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Abstract: The paper describes and analyzes the sensitivity of an operational atmospheric model to different SST (sea surface 
temperature) estimates. The model’s sensitivity has been analyzed in a Medicane (Mediterranean hurricane) test case. Numerical 
simulations have been performed using the COSMO (consortium for small-scale modeling) atmospheric model, in the COSMO-ME 
configuration. The model results show that the model is capable of capturing the position, timing and intensity of the cyclone. 
Sensitivity experiments have been carried out using different SSTs surface boundary conditions for the COSMO forecasts. Four 
different experiments have been carried out: the first two using SST fields obtained from the OSTIA (operational sea surface 
temperature and sea ice analysis) system, while the other two using the SST analyses and forecasts from MFS (Mediterranean 
Forecasting System, Tonani et al., 2015; Pinardi and Coppini, 2010). The different boundary conditions determine differences in the 
trajectory, pressure minimum and wind intensity of the simulated Medicane. The sensitivity experiments showed that a colder than 
real SST field determines a weakening of the minimum pressure at the vortex center. MFS SST analyses and forecasts allow the 
COSMO model to simulate more realistic minimum pressure values, trajectories and wind speeds. It was found that MFS SST 
forecast, as surface boundary conditions for COSMO-ME runs, determines a significant improvement, compared to ASCAT 
observations, in terms of wind intensity forecast as well as cyclone dimension and location.  
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1. Introduction  

In recent years, the scientific community has started 
to detect and analyze tropical-like cyclones in the 
Mediterranean Sea [1]. The Mediterranean is a large 
and sometimes warm body of water, thus it can be an 
area of cyclogenesis influenced by convective 
instability and air-sea interaction, producing cyclones 
with some of the characteristics of hurricanes [2, 3]. 
The western Mediterranean Sea is an important 
cyclogenetic area [4]. These cyclones are 
characterized by strong winds and a pressure 
minimum in the middle (calm eye). Such systems are 
referred in the literature as Medicanes (Mediterranean 
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Hurricanes) and are rare phenomena (only one or two 
per year) [1, 5].  

Since the early 1980s, satellite images have enabled 
identification and structure analysis of cyclones. The 
horizontal scale of cyclones ranges from some tens to 
a few hundreds of kilometers, with typical lifetime of 
about one to three days. 

We analyzed the results of numerical simulations of 
a Medicane, occurring over the western Mediterranean 
Sea from 7 to 9 November 2011. The aim was to 
understand the impact of air-sea interactions in the 
maintenance/formation and the characteristics of the 
cyclone. In recent hurricane-like cyclones in the 
Mediterranean, convective instability has been shown 
to play an important role [6]. The means by which 
convective instability is produced has been the subject 
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stages. To classify the type of cyclone, the expected 
wind speed at 10 meters and in particular the 
maximum speed value in the area was considered. We 
refer to the modified Saffir-Simpson hurricane 
wind-scale (http://www.nws.noaa.gov/directives/sym/ 
pd01006004curr.pdf) to classify the cyclone. 

The best estimate of maximum forecast wind was 
obtained from three different 00 UTC operational runs 
of the model for 6, 7 and 8 November (Fig. 5).  

The Medicane can be classified as a tropical storm, 
with maximum winds between 18 and 32 m/s in its 
mature phase. The most intense phase of the vortex 
lasted for about two and a half days from 00:00 UTC 
on November 7 to 12:00 on November 9. The evolution 
of the Medicane was characterized by a growth phase 
of about 40-44 h, during which the maximum intensity 
of the wind increased from 18 to 28 m/s, and by a 
more rapid decrease of approximately  
 

 
Fig. 4  Domain and bathymetry (m) of the MFS model 
configuration. 
 

 
Fig. 5  Wind maximum intensity (m/s) from 12:00 UTC on 
6 November to 00:00 UTC on 10 November. Black 
horizontal lines mark the separation between different 
categories: tropical depression, tropical storm and 
hurricane category I. 

16-20 hours with a maximum intensity that returned 
below the threshold of 18 m/s. 

The vortex trajectory was also calculated considering 
the minimum pressure for the same period. The cyclone 
became a tropical storm from the first hours of the day 
on November 7, in the area south of the Balearic 
Islands. Initially, the vortex moved from the Balearic 
Islands to the north-east; thus it moved in an irregular 
manner between parallels 41°-42° for several hours.  

The minimum pressure was about 994 hPa at 15:00 
UTC on 8 November. Finally, it moved a north-west 
towards the Gulf of Lyon where, approaching the 
coast, it gradually lost its intensity and died out. The 
intensity of air-sea latent and sensible heat fluxes was 
linked to differences between the SST and the low 
level atmospheric air temperature. 

In the vortex growth phase, the sea surface was 
quite warm, up to 21-22 °C in the area south of the 
Balearic Islands (Fig. 6, medium and bottom panel). 
For the same period, the 10-meters air temperature, as 
obtained by LETKF data assimilation system, was 
between 17 °C and 20 °C (Fig. 6, top panel), creating 
an air-sea temperature difference of 1-5 °C. 

The temporal variability of the air-sea temperature 
differences was monitored from data collected by the 
Dragonera buoy (Lat. = 39.56 °C; Lon. = 2.11 °C) 
from Puertos del Estado (Spain) [22]. The SST values 
measured from buoy are consistent with the SST 
forecast values produced by MFS (Fig. 7). 

This notable air-sea temperature difference created 
large heat fluxes from the sea surface, which thereby 
maintained the vortex. The vertical thermal structure 
of the cyclone was characterized by a surface warm 
core, which is a characteristic structure of tropical-like 
cyclones (Fig. 8). 

5. SST Sensitivity Studies: Trajectory and 
Heat Fluxes 

In order to assess the impact of different SST 
estimates on the formation and maintenance of the 
vortex itself, four different simulations were performed 
using COSMO-ME (Table 1). 
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Fig. 14  Wind intensity estimate (m/s) from ASCAT 
sensors on board of MetOp-A satellite at 20:39 UTC on 8 
November 2011. 
 

21:00 UTC, and compared with the ASCAT 
measurements. The size of a tropical-like cyclone is 
difficult to define objectively; different definitions are 
currently used by researchers and operational weather 
forecasters [23]. In the following, the cyclone size was 
defined as the radius of the area with wind speeds 
larger than 15 m/s. 

For EXP1, EXP3 and EXP4, the mean sizes were 
similar, in the range 125-130 km (see Table 3) 
consistent with the ASCAT data if an error 
corresponding to the 12.5 km bins is considered for 
ASCAT and the grid size of 7 km for the 
COSMO-ME data. The difference in longitude was 
about 1 deg for EXP1 but only 0.6 deg for EXP4 and 
the ASCAT estimate. Thus mean size and position of 
the cyclone are best depicted by EXP4. 

To characterize the wind horizontal structure, Fig. 
15 shows normalized histograms of wind intensity at 
21:00 UTC on November 8 for the region of the Gulf 
of Lyon. The wind intensity is subdivided into classes 
of 1 m/s and the number of events is reported as a 

percentage with respect to the total number of events. 
The modal values are 11, 13 and 16 m/s 

respectively for EXP1, EXP4 and ASCAT. The 
histogram for EXP1 is wider and more symmetric 
than EXP4 and ASCAT, with a modal value that 
occurs in about 10% of the cases (14% and 13% for 
the EXP4 and ASCAT, respectively). ASCAT data 
show a smaller tail for high values of wind speed. In 
general, the comparison shows that the velocity 
distribution in EXP4 is more similar to ASCAT. 

7. Conclusions 

A sensitivity study of an operational atmospheric 
forecast model, COSMO-ME, with different SST 
estimates and impositions was carried out. The 
sensitivity of the model was studied for a Medicane 
(Mediterranean Hurricane) test case, observed over 
the western Mediterranean Sea from November 7 to 9, 
2011. ASCAT wind estimates by MetOp-A satellite 
indicated an intensity up to 21-23 m/s. Four different 
forecasts, using different SST fields, were carried  
out with the COSMO atmospheric model. The 
operational SST used as initial surface and boundary 
conditions from OSTIA optimally interpolated 
analyses (EXP1) was compared with SST from MFS 
analyses (EXP3) and forecasts (EXP4). The numerical 
simulations identified the most intense phase of the 
vortex from 00:00 UTC on November 7 to 12:00 on 
November 9, for about two and a half days. For this 
period, the Medicane can be classified as a tropical 
storm with maximum winds between about 20 and  
30 m/s. 

The different SSTs impacted the trajectory of the 
vortex, changing its direction especially in the last part  

 
Table 3  Positions and sizes of the Medicane for the four COSMO-ME experiments (at 21:00 UTC) and for the ASCAT 
satellite measurements (at 20:39 UTC). 

Experiments Lat (deg) Lon (deg) Mean radius (km) 
EXP1 42.405° 5.342° 126 
EXP2 42.577° 4.989° 117 
EXP3 42.352° 5.601° 128 
EXP4 42.352° 5.601° 129 
ASCAT 42.230° 6.285° 144 



 

 

Fig. 15  Hist
(top), EXP4 
on 8 Novem
ASCAT obser
 

of the mete
better reprod

Latent and

Impa

tograms (% of 
(middle) and 

mber for the m
rvations. 

eorological e
ducing the NO
d sensible he

act of Sea Su

f total number)
ASCAT (botto
model and 20

event, with E
OAA trajecto
at flux intens

urface Tempe
over the We

) of wind for E
om) at 21:00 U
0:39 UTC for

EXP3 and EX
ory analysis.
sities varied u

erature on CO
estern Medite

 
EXP1 
UTC 
r the 

XP4 

up to 

10 
EXP
EXP
low

T
how
EXP
data
125
exp

O
SST
dete
velo
cyc
ope
incr
resp

Ac

T
Com
(FP
Con
For
Proj
(MI

Re
[1]

[2]

[3]

[4]

OSMO Foreca
erranean Sea

and 50 W/m
P1, EXP3 a
P3 and EXP

wer than in EX
The wind inte
wever the m
P4, with the 
a. The mean
5-130 km, 
periments EX
Our results hi
T boundary 
ermining th
ocities, mini
lone eye. A

erational MF
rease the ac
pect to all oth

knowledgm

This work 
mmission

P7-SPACE-20
ntinuity for 
recasting Serv
ject RITMAR
IUR-Progetto

ferences 
Fita, J., Jansa
Environment
Storms Using
Resolving M
41-56. 
Reale, O., an
Vortices in th
Synoptic Ana
7-34. 
Moscatello, A
“Numerical A
Southeastern 
Campins, J.
“Three-Dime
Cyclones.” In

asts of a Medi

m2 respectiv
and EXP4. T
P4 determine
XP1, accordin
ensity and its

major differen
latter better 

n size of the
was quite 

P1, EXP3 an
ighlight that 
conditions p

he distributi
imum pressu

A three-hour 
S ocean fore
ccuracy of M
her measurem

ments 

was suppor
My O

011-1-Prototy
the GMES 

vice, GA 28
RE, la RIcer
o Bandiera 20

a, A., and Geno
s of Seven M
g an Axisymm

Model.” Nat. H

nd Atlas, R. 2
he Extratropics
alysis and Effe

A., Miglietta, M
Analysis of a M
Italy.” Amer. M

., Jansa, A., 
ensional Structu
nt. J. Climatol. 

icane 

vely, in the 
The major he
ed a minim
ng with NOA
s horizontal d
nce between
reproducing 

e vortex, in t
similar b

nd EXP4. 
the type and 
lay an impo
ion of for
ure and loca

forecast SS
ecasting mod
Medicane fo

ments currentl

rted by th
Ocean 2 
ype 

Ocean Mon
83367) and b
rcai Taliana p
012-2016). 

ves, A. 2007. “
Mediterranean 

metric, Nonhyd
Hazards Earth

2001. “Tropical
s: Observationa
ects.” Amer. M

M. M., and Rot
Mediterranean ‘H
Meteor. Soc. 13

and Genove
ure of Western 
26: 323-43. 

347

experiments
eat fluxes in

mum pressure
AA analysis.
distribution is
n EXP1 and

the ASCAT
the range of

between the

value of the
ortant role in
recast wind
ation of the
ST from the
del seems to
orecasts with
ly available.

he European
Project

Operational
nitoring and

by the Italian
per il MARE

“Analysis of the
Tropical-Like

drostatic, Cloud
h Syst. Sci. 7:

l Cyclone-Like
l Evidence and

Meteor. Soc. 16:

tunno, R. 2008.
Hurricane’ over
6: 4373-97. 
es, A. 2006.
Mediterranean

7

s 
n 
e 

s 
d 
T 
f 
e 

e 
n 
d 
e 
e 
o 
h 

n 
t 
l 
d 
n 
E 

e 
e 
d 
: 

e 
d 
: 

. 
r 

. 
n 



Impact of Sea Surface Temperature on COSMO Forecasts of a Medicane 
over the Western Mediterranean Sea 

 

348

[5] Cavicchia, L., Von Storch, H., and Gualdi, S. 2013. “A 
Long-Term Climatology of Medicanes.” Clim. Dyn. 43 
(5-6): 1183-95.  

[6] Homar, V., Romero, R., Stensrud, D., Ramis, C., and 
Alonso, S. 2003. “Numerical Diagnosis of a Small, 
Quasi-Tropical Cyclone over the Western Mediterranean: 
Dynamical vs. Boundary Factors.” Q. J. R. Meteorol. Soc. 
129: 1469-90. 

[7] Pytharoulis, I., Craig, G. C., and Ballard, S. P. 2000. “The 
Hurricane-Like Mediterranean Cyclone of January 1995.” 
Meteor. Appl. 7: 261-79. 

[8] Miglietta, M. M., Moscatello, A., Conte, D., Mannarini, 
G., Lacorata, G., and Rotunno, R. 2011. “Numerical 
Analysis of a Mediterranean ‘Hurricane’ over 
South-Eastern Italy: Sensitivity Experiments to Sea 
Surface Temperature.” Atmos. Res. 101: 412-26. 

[9] Emanuel, K. 2005. “Genesis and Maintenance of 
Mediterranean Hurricanes.” Adv. Geosci 2: 217-20. 

[10] Bonavita, M., Torrisi, L., and Marcucci, F. 2008. “The 
Ensemble Kalman Filter in an Operational Regional 
NWP System: Preliminary Results with Real 
Observations.” Q. J. R. Meteorol. Soc. 134: 1733-44. 

[11] Bonavita, M., Torrisi, L., and Marcucci, F. 2010. 
“Ensemble Data Assimilation with the CNMCA Regional 
Forecasting System.” Q. J. R. Meteorol. Soc. 136: 
132-45. 

[12] Donlon, C. J., Martin, M., Stark, J. D., Roberts, J. J., 
Fiedler, E., and Wimmer, W. 2011. “The Operational Sea 
Surface Temperature and Sea Ice Analysis (OSTIA).” 
Remote Sensing of the Environment 116: 140-58. 

[13] Tonani, M., Balmaseda, M., Bertino, L., Blockley, E., 
Brassington, G., Davidson, F., Drillet, Y., Hogan, P., 
Kuragano, T., Lee, T., Mehara, A., Paranathara, F., 
Tanajiura, C. A. S., and Wang, H. 2015. “Status and 
Future of Global and Regional Ocean Prediction Systems.” 
Journal of Operational Oceanography 2 (2): 201-20. 

[14] Pinardi, N., Allen, I., Demirov, E., De Mey, P., Korres, 
G., Lascaratos, A., Le Traon, P. Y., Maillard, C., 
Manzella, G., and Tziavos, C. 2003. “The Mediterranean 
Ocean Forecasting System: First Phase of 

Implementation (1998-2001).” Annales Geophysicae 21: 
3-20. 

[15] Pinardi, N., and Coppini, G. 2010. “Operational 
Oceanography in the Mediterranean Sea: The Second 
Stage of Development.” Ocean Sci. 6: 263-7. 

[16] Tonani, M., Pinardi, N., Dobricic, S., Pujol, I., and 
Fratianni, C. 2008. “A High-Resolution Free-Surface 
Model of the Mediterranean Sea.” Ocean Sci. 4: 1-14. 

[17] Oddo, P., Bonaduce, A., Pinardi, N., and Guarnieri, A. 
2014. “Sensitivity of the Mediterranean Sea Level to 
Atmospheric Pressure and Free Surface Elevation 
Numerical Formulation in NEMO.” Geosci. Model Dev. 
7: 3001-15. 

[18] Dobricic, S., and Pinardi, N. 2008. “An Oceanographic 
Three-Dimensional Variational Data Assimilation 
Scheme.” Ocean Modelling 22: 89-105. 

[19] Dobricic, S., Pinardi, N., Adani, M., Tonani, M., 
Fratianni, C., Bonazzi, A., and Fernandez, V. 2007. 
“Daily Oceanographic Analyses by the Mediterranean 
Basin Scale Assimilation System.” Ocean Sciences 3: 
149-57. 

[20] Tonani, M., Pinardi, N., Fratianni, C., Pistoia, J., Dobricic, 
S., Pensieri, S., De Alfonso, M., and Nittis, K. 2009. 
“Mediterranean Forecasting System: Forecast and 
Analysis Assessment through Skill Scores.” Ocean Sci. 5: 
649-60. 

[21] Buongiorno, N. B., Larnicol, G., D'Acunzo, E., Santoleri, 
R., Marullo, S., and Le Traon, P. Y. 2003. “Near Real 
Time SLA and SST Products During 2-years of MFS 
Pilot Project: Processing, Analysis of the Variability and 
of the Coupled Patterns.” Annales Geophysicae 21: 
103-21. 

[22] Alvarez, F. E., Alfonso, M., Ruiz, M. I., Lopez, J. D., and 
Rodriguez, I. 2002. “Real Time Monitoring of Spanish 
Coastal Waters: The Deep Water Network.” In: 
Proceedings of the Third International Conference on 
EuroGOOS, Athens, Greece. 

[23] Liu, K. S., and Chan, J. C. L. 1999. “Size of Tropical 
Cyclones as Inferred from ERS-1 and ERS-2 Data.” Mon. 
Wea. Rev. 127: 2992-3001. 

 


