbulence closure to compute the turbulent
viscosity and diffusivity. This diagnostic approach eliminates
any drifts in temperature and salinity that might occur due to
improper parameterizations of lateral mixing in a 1-D model,
therefore providing greater reliability. In addition to the 10 m
wind speed, temperature, and salinity, BFM requires monthly
varying PAR at the surface. For all the monthly mean input
datasets, a correction (Killworth, 1995) is applied. This cor-
rection is applied to the monthly averages to reduce the er-
rors incurred by linearly interpolating monthly averages to
the much shorter model time step.

We imposed both general circulation, W , and mesoscale
eddy,WE, vertical velocities in the simulations. The imposed
vertical profiles of these velocities have been adapted from
Bianchi et al. (2005), where the velocities are assumed to
be zero at the surface and reach their maxima near the base
of the Ekman layer, which is assumed to be at or below the
bottom boundary of the simulations. The general large-scale
upwelling or downwelling circulation, W , is due to Ekman
pumping and is correspondingly given as

W = k̂ ·∇×

(
τw

ρf

)
, (22)

where k̂ denotes the unit vector in the vertical direction.
The monthly average value and sign of the wind stress curl,
∇×τw, for the general BATS/BTM region is taken from the
Scatterometer Climatology of Ocean Winds database (Risien
and Chelton, 2008, 2011). The monthly value of W from
Eq. (22) is then assumed to be the maximum, occurring at
the base of the Ekman layer, for that particular month. Given
the sign of the wind stress curl for the BATS/BTM region, a
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Figure 2. Sargasso Sea physical variables, showing climatological monthly averaged (a) temperature, (b) 10 m surface wind speed, (c) surface
PAR, and (d) salinity. Panel (e) shows the mean seasonal general circulation velocity, W , and panel (f) shows the bimonthly maximum value
of the mesoscale eddy velocity WE. Monthly averaged mixed layer depths (defined as the depth at which the density is 0.2 kgm−3 greater
than the surface density) are shown as black lines in panel (a).

negative W was calculated, indicating general downwelling
processes in this region. Seasonal profiles ofW are shown in
Fig. 2e.

Due to the prevalence of mesoscale eddies within the
BATS/BTM region (Hua et al., 1985), which can provide
episodic upwelling of nutrients to the upper water column,
we also include an additional positive upwelling vertical ve-
locity,WE, which has a timescale of 15 d. The general profile
of WE is assumed to be the same as for W , with a value of
zero at the surface and a maximum value at depth. However,
there is no linear interpolation between each 15 d period, and
the maximum magnitude ofWE is randomized between 0 and
0.1 md−1, as shown in Fig. 2f for each 15 d period.

4.4 Initial and boundary conditions

Although the BATS/BTM data include information on many
biological variables, initial conditions for only 5 of the 17
species within BFM17 could be extracted from the data. Sim-
ilarly to the temperature and salinity, the initial chlorophyll,
particulate organic nitrogen, oxygen, nitrate, and phosphate
were interpolated to a mesh with 1 m vertical grid spacing,
averaged over the initial month of January, and smoothed
vertically in space to give the initial profiles seen in Fig. 3a.
The remaining 12-state-variable initial conditions were de-

termined either through the adoption of the Redfield ratio
C : N : P ≡ 106 : 16 : 1 (Redfield et al., 1963) or assuming a
reasonably low initial value. Since the 1-D simulations were
run to steady state over 10 years, memory of these initial
states was assumed to be lost, with little effect on the results.

For the comparison of BFM17 to BFM56, the initial con-
ditions for the additional state variables were calculated by
splitting the total initial phytoplankton and zooplankton car-
bon values into equal amounts for all phytoplankton and zoo-
plankton groups. The other state variables for each group
were again calculated using the Redfield ratio. The initial
bacteria distribution was defined by setting the column equal
to a constant value.

In both simulations, the bottom boundary conditions for
oxygen, nitrate, and phosphate species are based on observed
BATS data. Values are taken at the next closest data point
below the bottom boundary (at 150 m) and then averaged
over the month. Figure 3b shows the monthly average bot-
tom boundary conditions for each of the three species.

5 Model assessment results

The coupled BFM17-POM-1D model was run using the pa-
rameter values from Tables 2, A1, and A3–A5, which were
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Figure 3. Sargasso Sea initial and boundary conditions showing (a) initial profiles of nitrate, phosphate, particulate organic carbon, chloro-
phyll, and oxygen, where each profile, denoted φi(z), is normalized by its depth averaged value, 〈φi〉z, and (b) monthly bottom boundary
conditions for nitrate, phosphate, and oxygen, where each quantity, ϕi(t), is normalized by its annual average value 〈ϕi〉t . The depth and
annual averaged values are shown in parentheses in the legends of each panel. Units are mmol N m−3 for nitrate, mmol P m−3 for phosphate,
mg C m−3 for particulate organic carbon, mg Chl m−3 for chlorophyll, and mmol O m−3 for oxygen.

decided on the basis of standard literature values (Vichi et al.,
2007, 2003, 2013; Fiori et al., 2012). The simulations were
allowed to run out to steady state, and multi-year monthly
means were calculated as functions of depth for chloro-
phyll, oxygen, nitrate, phosphate, particulate organic nitro-
gen (PON), and net primary production (NPP), each of which
was measured at the BATS/BTM site. The model PON is
defined as the sum of nitrogen contained within the phyto-
plankton, zooplankton, and particulate detritus, and NPP is
defined as the net phytoplankton carbon uptake (or gross pri-
mary production) minus phytoplankton respiration.

Figure 4 qualitatively compares the BATS data (top row)
with the results from BFM17 (middle row). The model is
able to capture the initial spring bloom between January
and March brought on by physical entrainment of nutrients,
the corresponding peak in net primary production and PON
around the same time, and the subsequent subsurface chloro-
phyll maxima during the summer (evident in Fig. 4 as a larger
chlorophyll concentration at depths close to 100 m during the
summer months). The predicted oxygen levels are lower than
observed values; however, the overall structure predicted by
BFM17 is not completely dissimilar to that of the BATS
oxygen field. These results are consistent with those from
BFM56 (bottom row of Fig. 4), suggesting that the two mod-
els are in generally close agreement. Correlation coefficients
between the two models are 0.85 for chlorophyll, 0.56 for
oxygen, 0.99 for nitrate, 0.99 for phosphate, 0.95 for PON,
and 0.97 for NPP. Differences in chlorophyll and oxygen are
likely due to the removal in BFM17 of specific phytoplank-
ton and zooplankton species in favor of general LFGs, to
the removal of denitrification, and to the parameterization
of remineralization using new closure terms that were cali-

brated to give reasonable agreement with the observational
data.

As mentioned previously, oxygen is historically difficult
to predict using BGC models of any complexity. It is likely
that this is due, in part, to inaccuracies in the mixing pa-
rameterizations used in POM-1D and other physical models.
For example, BFM17 struggles to accurately predict oxygen,
in part, because the second-order mixing scheme of Mellor
and Yamada (1982) lacks sufficient resolution of the winter
mixing using just the monthly mean temperature and salin-
ity. However, since it is often not included or presented at
all in models of similar complexity to BFM17 (i.e., models
reduced enough to reasonably couple to a high-fidelity, high-
resolution physical model), studies that explore this hypothe-
sis have been difficult to undertake. Thus, we include oxygen
in BFM17 and present our results here to illustrate this ex-
act point and to lend motivation to developing and using a
model such as BFM17 to study the effects of physical pro-
cesses missing from mixing parameterizations and how they
can be better represented.

To obtain a first indication of the performance of BFM17,
a model assessment was performed for each target field. The
same assessment was performed for BFM56 to compare the
two models. The results are summarized by the Taylor dia-
gram in Fig. 5. This diagram can be used to assess the extent
of misfit between the models and observations by showing
the normalized root mean square errors (RMSEs), normal-
ized standard deviation, and the correlation coefficient be-
tween each of the model outputs and the BATS target fields.

The normalized RMSEs were calculated as εrms/σobs,
where εrms is the RMSE between the model and the obser-
vation fields and σobs is the standard deviation of the obser-
vation field. The normalized standard deviation was calcu-

Geosci. Model Dev., 14, 2419–2442, 2021 https://doi.org/10.5194/gmd-14-2419-2021



K. M. Smith et al.: A reduced biogeochemical flux model 2429

Figure 4. Comparison of target BATS fields (a–f) to BFM17 simulation results (g–l) and BFM56 simulation results (m–r) for (a ,g, m) chloro-
phyll (mg Chl am−3), (b, h, n) oxygen (mmol O m−3), (c, i, o) nitrate (mmol N m−3), (d, j, p) phosphate (mmol P m−3), (e, k, q) particulate
organic nitrogen (PON; mg N m−3), (f, l, r) and net primary production (NPP; mg C m−3 d−1). Simulation plots are multi-year monthly
averages of the last 3 years of a 10-year integration.

lated as σmod/σobs, where σmod is the standard deviation of
the model fields. The normalized RMSEs, normalized stan-
dard deviation, and the correlation coefficients each give an
indication of the relative similarities in amplitude, variations
in amplitude, and structure of each modeled field compared
to the BATS target fields, respectively. For each variable,
these statistics were calculated over all months and all depths
shown in Fig. 4.

The Taylor diagram in Fig. 5 shows that BFM17 and
BFM56 produce similar results. For most variables, errors
in the amplitudes are within roughly one standard devia-
tion of the observations. Additionally, the structures of the
model fields for chlorophyll, nitrate, phosphate, PON, and
NPP have high correlations with that of the BATS target
fields. The correlation values range from 0.63 for chlorophyll
to 0.94 for nitrate in BFM17 and from 0.60 for chlorophyll
to 0.93 for phosphate and nitrate in BFM56. For BFM17,
variabilities in amplitude for nitrate, phosphate, oxygen, and
NPP are closest to those of the corresponding BATS target
fields, while the chlorophyll and PON have too much vari-
ability. For BFM56, nitrate, phosphate, oxygen, and chloro-
phyll have similar variability in amplitude to the BATS data,

while NPP and PON have too little and too much variability,
respectively.

Table 3 provides a comparison of correlation coefficients
and un-normalized RMSEs, calculated with respect to the
observational fields, from BFM17 and BFM56, as well as
from other models. Comparisons were only made to models
that were calibrated using the same BATS/BTM data, em-
ployed some kind of parameter estimation technique, and re-
ported correlation and RMSEs. Ayata et al. (2013) included
six biological tracers, while both Fasham et al. (1990) and
Spitz et al. (2001) included seven. The Spitz et al. (2001)
study used data assimilation, while the Ayata et al. (2013)
and Fasham et al. (1990) studies used only optimization to
determine a select set of parameters. All models used clima-
tological monthly mean forcing from the BATS region and
reported climatological monthly means for their results. Care
was taken to ensure that the same variable definition was
compared between all models. Ayata et al. (2013) used a sim-
ilar 1-D physical model to the one that was used here, while
Spitz et al. (2001) and Fasham et al. (1990) used a time-
dependent box model of the upper-ocean mixed layer. As
such, correlations and RMSE values for comparison to Ay-
ata et al. (2013) were computed over the entire domain (Ay-
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Figure 5. Taylor diagram showing the normalized standard devia-
tion, correlation coefficient, and normalized root mean squared dif-
ferences between the BFM17 output and the BATS target fields.
Observations lie at (1,0). Radial deviations from observations cor-
respond to the normalized root mean square error (RMSE), radial
deviations from the origin correspond to the normalized standard
deviation, and angular deviations from the vertical axis correspond
to the correlation coefficient. BFM17 and BFM56 results are shown
as colored circles and triangles, respectively (chlorophyll is indi-
cated in blue, oxygen is indicated in orange, nitrate is indicated in
yellow, phosphate is indicated in purple, PON is indicated in green,
and NPP is indicated in cyan). Note that BFM56 nitrate and phos-
phate data points fall on top of one another (yellow and purple tri-
angles).

ata et al., 2013, calculated their metrics over the top 168 m
of their domain). For comparison to Spitz et al. (2001) and
Fasham et al. (1990), correlations and RMSEs were calcu-
lated only within the mixed layer (defined as the depth at
which the density is 0.2 kgm−3 greater than the surface den-
sity) and are shown as separate columns in Table 3.

The correlation coefficients and RMSEs for both BFM17
and BFM56 are comparable to the Ayata et al. (2013) study
for chlorophyll, while they outperform this study for nitrate,
PON, and NPP. The Spitz et al. (2001) study, which used data
assimilation and is therefore naturally more likely to perform
better, does in fact do so for predictions of chlorophyll and
nitrate. However, the nitrate correlation values for BFM17
and the Spitz et al. (2001) model are both high, although
the latter model does have a lower RMSE value. As com-
pared to the Spitz et al. (2001) model, BFM17 has higher
correlation values for both PON and NPP but a larger RMSE
for NPP. Lastly, both BFM17 and BFM56 outperform the
Fasham et al. (1990) study for all fields for both correlation
coefficient and RMSE values.

These results show that, with a relatively small increase
in the number of biological tracers as compared to simi-
lar models, BFM17 is generally able to increase correlation
coefficient values and decrease RMSE values for many of
the target fields in comparison to similar models. Moreover,
BFM17 approaches the accuracy of models that use data as-
similation to improve agreement with the observations, such

as the Spitz et al. (2001) model. The extra biological trac-
ers in BFM17, as compared to the Ayata et al. (2013) and
Fasham et al. (1990) models, account for variable intra- and
extracellular nutrient ratios with the addition of phosphorus.

Finally, a key benefit of the chemical functional family ap-
proach used by BFM17 is the ability of the model to predict
non-Redfield nutrient ratios. Figure 6 shows the constituent
component ratios normalized by the respective Redfield ra-
tios for BFM17. The figure includes the component ratios
of carbon to nitrogen, carbon to phosphorous, and nitrogen
to phosphorous for phytoplankton, dissolved organic matter
(DOM), and POM. Zooplankton nutrient ratios were not in-
cluded because the parameterization of the zooplankton re-
laxes the nutrient ratio back to a constant value. The normal-
ized ratio values are uniform non-unity-valued fields.

Ultimately, Fig. 6 shows that BFM17 is able to cap-
ture the phosphate-limited dynamics that characterize the
BATS/BTM region (Fanning, 1992; Michaels et al., 1993;
Cavender-Bares et al., 2001; Steinberg et al., 2001; Ammer-
man et al., 2003; Martiny et al., 2013; Singh et al., 2015).
In particular, Fig. 6 shows that all results comparing carbon
or nitrogen to phosphorous for BFM17 produce normalized
values greater than 1, where the normalization is carried out
using the Redfield ratio (i.e., a normalized value greater than
1 indicates that the field is denominator limited). Figure 6
also shows that the ratios are not uniform for phytoplankton,
DOM, and POM, with the ratios decreasing with depth as a
result of the increased availability of nitrogen and phosphate.

6 Conclusions

In this study, we have presented a new upper-thermocline,
open-ocean BGC model that is complex enough to capture
open-ocean ecosystem dynamics within the Sargasso Sea re-
gion, yet reduced enough to integrate with a physical model
with limited additional computational cost. The new model,
named the Biogeochemical Flux Model 17 (BFM17), in-
cludes 17 state variables and expands upon more reduced
BGC models by incorporating a phosphate equation and
tracking dissolved oxygen, as well as variable intra- and
extracellular nutrient ratios. BFM17 was developed primar-
ily for use within high-resolution, high-fidelity 3-D physical
models, such as LES, for process, parameterization, and pa-
rameter optimization studies, applications for which its more
complex counterpart (BFM56) would be much too costly.

To calibrate and test the model, it was coupled to the
1-D Princeton Ocean Model (POM-1D) and forced using
field data from the Bermuda Atlantic test site area. The full
56-state-variable Biogeochemical Flux Model (BFM56) was
also run using the same forcing. Results were compared be-
tween the two models and all six of the BATS target fields
– chlorophyll, oxygen, nitrate, phosphate, PON, and NPP –
and a model skill assessment was performed, concluding that
the BFM17 captures the subsurface chlorophyll maximum
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Table 3. Correlation coefficients (and RMSE in parenthesis) between BATS target fields and model data for BFM17, BFM56, and several
example models of similar complexity. The first set of BFM columns is calculated over the entire water column, while the second set (denoted
with “ML only”) is calculated over the monthly mixed layer depth only (defined as the depth at which the density is 0.2 kgm−3 greater than
the surface density).

Variable BFM17 BFM56 Ayata et al. (2013) BFM17 BFM56 Fasham et al. Spitz et al.
(ML only) (ML only) (1990) (2001)

Chlorophyll 0.63 (0.08) 0.60 (0.10) 0.60 (0.06) 0.63 (0.07) 0.60 (0.09) −0.33 (0.34) 0.86 (0.04)
Oxygen 0.37 (31.18) 0.18 (21.84) – 0.29 (29.53) −0.09 (20.22) – –
Nitrate 0.94 (0.22) 0.93 (0.16) 0.80 (0.33) 0.94 (0.22) 0.93 (0.15) 0.87 (0.28) 0.98 (0.05)
Phosphate 0.91 (0.01) 0.93 (0.005) – 0.91 (0.01) 0.93 (0.005) – –
PON 0.85 (0.15) 0.85 (0.11) 0.45 (0.08) 0.86 (0.14) 0.86 (0.10) 0.48 (0.6) 0.76 (0.12)
NPP 0.93 (0.26) 0.87 (0.63) 0.50 (0.14) 0.94 (0.21) 0.89 (0.5) −0.47 (0.021) 0.69 (0.016)

Figure 6. Fields of BFM17 constituent component ratios of carbon to nitrogen (a–c), carbon to phosphorous (d–f), and nitrogen to phospho-
rous (g–i) for phytoplankton (a, d, g), dissolved organic detritus (b, e, h), and particulate organic detritus (c, f, i). Each field is normalized by
the respective Redfield ratio.

and bloom intensity observed in the BATS data and produces
comparable results to BFM56. In comparison with similar
studies using slightly less complex models, BFM17-POM-
1D performs on par with, or better than, those studies.

In the future, a sensitivity study is necessary to assess the
most sensitive model parameters, both in BFM17 as well
as in the 1-D physical model. After identification of these
most sensitive model parameters, an optimization can be per-
formed to reduce discrepancies between the BATS obser-
vational biology fields and the corresponding model output

fields. Additionally, it would be useful to study the efficacy
of using BFM17 in a global context, to reproduce the ecology
in other regions of the ocean, and its sensitivity under various
physical forcing scenarios. Finally, BFM17 is now of a size
that it can be efficiently integrated in high-resolution, high-
fidelity 3-D simulations of the upper ocean, and future work
will examine model results in this context.
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Appendix A: BFM17 model equations

In the following, the detailed equations and their parame-
ter values for each of the 17 state variables that comprise
BFM17 are outlined. A summary of the 17 state variables is
provided in Table 1 and a schematic of the CFFs and LFGs
used in BFM17, along with their interactions, is shown in
Fig. 1. It should be noted that for all BFM17 equations here,
we adopt the same notation style used for BFM56 in Vichi
et al. (2007), Mussap et al. (2016), and the BFM user manual
(Vichi et al., 2013) for consistency and clarity.

A1 Environmental parameters

BFM17 is influenced by the environment through tempera-
ture and irradiance. Temperature directly affects all physio-
logical processes and is represented in the model by intro-
ducing the non-dimensional parameter f (T )j defined as

f
(T )
j =Q

(T−T ∗)/T ∗

10,j , j = P,Z , (A1)

where T ∗ is a base temperature andQ10,j is a coefficient that
may differ for the phytoplankton and zooplankton LFGs, de-
noted Pi and Zi , respectively. Here, the subscript i is used
to denote different chemical constituents (i.e., C, N, and P)
and j is used to denote different LFGs. Base values used for
T ∗ and Q10,j are shown in Table A1. The model addition-
ally employs a temperature-dependent nitrification parameter
f
(T )
N , which is defined similarly to Eq. (A1) as

f
(T )
N =Q

(T−T ∗)/T ∗

10,N , (A2)

where Q10,N is given in Table A1.
In contrast to temperature, irradiance only directly affects

phytoplankton, serving as the primary energy source for phy-
toplankton growth and maintenance. Irradiance is a func-
tion of the incident solar radiation at the sea surface. Within
BFM17, the amount of PAR at any given location z is param-
eterized according to the Beer–Lambert model as

EPAR(z)= εPARQS exp

λwz+ 0∫
z

λbio(z
′)dz′

 , (A3)

where QS is the shortwave surface irradiance flux, which
is typically obtained from real-world measurements of the
atmospheric radiative transfer, εPAR is the fraction of PAR
within QS, λw is the background light extinction due to wa-
ter, and λbio is the light extinction due to suspended biologi-
cal particles. Values for εPAR and λw are given in Table A1.
The extinction coefficient due to particulate matter, λbio, is
dependent on phytoplankton chlorophyll, Pchl, and particu-
late detritus, R(2)C , and is written as

λbio = cPPchl+ cR(2)R
(2)
C , (A4)

where cP and cR(2) are the specific absorption coefficients
of phytoplankton chlorophyll and particulate detritus, respec-
tively, with values given in Table A1.

A2 Phytoplankton equations

The phytoplankton LFG in BFM17 is part of the living or-
ganic CFF and is composed of separate state variables for
the constituents carbon, nitrogen, phosphorous, and chloro-
phyll, denoted PC, PN, PP, and Pchl, respectively (see also
Table 1). The governing equations for the constituent state
variables are given by

1. the phytoplankton functional group in the living organic
CFF, carbon constituent (state variable PC):

∂PC

∂t

∣∣∣∣
bio
=
∂PC

∂t

∣∣∣∣gpp

CO2

−
∂PC

∂t

∣∣∣∣rsp

CO2

−
∂PC

∂t

∣∣∣∣lys

R
(1)
C

−
∂PC

∂t

∣∣∣∣lys

R
(2)
C

−
∂PC

∂t

∣∣∣∣exu

R
(1)
C

−
∂PC

∂t

∣∣∣∣prd

ZC

, (A5)

2. the phytoplankton functional group in the living organic
CFF, nitrogen constituent (state variable PN):

∂PN

∂t

∣∣∣∣
bio
=max

[
0,
∂PN

∂t

∣∣∣∣upt

N (2)
+
∂PN

∂t

∣∣∣∣upt

N (3)

]

−
∂PN

∂t

∣∣∣∣lys

R
(1)
N

−
∂PN

∂t

∣∣∣∣lys

R
(2)
N

−
∂PN

∂t

∣∣∣∣prd

ZN

, (A6)

3. the phytoplankton functional group in the living organic
CFF, phosphorus constituent (state variable PP):

∂PP

∂t

∣∣∣∣
bio
=max

[
0,
∂PP

∂t

∣∣∣∣upt

N (1)

]
−
∂PP

∂t

∣∣∣∣lys

R
(1)
P

−
∂PP

∂t

∣∣∣∣lys

R
(2)
P

−
∂PP

∂t

∣∣∣∣prd

ZP

, (A7)

4. the phytoplankton functional group in the living organic
CFF, chlorophyll constituent (state variable Pchl):

∂Pchl

∂t

∣∣∣∣
bio
=
∂Pchl

∂t

∣∣∣∣syn

−
∂Pchl

∂t

∣∣∣∣loss

, (A8)

where the descriptions of each of the source and sink terms
are provided in Table A2. The subscript “bio” on the left-
hand-side terms indicates that these are the total rate expres-
sions associated with all biological processes.

For the evolution of the phytoplankton carbon constituent
given by Eq. (A5), gross primary production depends on the
non-dimensional regulation factors for temperature and light
as well as on the maximum photosynthetic growth rate and
the phytoplankton carbon instantaneous concentration. This
then gives

∂PC

∂t

∣∣∣∣gpp

CO2

= r
(0)
P f

(T )
P f

(E)
P PC , (A9)
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Table A1. Symbols, values, units, and descriptions for environmental parameters within the BFM17 pelagic model.

Symbol Value Units Description

Q10,P 2.00 – Phytoplankton Q10 coefficient
Q10,Z 2.00 – Zooplankton Q10 coefficient
Q10,N 2.00 – Nitrification Q10 coefficient
T ∗ 10.0 ◦C Base temperature
cP 0.03 m2 (mg Chl)−1 Chlorophyll-specific light absorption coefficient
εPAR 0.40 – Fraction of photosynthetically active radiation
λw 0.0435 m−1 Background attenuation coefficient
cR(2) 0.1× 10−3 m2 (mg C)−1 C-specific attenuation coefficient of particulate detritus

Table A2. List of abbreviations used to indicate physiological
and ecological processes in the equations comprising the BFM17
pelagic model.

Abbreviation Process

gpp Gross primary production
rsp Respiration
prd Predation
rel Biological release: egestion, excretion, mortality
exu Exudation
upt Uptake
lys Lysis
syn Biochemical synthesis
loss Biochemical loss
nit Nitrification

where r(0)P is the maximum photosynthetic rate for phyto-
plankton (reported in Table A3) and f (T )P is the temperature-
regulating factor for phytoplankton given by Eq. (A1). The
term f

(E)
P is the light regulation factor for phytoplankton,

which is defined following Jassby and Platt (1976) as

f
(E)
P = 1− exp

(
−
EPAR

EK

)
, (A10)

where EPAR is defined in Eq. (A3) and EK (the “optimal”
irradiance) is given by

EK =

[
r
(0)
P

α
(0)
chl

](
PC

Pchl

)
. (A11)

The parameter α(0)chl is the maximum light utilization coeffi-
cient and is defined in Table A3.

Phytoplankton respiration is parameterized in Eq. (A5) as
the sum of the basal respiration and activity respiration rates,
namely

∂PC

∂t

∣∣∣∣rsp

CO2

= bP f
(T )
P PC

+ γP

[
∂PC

∂t

∣∣∣∣gpp

CO2

−
∂PC

∂t

∣∣∣∣exu

R
(1)
C

]
, (A12)

where bP is the basal specific respiration rate, γP is the
respired fraction of the gross primary production, the gross
primary production term is given by Eq. (A9), and the ex-
udation term is defined below in Eq. (A18). Values and de-
scriptions for bP and γP are given in Table A3.

Both phytoplankton exudation and lysis, defined below,
depend on a multiple nutrient limitation term f

(N,P)
P . This

term allows for the internal storage of nutrients and depends
on the respective nutrient limitation terms for both nitrate and
phosphate. It is given by f (N,P)P =min

[
f
(N)
P ,f

(P)
P

]
, where

f
(N)
P =min

{
1,max

[
0,
PN/PC−φ

(min)
N

φ
(opt)
N −φ

(min)
N

]}
, (A13)

f
(P)
P =min

{
1,max

[
0,
PP/PC−φ

(min)
P

φ
(opt)
P −φ

(min)
P

]}
. (A14)

The parameters φ(opt)
N and φ(opt)

P are the optimal phytoplank-
ton quotas for nitrogen and phosphorus, respectively, while
φ
(min)
N and φ(min)

P are the minimum possible quotas, below
which f (N)P and f (P)P are zero. Values for each of these pa-
rameters are included in Table A3.

Phytoplankton lysis includes all mortality due to mechan-
ical, viral, and yeast cell disruption processes, and is parti-
tioned between particulate and dissolved detritus. The inter-
nal cytoplasm of the cell is released to dissolved detritus, de-
noted byR(1)i , while structural parts of the cell are released to
particulate detritus, denoted by the state variable R(2)i , where
i = C,N,P (see also Table 1). The resulting lysis terms in
Eqs. (A5)–(A7) are then given by

∂Pi

∂t

∣∣∣∣lys

R
(1)
i

=

[
1− ε(N,P)P

][ h
(N,P)
P

f
(N,P)
P +h

(N,P)
P

d
(0)
P Pi

]
,

i = C,N,P , (A15)

∂Pi

∂t

∣∣∣∣lys

R
(2)
i

= ε
(N,P)
P

[
h
(N,P)
P

f
(N,P)
P +h

(N,P)
P

d
(0)
P Pi

]
,

i = C,N,P , (A16)

where h(N,P)P is the nutrient-stress threshold and d(0)P is the
maximum specific nutrient-stress lysis rate, both of which are

https://doi.org/10.5194/gmd-14-2419-2021 Geosci. Model Dev., 14, 2419–2442, 2021



2434 K. M. Smith et al.: A reduced biogeochemical flux model

Table A3. Phytoplankton parameters, values, units, and descriptions within the BFM17 pelagic model.

Symbol Value Units Description

r
(0)
P

1.60 d−1 Maximum specific photosynthetic rate
bP 0.05 d−1 Basal specific respiration rate
d
(0)
P

0.05 d−1 Maximum specific nutrient-stress lysis rate
h
(N,P)
P

0.10 – Nutrient-stress threshold
βP 0.05 – Excreted fraction of primary production
γP 0.05 – Activity respiration fraction
a
(N)
P

0.025 m3 (mg C)−1 d−1 Specific affinity constant for nitrogen
h
(N)
P

1.50 mmol N-NH4 m−3 Half-saturation constant for ammonium uptake
φ
(min)
N 6.87× 10−3 mmol N (mg C)−1 Minimum nitrogen quota
φ
(opt)
N 1.26× 10−2 mmol N (mg C)−1 Optimal nitrogen quota
φ
(max)
N 1.0φ(opt)

N mmol N (mg C)−1 Maximum nitrogen quota
a
(P)
P

2.5× 103 m3 (mg C)−1 d−1 Specific affinity constant for phosphorus
φ
(min)
P 4.29× 10−4 mmol P (mg C)−1 Minimum phosphorus quota
φ
(opt)
P 7.86× 10−4 mmol P (mg C)−1 Optimal phosphorus quota
φ
(max)
P 1.0φ(opt)

P mmol P (mg C)−1 Maximum phosphorus quota
α
(0)
chl 1.52× 10−5 mg C (mg Chl)−1 (µE)−1 m2 Maximum light utilization coefficient
θ
(0)
chl 0.016 mg Chl (mg C)−1 Maximum chlorophyll-to-carbon quota

given in Table A3. The term ε
(N,P)
P is a fraction that ensures

nutrients within the structural parts of the cell, which are less
degradable, are always released as particulate detritus. This
fraction is determined by the expression

ε
(N,P)
P =min

[
1,
φ
(min)
N

PN/PC
,
φ
(min)
P

PP/PC

]
, (A17)

where φ(min)
N and φ(min)

P are given in Table A3.
If phytoplankton cannot equilibrate their fixed carbon with

sufficient nutrients, this carbon is not assimilated and is in-
stead released in the form of dissolved carbon, denoted by
state variable R(1)C , in a process known as exudation. The ex-
udation term in Eq. (A5) is parameterized as

∂PC

∂t

∣∣∣∣exu

R
(1)
C

=

{
βP + (1−βP )

[
1− f (N,P)P

]} ∂PC

∂t

∣∣∣∣gpp

CO2

, (A18)

where βP is the excreted fraction of gross primary produc-
tion, defined in Table A3, and the gross primary production
term is again given by Eq. (A9).

The nutrient uptake of Eqs. (A6) and (A7) combines both
the intracellular quota (i.e., Droop) and external concentra-
tion (i.e., Monod) approaches (Baretta-Bekker et al., 1997).
The total phytoplankton uptake of nitrogen, represented by
the combination of the two uptake terms in Eq. (A6), is the
minimum of a diffusion-dependent uptake rate when internal
nutrient quotas are low and a rate that is based upon balanced

growth needs and any excess uptake, namely

∂PN

∂t

∣∣∣∣upt

N (2,3)
=min

{
a
(N)
P

[
h
(N)
P

h
(N)
P +N

(3)
N (2)
+N (3)

]
PC ,

φ
(max)
N GP

+νP

[
φ
(max)
N −

PN

PC

]
PC

}
,

(A19)

where a(N)P is the specific affinity for nitrogen, h(N)P is the
half-saturation constant for ammonium uptake, and φ(max)

N is
the maximum nitrogen quota; base values for these three pa-
rameters are given in Table A3. The net primary productivity
GP in Eq. (A19) is given as

GP =max

[
0,
∂PC

∂t

∣∣∣∣gpp

CO2

−
∂PC

∂t

∣∣∣∣exu

R
(1)
C

−
∂PC

∂t

∣∣∣∣rsp

CO2

−
∂PC

∂t

∣∣∣∣lys

R
(1)
C

−
∂PC

∂t

∣∣∣∣lys

R
(2)
C

]
. (A20)

The specific uptake rate νP appearing in Eq. (A19) is given
by

νP = f
(T)
P r

(0)
P . (A21)

It should be noted that only the sum of the two uptake terms,
represented by Eq. (A19), is required in the governing equa-
tion for PN given by Eq. (A6). However, in the governing
equations for nitrate and ammonium, denoted N (2) and N (3)
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(see Table 1) that will be presented later, expressions are re-
quired for the individual uptake portions from nitrate and am-
monium. When the total phytoplankton nitrogen uptake rate
from Eq. (A19) is positive, the individual portions from ni-
trate and ammonium are determined by

∂PN

∂t

∣∣∣∣upt

N (2)
= εP

∂PN

∂t

∣∣∣∣upt

N (2,3)
, (A22)

∂PN

∂t

∣∣∣∣upt

N (3)
= (1− εP )

∂PN

∂t

∣∣∣∣upt

N (2,3)
, (A23)

where the rates on the right-hand sides are obtained from
Eq. (A19), and εP is given as

εP =
sNN

(2)

N (3)+ sNN (2) . (A24)

The preference for ammonium is defined by the saturation
function sN and is given by

sN =
h
(N)
P

h
(N)
P +N

(3)
. (A25)

When the phytoplankton nitrogen uptake rate from Eq. (A19)
is negative, however, the entire nitrogen uptake goes to the
dissolved organic nitrogen pool, R(1)N (see Eq. A42).

As with the uptake of nitrogen, phytoplankton uptake of
phosphorus in Eq. (A7) is the minimum of a diffusion-
dependent rate and a balanced growth/excess uptake rate.
This uptake comes entirely from one pool and the uptake
term in Eq. (A7) is correspondingly given by

∂PP

∂t

∣∣∣∣upt

N (1)
=min

{
a
(P)
P N (1)PC , φ

(max)
P GP

+νP

[
φ
(max)
P PC−PP

]}
, (A26)

where a(P)P is the specific affinity constant for phosphorous
and φ(max)

P is the maximum phosphorous quota. Values for
both parameters are given in Table A3. If the uptake rate is
negative, the entire phosphorus uptake goes to the dissolved
organic phosphorus pool, R(1)P .

Predation of phytoplankton within BFM17 is solely per-
formed by zooplankton, and each of the predation terms ap-
pearing in Eqs. (A5)–(A7) are equal and opposite to the zoo-
plankton predation terms, namely

∂Pi

∂t

∣∣∣∣prd

Zi

=−
∂Zi

∂t

∣∣∣∣prd

Pi

, i = C,N,P . (A27)

Equations for the zooplankton predation terms are given in
the next section.

Finally, phytoplankton chlorophyll, denoted Pchl with the
rate equation given by Eq. (A8), contributes to the defini-
tion of the optimal irradiance value in Eq. (A11) and of

the phytoplankton contribution to the extinction coefficient
in Eq. (A4). The phytoplankton chlorophyll source term in
Eq. (A8) is made up of only two terms: chlorophyll synthesis
and loss. Net chlorophyll synthesis is a function of acclima-
tion to light conditions, availability of nutrients, and turnover
rate, and is given by

∂Pchl

∂t

∣∣∣∣syn

= ρchl (1− γP )

[
∂PC

∂t

∣∣∣∣gpp

CO2

−
∂PC

∂t

∣∣∣∣exu

R
(1)
C

]

−
Pchl

PC

[
∂PC

∂t

∣∣∣∣lys

R
(1)
C

+
∂PC

∂t

∣∣∣∣lys

R
(2)
C

+
∂PC

∂t

∣∣∣∣rsp

CO2

]
, (A28)

where ρchl regulates the amount of chlorophyll in the phy-
toplankton cell and all other terms in the above expression
have been defined previously. The term ρchl is computed ac-
cording to a ratio between the realized photosynthetic rate
(i.e., gross primary production) and the maximum potential
photosynthesis (Geider et al., 1997), and is correspondingly
given as

ρchl = θ
(0)
chl min

{
1,

(1− γP )

α
(0)
chlEPARPchl

[
∂PC

∂t

∣∣∣∣gpp

CO2

−
∂PC

∂t

∣∣∣∣exu

R
(1)
C

]}
, (A29)

where θ (0)chl is the maximum chlorophyll-to-carbon quota and
α
(0)
chl is the maximum light utilization coefficient, both of

which can be found in Table A3. Chlorophyll loss in Eq. (A8)
is simpler and is just a function of predation, where the
amount of chlorophyll transferred back to the infinite sink is
proportional to the carbon predated by zooplankton, giving

∂Pchl

∂t

∣∣∣∣loss

=
Pchl

PC

∂PC

∂t

∣∣∣∣prd

ZC

. (A30)

A3 Zooplankton equations

The zooplankton LFG group in BFM17 is part of the living
organic CFF and is composed of separate state variables for
carbon, nitrogen, and phosphorous, denoted ZC, ZN, and ZP,
respectively (see also Table 1). The governing equations for
the constituent state variables are given by

5. the zooplankton functional group in the living organic
CFF, carbon constituent (state variable ZC):

∂ZC

∂t

∣∣∣∣
bio
=
∂ZC

∂t

∣∣∣∣prd

PC

−
∂ZC

∂t

∣∣∣∣rsp

CO2

−
∂ZC

∂t

∣∣∣∣rel

R
(1)
C

−
∂ZC

∂t

∣∣∣∣rel

R
(2)
C

, (A31)
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6. the zooplankton functional group in the living organic
CFF, nitrogen constituent (state variable ZN):

∂ZN

∂t

∣∣∣∣
bio
=
∂ZN

∂t

∣∣∣∣prd

PN

−
∂ZN

∂t

∣∣∣∣rel

R
(1)
N

−
∂ZN

∂t

∣∣∣∣rel

R
(2)
N

−
∂ZN

∂t

∣∣∣∣rel

N (3)
, (A32)

7. the zooplankton functional group in the living organic
CFF, phosphorus constituent (state variable ZP):

∂ZP

∂t

∣∣∣∣
bio
=
∂ZP

∂t

∣∣∣∣prd

PP

−
∂ZP

∂t

∣∣∣∣rel

R
(1)
P

−
∂ZP

∂t

∣∣∣∣rel

R
(2)
P

−
∂ZP

∂t

∣∣∣∣rel

N (1)
, (A33)

where, once more, descriptions of each of the source and sink
terms are provided in Table A2.

Zooplankton predation of phytoplankton, which appears
as the first term in each of Eqs. (A31)–(A33), primarily de-
pends on the availability of phytoplankton and their capture
efficiency, and is expressed as

∂Zi

∂t

∣∣∣∣prd

PC

=
Pi

PC

f (T )Z r
(0)
Z

PC

PC+h
(F)
Z

(PC+µZ)
δZ,P

ZC

 ,
i = C,N,P , (A34)

where r(O)Z is the potential specific growth rate, h(F)Z is the
Michaelis constant for total food ingestion, and µZ is the
feeding threshold. These parameters and their base values
are included in Table A4. Here, f (T )Z is the temperature-
regulating factor for zooplankton growth given by Eq. (A1).
The total food availability can be expressed as δZ,PPC,
where δZ,P is the prey availability of phytoplankton and is
included in Table A4.

Zooplankton respiration is the sum of active and basal
metabolism rates, where active respiration is the cost of nu-
trient ingestion, or predation. The resulting respiration rate is
given by

∂ZC

∂t

∣∣∣∣rsp

CO2

= (1− ηZ −βZ)
∂ZC

∂t

∣∣∣∣prd

Pc

+ bZf
(T )
Z ZC , (A35)

where ηZ is the assimilation efficiency, βZ is the excreted
fraction uptake, and bZ is the basal specific respiration rate.
All three parameters are included in Table A4.

The biological release terms in Eqs. (A31)–(A33) are the
sum of zooplankton excretion, egestion, and mortality. Ex-
cretion and egestion are the portions of ingested nutrients, re-
sulting from predation, that have not been assimilated or used
for respiration. Zooplankton mortality is parameterized as

the sum of a constant mortality rate and an oxygen-dependent
regulation factor given by

f
(O)
A =

O

O +h
(O)
A

, (A36)

where the subscript A is either Z for zooplankton or N for
nitrification, O represents the oxygen constituents of the
dissolved gas in the inorganic CFF, and h

(O)
A is the half-

saturation coefficient for either zooplankton (subscript A=
Z) processes or chemical (subscript A=N ) processes given
in Tables A4 and A5, respectively. The total biological re-
lease is then partitioned into particulate and dissolved or-
ganic matter, giving

∂Zi

∂t

∣∣∣∣rel

R
(1)
i

= ε
(i)
Z

{
βZ

∂Zi

∂t

∣∣∣∣prd

Pi

+ dZ

+ d
(0)
Z

[
1− f (O)Z

]
f
(T )
Z Zi

}
, i = C,N,P , (A37)

∂Zi

∂t

∣∣∣∣rel

R
(2)
i

=

[
1− ε(i)Z

] ∂Zi
∂t

∣∣∣∣rel

R
(1)
i

, i = C,N,P , (A38)

where ε(i)Z is the fraction excreted to the dissolved pool, dZ is
the specific mortality rate, and d(0)Z is the oxygen-dependent
specific morality rate. Base values for each parameter are
given in Table A4.

The zooplankton also excrete into the nutrient pools of
phosphate,N (1), and ammonium,N (3). These effects are rep-
resented by the final terms of Eqs. (A32) and (A33), which
are parameterized by

∂ZN

∂t

∣∣∣∣rel

N (3)
= ν

(N)
Z max

[
0,
ZN

ZC
−ϕ

(opt)
N

]
ZN , (A39)

∂ZP

∂t

∣∣∣∣rel

N (1)
= ν

(P)
Z max

[
0,
ZP

ZC
−ϕ

(opt)
P

]
ZP , (A40)

where ν(N)Z and ν(P)Z are specific rate constants and ϕ(opt)
N and

ϕ
(opt)
P are the optimal zooplankton quotas for nitrogen and

phosphorous, respectively. All four parameters are included
in Table A4.

A4 Dissolved organic matter equations

The governing equations for the three constituents of dis-
solved organic matter are given by

8. dissolved matter in non-living organic CFF, carbon con-
stituent [state variable R(1)C ]:

∂R
(1)
C
∂t

∣∣∣∣∣
bio

=
∂PC

∂t

∣∣∣∣lys

R
(1)
C

+
∂PC

∂t

∣∣∣∣exu

R
(1)
C

+
∂ZC

∂t

∣∣∣∣rel

R
(1)
C

−α
(sinkC)

R(1)
R
(1)
C , (A41)
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Table A4. Zooplankton parameters, values, units, and descriptions within the BFM17 pelagic model.

Symbol Value Unit Description

h
(O)
Z

0.5 mmol O2 m−3 Half saturation for zooplankton processes
µZ 50.0 mg C m−3 Feeding threshold
bZ 0.02 d−1 Basal specific respiration rate
r
(0)
Z

2.00 d−1 Potential specific growth rate
d
(0)
Z

0.25 d−1 Oxygen-dependent specific mortality rate
dZ 0.05 d−1 Specific mortality rate
ηZ 0.50 – Assimilation efficiency
βZ 0.25 – Fraction of activity excretion
εC
Z

0.60 – Partition between dissolved and particulate excretion of C
εN
Z

0.72 – Partition between dissolved and particulate excretion of N
εP
Z

0.832 – Partition between dissolved and particulate excretion of P
h
(F )
Z

200.0 mg C m−3 Michaelis constant for total food ingestion
δZ,P 1.00 – Availability of phytoplankton to zooplankton
ν
(P)
Z

1.0 d−1 Specific rate constant for phosphorous excretion
ν
(N)
Z

1.0 d−1 Specific rate constant for nitrogen excretion

ϕ
(opt)
P 7.86× 10−4 mmol P (mg C)−1 Optimal phosphorous quota
ϕ
(opt)
N 0.0126 mmol N (mg C)−1 Optimal nitrogen quota

9. dissolved matter in non-living organic CFF, nitrogen
constituent [state variable R(1)N ]:

∂R
(1)
N
∂t

∣∣∣∣∣
bio

=
∂PN

∂t

∣∣∣∣lys

R
(1)
N

+
∂ZN

∂t

∣∣∣∣rel

R
(1)
N

−min

[
0,
∂PN

∂t

∣∣∣∣upt

N (2)
+
∂PN

∂t

∣∣∣∣upt

N (3)

]
− ζN (3)R

(1)
N , (A42)

10. dissolved matter in non-living organic CFF, phosphorus
constituent [state variable R(1)P ]:

∂R
(1)
P
∂t

∣∣∣∣∣
bio

=
∂PP

∂t

∣∣∣∣lys

R
(1)
P

+
∂ZP

∂t

∣∣∣∣rel

R
(1)
P

−min

[
0,
∂PP

∂t

∣∣∣∣upt

N (1)

]
− ζN (1)R

(1)
P . (A43)

All terms except for the last terms in each of these equations,
representing remineralization, have been defined in previ-
ous sections. Remineralization of dissolved organic matter
by bacteria is parameterized within BFM17 as a rate that
is proportional to the local concentration of that dissolved
constituent. In Eq. (A41), remineralization is parameterized
as α(sinkC)

R(1)
R
(1)
C , where α(sinkC)

R(1)
is a constant that controls the

rate at which dissolved carbon is remineralized and returned
to the pool of carbon; this constant is given in Table A5. In
Eqs. (A42) and (A43), remineralization is represented by the
parameters ζN (3) and ζN (1) , which are the specific remineral-
ization rates of dissolved ammonium and phosphate, respec-
tively. These rates are also included in Table A5.

A5 Particulate organic matter equations

The governing equations for the three constituents of partic-
ulate organic matter are given by

11. particulate matter in non-living organic CFF, carbon
constituent [state variable R(2)C ]:

∂R
(2)
C
∂t

∣∣∣∣∣
bio

=
∂PC

∂t

∣∣∣∣lys

R
(2)
C

+
∂ZC

∂t

∣∣∣∣rel

R
(2)
C

−α
(sinkC)

R(2)
R
(2)
C , (A44)

12. particulate matter in non-living organic CFF, nitrogen
constituent [state variable R(2)N ]:

∂R
(2)
N
∂t

∣∣∣∣∣
bio

=
∂PN

∂t

∣∣∣∣lys

R
(2)
N

+
∂ZN

∂t

∣∣∣∣rel

R
(2)
N

− ξN (3)R
(2)
N , (A45)

13. particulate matter in non-living organic CFF, phospho-
rus constituent [state variable R(2)P ]:

∂R
(2)
P
∂t

∣∣∣∣∣
bio

=
∂PP

∂t

∣∣∣∣lys

R
(2)
P

+
∂ZP

∂t

∣∣∣∣rel

R
(2)
P

− ξN (1)R
(2)
P . (A46)

Once again, all terms except for the final remineralization
terms in each equation have been defined in previous sec-
tions. Remineralization of particular organic matter by bac-
teria is parameterized within BFM17 as a rate that is pro-
portional to the local concentration of that particulate con-
stituent. In Eq. (A44), remineralization is parameterized by
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Table A5. Values, units, and descriptions for dissolved organic matter, particulate organic matter, and nutrient parameters within the BFM17
pelagic model.

Symbol Value Units Description

α
(sinkC)

R(1)
0.05 d−1 Specific remineralization rate of dissolved carbon

ζN (1) 0.05 d−1 Specific remineralization rate of dissolved phosphorus
ζN (3) 0.05 d−1 Specific remineralization rate of dissolved nitrogen

α
(sinkC)

R(2)
0.1 d−1 Specific remineralization rate of particulate carbon

ξN (1) 0.1 d−1 Specific remineralization rate of particulate phosphorus
ξN (3) 0.1 d−1 Specific remineralization rate of particulate nitrogen

3
(nit)
N (3)

0.01 d−1 Specific nitrification rate at 10 ◦C

h
(O)
N 10.0 mmol O2 m−3 Half saturation for chemical processes
�
(O)
C 12.0 mmol O2 mg C−1 Stoichiometric coefficient for oxygen reaction

�
(O)
N 2.0 mmol O2 mmol N−1 Stoichiometric coefficient for nitrification reaction

α
(sinkC)

R(2)
R
(2)
C , where α(sinkC)

R(2)
is a constant that controls the rate

at which the particulate carbon is remineralized. The base
value for this constant is provided in Table A5. The parame-
ters ξN (3) and ξN (1) are the specific remineralization rates of
particulate ammonium and phosphate, respectively. The spe-
cific remineralization rates for particulate organic matter are
also presented in Table A5.

A6 Dissolved gas and nutrient equations

The only dissolved gas resolved by BFM17 is oxygen, O
(carbon dioxide is treated as an infinite source/sink), and the
dissolved nutrients in the model are phosphate, N (1), nitrate,
N (2), and ammonium, N (3) (see also Table 1). Governing
equations for each of these state variables are given by

14. dissolved gas in the inorganic CFF, oxygen constituent
(state variable O):

∂O

∂t

∣∣∣∣
bio
=
∂O

∂t

∣∣∣∣wind

+�
(O)
C

[
∂PC

∂t

∣∣∣∣gpp

CO2

−
∂PC

∂t

∣∣∣∣rsp

CO2

−
∂ZC

∂t

∣∣∣∣rsp

CO2

−α
(sinkC)

R(2)
R
(2)
C −α

(sinkC)

R(1)
R
(1)
C

]

−�
(O)
N

∂N (3)

∂t

∣∣∣∣∣
nit

N (2)

,

(A47)

15. dissolved nutrient in the inorganic CFF, phosphate con-
stituent (state variable N (1)):

∂N (1)

∂t

∣∣∣∣∣
bio

=−
∂PP

∂t

∣∣∣∣upt

N (1)

+ ζN (1)R
(1)
P + ξN (1)R

(2)
P +

∂ZP

∂t

∣∣∣∣rel

N (1)
, (A48)

16. dissolved nutrient in the inorganic CFF, nitrate con-
stituent (state variable N (2)):

∂N (2)

∂t

∣∣∣∣∣
bio

=−
∂PN

∂t

∣∣∣∣upt

N (2)
+
∂N (2)

∂t

∣∣∣∣∣
nit

N (3)

, (A49)

17. dissolved nutrient in the inorganic CFF, ammonium
constituent (state variable N (3)):

∂N (3)

∂t

∣∣∣∣∣
bio

=−
∂PN

∂t

∣∣∣∣upt

N (3)
+ ζN (3)R

(1)
N + ξN (3)R

(2)
N

+
∂ZN

∂t

∣∣∣∣rel

N (3)
−
∂N (3)

∂t

∣∣∣∣∣
nit

N (2)

. (A50)

Aeration of the surface layer by wind, ∂O/∂t |wind, is param-
eterized as described in Wanninkhof (1992, 2014). In a 0-D
model, it is a source term for dissolved oxygen and thus be-
longs in Eq. (A47). However, in any model of one dimension
or more, it should be treated as a surface boundary condition
for dissolved oxygen and thus belongs in Eq. (17) and should
be omitted from Eq. (A47). The parameters �(O)C and �(O)N
are stoichiometric coefficients used to convert units of car-
bon to units of oxygen and nitrogen, respectively. All terms
in the above equations have been defined in previous sec-
tions, except for nitrification. Nitrification is a source term
for nitrate and is parameterized as a sink of ammonium and
oxygen as

∂N (2)

∂t

∣∣∣∣∣
nit

N (3)

=
∂N (3)

∂t

∣∣∣∣∣
nit

N (2)

=3
(nit)
N (3)

f
(T )
N f

(O)
N N (3) , (A51)

where 3(nit)
N (3)

is the specific nitrification rate, given in Ta-

ble A5. The terms f (T )N and f (O)N are defined in Eqs. (A2)
and (A36), respectively.
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Appendix B: Zero-dimensional test of BFM17

As a simple test without the influence of any particular phys-
ical model (as discussed previously, the choice of physical
model can greatly affect the results), BFM17 was integrated
in a 0-D (i.e., time-only) test for 10 years using sinusoidal
forcing for the temperature (in units of ◦C), salinity (psu),
10 m wind speed (ms−1), and PAR (Wm−2) cycles. This
forcing is implemented as

F (var)(t)=
[
F (var)

s +F (var)
w

]
− 0.5

[
F (var)

s −F (var)
w

]
cos(tR) , (B1)

where F (var) is the annually varying forcing term, “var”
indicates the variable of interest, corresponding to temper-
ature (“temp”), salinity (“sal”), wind speed (“wind”), and
PAR. In Eq. (B1), F (var)

w and F
(var)
s are, respectively, the

winter and summer extreme values for the forcing term
considered, 0≤ t ≤ 360 is the time, and R = π/180. The
winter and summer values were chosen to be similar to
those found in the observational data described in Sect. 4,
with [F (temp)

w ,F
(temp)
s ] = [10 ◦C,30 ◦C], [F (sal)

w ,F
(sal)
s ] =

[37psu,36.5psu], [F
(wind)
w ,F

(wind)
s ] = [6,2ms−1

], and
[F

(PAR)
w ,F

(PAR)
s ] = [10,120Wm−2

]. The exact observa-
tional data were not used, and instead we used an idealized
version of the data for simplicity and because there is no
physical variable in the 0-D framework to properly apply
the exact observations. Note that, in the 0-D framework,
the wind forcing does not constrain the biogeochemical
dynamics but does play a role in oxygen exchange with the
atmosphere, defined according to Wanninkhof (1992, 2014).

Figure B1. Seasonal cycle of surface (a) chlorophyll, (b) zooplankton carbon, and (c) nitrate from the 0-D test of BFM17. Results are shown
for the last 4 years of the 10-year simulation. Panels (a) and (c) show monthly averaged values taken from the observational data described
in Sect. 4.

Initial values for chlorophyll, oxygen, phosphate, and ni-
trate were taken to be similar to values from the BATS/BTM
observational data, with Pchl = 0.2 mg Chl am−3, O =
230 mmol O2 m−3, N (1)

= 0.06 mmol P m−3, and N (2)
=

1.0 mmol N m−3). Phytoplankton carbon was calculated us-
ing the maximum chlorophyll-to-carbon ratio, θ (0)chl in Ta-
ble A3. Initial values for zooplankton carbon, dissolved car-
bon, and particulate organic carbon were assumed to be the
same as the phytoplankton carbon. Ammonium was assumed
to have the same initial concentration as phosphate. All other
constituents were calculated using their respective optimal
ratios in Tables A3 and A4.

Figure B1 shows the seasonal cycle of surface chlorophyll,
zooplankton carbon, and nitrate over the last 4 years of the
10-year simulation period, indicating that a stable seasonal
cycle with reasonable ecosystem values can be attained by
the model, regardless of its coupling to a physical model.
Figure B1a and c also show monthly averaged values taken
from the observational data described in Sect. 4. Although
the agreement between the 0-D BFM17 model and the ob-
servations is not perfect, both are qualitatively similar and
close in magnitude, providing confidence in the accuracy of
the model despite the lower fidelity of the 0-D test.

https://doi.org/10.5194/gmd-14-2419-2021 Geosci. Model Dev., 14, 2419–2442, 2021



2440 K. M. Smith et al.: A reduced biogeochemical flux model

Code and data availability. Current versions of BFM17 and
BFM56 can be found at https://github.com/marco-zavatarelli/
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