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SUMMARY

The assimilation of satellite and in situ data in the Mediterranean Forecast System (MFS) is based on an
optimal interpolation scheme which uses empirical orthogonal functions (EOFs) to represent vertical modes
of the background-error correlation matrix. In this study we present a new methodology to estimate, and the
calculation of, these multivariate EOFs. The new EOFs are considered time and space varying (seasonal time-
scales and subregional). They examine the vertical-error cross-variance between temperature, salinity, barotropic
stream function and sea-level anomaly. These EOFs are used to assimilate four years of along-track sea-level
anomaly data. The validation of MFS analyses and forecasts using the assimilation system diagnostics and the
comparison with independent observations show that, in relation to an old operational scheme which was using
only one EOF, the use of several multivariate EOFs significantly improves the accuracy of analyses and forecasts
in the Mediterranean.
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1. INTRODUCTION

The Mediterranean Forecasting System (MFS) is an operational oceanographic sys-
tem in the Mediterranean Sea which involves the work of 48 institutes from 15 countries.
Its activity combines observations, data collection, data assimilation, oceanographic
forecasts and the ecosystem modelling and forecasts (Pinardi et al. 2003). In order to
assess the whole variability of different oceanographic conditions in the Mediterranean,
the MFS is composed of the large-scale observing and forecasting system and several
nested regional and local systems along coastal areas.

One of the major components of the MFS is the data assimilation system of
the basin-scale model described in Demirov et al. (2003). There are three types of
observations which are operationally assimilated on the basin scale: the sea surface
temperature (SST) fields objectively analysed on the MFS basin-scale model grid,
the sea-level anomaly (SLA) along-track observations (Le Traon et al. 1998) and
temperature vertical profiles. While the SST and the SLA observations are obtained
remotely by satellites, temperature vertical profiles are measured in situ by expendable
bathythermograph (XBT) instruments from ships as available (Manzella et al. 2001).
The SST assimilation consists of correcting surface heat flux by a relaxation of the
numerical model surface-layer temperature towards the observed SST. The SLA and
XBT datasets are assimilated using the System for Ocean Forecasting and Analysis
(SOFA) optimal interpolation scheme (De Mey and Benkiran 2002).

In a multivariate assimilation scheme the background-error covariance should
spread corrections from observations to model variables in a statistically and dynam-
ically consistent way. Therefore, its specification is one of the most important parts of
any data assimilation system (e.g. Derber and Bouttier 1999). Starting from some initial
estimate, in the 4D-Var assimilation, the background-error covariance matrix is modified
implicitly using the tangent linear model and its adjoint (e.g. Talagrand and Courtier
1987), while in applications with the Kalman filter it is propagated by the linear model
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and updated by the estimate of the model error (e.g. Todling and Cohn 1994). On the
other hand, in 3D-Var and optimal interpolation assimilation schemes the a priori esti-
mate of the background-error covariances is not changed during the assimilation period.
This approach requires two major assumptions: (i) the background-error correlations do
not change due to the assimilation of data, although they can slowly change temporally
(e.g. seasonally); (ii) we precisely know their structure and magnitude in advance. In
multivariate assimilation schemes it is difficult to fully satisfy both assumptions. The
fulfilment of these assumptions is especially important in the MFS assimilation system
which uses a relatively large number of surface observations of SLA to propagate the
analysis corrections into deep layers of the ocean. Therefore, we can expect that a more
accurate estimate of the background-error covariances will have an important influence
on the quality of the MFS analysis.

The purpose of this study is to describe recent modifications of the background-
error covariance matrix in the MFS assimilation system for SLA and to quantitatively
compare the performance of the new assimilation scheme with the old one. The modifi-
cations consist in changing the original background-error covariance matrix description,
which used only one vertical multivariate error empirical orthogonal function (EOF),
with a new formulation which considers a relatively large number of vertical modes
depending on the geographical region and season.

Section 2 describes the MFS assimilation system. In section 3 we describe the
method to calculate the new background-error covariance matrix, while in section 4
we compare the results of the new assimilation scheme with those of the old operational
scheme. The discussion and conclusions are given in section 5.

2. THE MFS ASSIMILATION SYSTEM

The ‘old’ operational MFS assimilation scheme, called MARK2, uses the SOFA
optimal interpolation scheme (De Mey and Benkiran 2002) and is described in Demirov
et al. (2003). This is an approximation of the Kalman filter with the analysis calculated
from the formula:

xa = xb + K{y −H(xb)}, (1)

where xa is the analysis state vector, xb is the background state vector, y is the vector
of observations,H( ) is the nonlinear operator mapping the state vector to observations,
and K is obtained from:

K = BHT(HBHT + R)−1, (2)

where B is the background-error covariance matrix, R the observational-error covari-
ance matrix and H the linearized observational operator. The background-error covari-
ance matrix B is approximated assuming that horizontal and vertical-error covariances
are independent:

B = STBrS. (3)

The matrix S contains vertical-error covariance EOFs while Br = �1/2C�1/2 is com-
posed by horizontal covariances in C (modelled as Gaussian functions) for each vertical
EOF and eigenvalues of the vertical-error covariances in �. Typically only the most
significant number of vertical EOFs are used in order to reduce the cost of computations
and to filter the background-error correlation matrix from modes that do not account for
the largest part of the variance (i.e. their eigenvalues are small).

The observations of SLA and XBT, giving vertical temperature profiles, are assim-
ilated once a week using two different vertical-error correlation matrices in (3). The use
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Figure 1. The analysis cycle in the MFS. The horizontal line indicates the time in days and J is the starting day of
the forecast. The analysis A1 uses only the SLA dataset and analyses A2 and A3 only the XBT data, starting from
the A1. The analysis A3 substitutes the analyses A2 after the forecast is done. In A3, like in A2, the background
model integration starts from A1. A3 uses the same observations as A2 during the week between J−7 and J but it
also uses the observations available in the following week. In this way each observation is assimilated only once.

of different background correlation matrices requires the separate assimilation of each
dataset. The analysis time window is taken to be two weeks and the analysis is done
at the central time (Fig. 1). When the analysis A1 in Fig. 1 is done using only SLA
observations, the next analysis is made using only observations of vertical temperature
profiles (A2 and A3 in Fig. 1). In this way all observations are assimilated once in the
system using two background-error covariance matrices. However, in the operational
application it is necessary to make an analysis only knowing the previous week’s data
in order to launch the forecast: thus the analysis A2 is done temporarily (see Fig. 1)
and one week later the analysis A2 is substituted by the central analysis A3, made using
observations from two weeks.

The vertical modes of the background-error correlation matrix for the assimi-
lation of vertical temperature profiles are calculated from historical Conductivity–
Temperature–Depth (CTD) profiles of temperature and salinity (Sparnocchia et al.
2003). On the other hand, the MARK2 SLA assimilation uses a single vertical EOF
mode calculated from the water mass characteristics of the western Mediterranean (De
Mey and Benkiran 2002; Demirov et al. 2003). In the top levels, above 120 m depth,
these EOF values are set to zero in order to avoid the errors in the representation of
the high variablity of temperature and salinity fields in the mixed layer using only one
EOF for the whole Mediterranean. In this study we will propose a MARK3 assimilation
system for SLA assimilation which uses temporally and regionally varying EOFs.

The observational operator for SLA is based on the assumption that in the
geostrophic limit the background error in SLA reflects errors in temperature, salinity
and velocity fields in the water column. It uses the formula of Pinardi et al. (1995) to
link the correction of the surface elevation with corrections of the barotropic stream
function, temperature and salinity in an ocean with the constant depth H :

δη = f δ�

gH
− 1

ρ0H

∫ 0

−H

(
∂ρ

∂T
δT + ∂ρ

∂S
δS

)
(z+H) dz, (4)

where z is height and g is the acceleration due to gravity. In (4) δη, δ�, δT and δS
are corrections of the surface elevation, barotropic stream function, temperature and
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Figure 2. The MFS basin-scale model domain (light grey) and the area in which SLA observations are
assimilated (dark grey), Also shown are the position and boundaries of 13 geographical regions used for the

calculation of different vertical error EOFs.

salinity, respectively. The density ρ(T , S) is linearized around its background value, and
H is the constant depth of 1000 m. The value of 1000 m is empirically determined by
noticing that the diagnosed sea surface elevation field is very similar to that obtained by
the inversion of the full surface pressure equation (not shown). However, this operator
restricts the SLA assimilation only to areas of the Mediterranean which are at least
1000 m deep. Figure 2 shows the areas in which the SLA data is assimilated given this
choice.

The assimilation of SST data is performed by the relaxation of the temperature
in the top model layer towards the weekly objective analysis of SST. The coefficient
of relaxation corresponds to the correction of surface heat fluxes of 40 W m−2 for a
difference between model and data of 1 degC.

The background fields are produced by an implementation of the Modular Ocean
Model-MOM to the Mediterranean Sea (Demirov and Pinardi 2002; Pinardi et al.
2003). The model has a horizontal resolution of 0.125◦ and 31 levels in the vertical.
The atmospheric forcing is calculated in an interactive way (Castellari et al. 1998)
using atmospheric analyses from the European Centre for the Medium range Weather
Forecast (ECMWF), and the top model layer salinity is relaxed towards monthly mean
climatology. The model started the assimilation on 31 August 1999. The initial state
was produced by taking the January simulation from a climatological experiment forced
with climatological surface fluxes for seven years and then, starting from 1 January
1997, forced with six-hourly analyses from ECMWF.

3. CALCULATION OF THE NEW BACKGROUND-ERROR COVARIANCE MATRIX FOR
SLA ASSIMILATION

The single EOF used in MARK2 to represent S in (3) cannot represent the
whole variability of the vertical structure of the background-error covariance in the
Mediterranean. This problem is especially important when we compare the water mass
characteristics of the western and the eastern Mediterranean. While in the western
Mediterranean the vertical structure of the background-error covariances is significantly
influenced by the position and depth of the modified Atlantic water, in the eastern
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Mediterranean the errors in the temperature field at the surface become more important.
Therefore, we could expect that the single EOF used in MARK2 does not propagate
correctly the two-dimensional corrections from SLA residuals into three-dimensional
corrections of temperature and salinity in all parts of the Mediterranean Sea and that
this problem could be especially pronounced in the eastern Mediterranean.

In order to create a more accurate vertical structure of the background-error covari-
ance matrix we decided to compute separate sets of EOFs in different geographical
parts of the Mediterranean. In particular, the EOFs are calculated for the combined
temperature, salinity, stream function and sea-surface-elevation statistics, dividing the
Mediterranean Sea into 13 regions (see Fig. 2). The fields used for the computation of
EOFs originate from an interannual simulation ranging from 1993 to 1999. The seasonal
and geographical grouping is made in order to select vertical profiles which have similar
water mass properties (Sparnocchia et al. 2003). Inside each region, only the grid points
deeper than 1000 m are selected and each water column is truncated at 1000 m. The
daily averaged model field anomalies in each geographical region resulted in a minimum
dataset of more than 600 multi-variate profiles which were sufficient to calculate EOFs.

Every temperature and salinity profile, stream function and sea-surface-elevation
value from the model are taken to form a state matrix X containing 2m+ 2 non-
dimensional vectors (where m is the number of model vertical levels above the depth
of 1000 m):

X =
(
δη

ση
,
δ�

σ�
,
δT1

σT
, . . . ,

δTm

σT
,
δS1

σS
, . . . ,

δSm

σS

)
, (5)

where ση, σψ , σT and σS represent the standard deviation of corresponding fields, and
δ indicates the difference between the daily averaged value and temporal mean for each
season. Each vector composing (5) is a time series of daily values.

The S modes used in (3) are then computed by the singular value composition of
X, i.e.

X = S�1/2VT. (6)

Initial tests showed that the dimensional scaling in (5) was not sufficient to obtain
EOFs which were different between the case with the state vector that included all four
variables and the one calculated only from temperature and salinity. This result can
be explained by the fact that in this case the relative contribution given by the stream
function or by the surface elevation on the matrix (5) is small with respect to temperature
and salinity. Therefore, the matrix is dominated by the covariance modes of temperature
and salinity.

In order to create EOFs independent of space geometry, i.e. number of levels,
thickness of levels and in general the grid spacing, we decided to multiply the state
vector X (defined in (5)) by a metric factor matrix g (North et al. 1982) whose diagonal
elements are:

g = diag

(
1, 1,

	z1

H
, . . . ,

	zm

H
,
	z1

H
, . . . ,

	zm

H

)
, (7)

where the 	z are the model layer thicknesses and H is the constant model depth of
1000 m. Although it is well known that the multiplication by the layer thickness results
in different EOFs, the consequences of this scaling go far beyond this fact. As we can see
from (4), sea surface elevation and barotropic stream-function errors are approximately
given by vertically integrated errors in temperature and salinity fields. Therefore, we can
expect that thicker layers with the same variance of temperature and salinity should have
a proportionally larger influence on the errors in surface elevation and barotropic stream
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Figure 3. Vertical structure of the first vertical-error EOF (height in metres) in S (see text) for (a) temperature
(◦C), and (b) salinity (PSU), in regions 1, 8 and 11 multiplied by their explained variance and for summer. Region 1

is represented by the full line, region 8 by the dashed line and region 11 by the dotted line.

function. This means that temperature and salinity multiplied by the layer thickness
more closely represents the real physical relationships between the temperature and
salinity fields and changes in the sea surface elevation. The EOF modes are calculated
as in (6), but with X scaled by the metric factor matrix (7). To construct S we need to
retrieve the EOFs in the physical space and then the modes are re-scaled by the inverse
of (7).

Figure 3 shows the vertical structure of the first EOF of the temperature and
salinity variability (assumed to approximate the vertical background error) computed
for regions 1, 8 and 11 (shown in Fig. 2) in summer. In regions 1 and 8 the first EOF
of salinity has a similarly important variation like the first EOF of temperature. On the
contrary, in the region 11 the first temperature EOF has a significantly larger magnitude
than the first salinity EOF. We can explain the difference in the vertical structure of
the first EOF by the fact that regions 1 and 8 have a relatively large variance in salinity
between the modified Atlantic water and the Levantine subsurface water layers, while in
region 11 this variance is attenuated due to mixing during the eastward advection of the
Atlantic waters, and the largest water mass variance is due to temperature differences.

The structure of the error vertical covariance matrix constructed from (5) as XXT in
region 1 and for summer is shown in Fig. 4. We can see that temperature and salinity at
all levels are correlated with the surface elevation. The maximum correlation is approx-
imately at the bottom of the mixed layer where temperature and salinity have the largest
variance. Also, the same levels show the largest correlation between the temperature
and salinity fields. A similar vertical correlation structure is also obtained in all other
regions and seasons (not shown). The largest variance and correlation magnitudes are
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Figure 4. The vertical correlation matrix XXT for the region 1 in summer. Starting from the bottom left
corner, the first element corresponds to the surface elevation correlation, the second to barotropic stream-function
correlation and then there are 21 levels with temperature and 21 levels with salinity. All values are scaled by
their standard deviations as explained in (5) and by the trace of XXT in order to represent them with comparable

magnitudes.

placed around the bottom of the mixed layer, because there the variance of temperature
and salinity is the largest. For the temperature field this result is consistent with the
hypothesis that the background-error variance is proportional to the magnitude of the
vertical gradient of the temperature (e.g. Behringer et al. 1998). In fact, it was noticed
that the maximum of the temperature variance was placed at the maximum of the mean
vertical temperature gradient (not shown). Furthermore, we can see in Fig. 4 that the
maximum of the salinity error variance is positioned deeper than the maximum of the
temperature error variance. It was noticed that this depth coincided with the maximum
of the mean vertical gradient of the salinity field (not shown). This indicates that the
salinity error variance is the function of the vertical gradient of the salinity field, just
like the the temperature error variance is the function of the mean vertical gradient of
the temperature field. The spatial and seasonal variability of the position of the bottom of
the mixed layer further confirms our initial hypothesis that it is necessary to have a sea-
sonally and spatially variable representation of the background-error covariance matrix
in order to accurately propagate in vertical corrections due to the SLA data assimilation
in the Mediterranean.

In order to decide how many EOFs were sufficient to represent the vertical
background-error covariance matrix, we reconstructed individual vertical profiles of
temperature and salinity. This method differs from the usual one because of scaling
given by g. In fact, in the scaled space, 10 EOFs were enough to reproduce the vertical
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TABLE 1. SENSITIVITY EXPERIMENTS DIFFERENCES. MARK2 IS THE
OLD OPERATIONAL SCHEME AND REPRESENTS THE REFERENCE EXPERI-

MENT. EXP4 LABELLED MARK3 IS THE NEW OPERATIONAL SCHEME.

Experiment name Number of regions Number of EOFs Variables

MARK2 1 1 �, T , S
Exp2 13 20 �, T , S
Exp3 13 10 �, T , S
Exp4/MARK3 13 20 η, �, T , S

See text for explanation of symbols.

scaled profiles of temperature and salinity, since the sum of the first 10 eigenvalues
gives about 99% of the explained variance. However, going back to the physical space,
by rescaling the EOFs at each level, the reconstruction needs to have at least 20 EOFs
to reach an error of 0.01 degC for temperature and 0.01 PSU units for salinity. There-
fore, we have decided to use 20 EOFs in the new formulation of the background-error
correlation matrix for the SLA assimilation. The usage of 20 EOFs reduce the num-
ber of original vertical modes by approximately 2. Furthermore, we have performed a
sensitivity experiment with 10 EOFs which is explained in the next section.

4. VALIDATION OF THE NEW ANALYSIS SCHEME

The influence of the new background-error covariance matrix modes on the quality
of the analyses was evaluated by several sensitivity experiments. Sensitivity experiments
contrasted by the different specification of several parameters of the new assimilation
scheme are listed in Table 1.

Initial experiments with a duration of few months showed relatively large differ-
ences between the reference experiment MARK2 and experiments with the new
background-error correlation matrices. The results of the most complex Exp4, which
applies 20 quadrivariate EOFs, differ from Exp2, which applies trivariate EOFs, in
terms of the magnitude of corrections, with the corrections having a slightly smaller
magnitude in the experiment Exp4 (not shown). Similarly, Exp3 which used 10 trivariate
EOFs, resulted in corrections with slightly smaller magnitude than those obtained with
20 trivariate EOFs in Exp2 (not shown). From these intercomparisons, however, we
could not unequivocally evaluate which set of EOFs gave superior assimilation results.
Based mainly on arguments from the last paragraph in section 3, we have arbitrarily
decided to choose 20 quadrivariate EOFs for the MARK3 experiment.

The comparison experiment between MARK2 and MARK3 covered the period
from September 1999 to May 2004. A relatively long period for the comparison between
two assimilation systems gives the possibility to statistically compare the performance
of the assimilation schemes during all seasons and with a large variety of atmospheric
forcing conditions.

One year after the beginning of the assimilation, differences appeared between the
two assimilation schemes, which were systematically present throughout the rest of the
period of the comparison. Figure 5 shows the sea surface elevation estimated by MARK2
and MARK3 one year after the beginning of the assimilation. We can see that large-
scale features in both experiments give a relatively similar result and correctly depict
major structures of gyres and large currents. For example, by comparing with Fig. 1
in Pinardi and Masetti (2000) we can see that both experiments correctly simulate the
general path of the Algerian current, the inflow of the Atlantic Stream into the Ionian
south of Sicily, the flow of the Atlantic Stream along the north-eastern African coast, and
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Figure 5. Sea-surface-elevation (cm) fields for 5 September 2000: (a) Experiment MARK2 and (b) Experi-
ment MARK3 (see Table 1). These are snapshots approximately one year after the start of the assimilation

(31 August 1999).

cyclonic circulations in the Levantine, the Adriatic and the western Mediterranean. On
the other hand, there is a significant difference in the intensity of the surface circulation
indicated by the gradient of the sea surface elevation field. The sea surface elevation
gradients in MARK2 are more intense than in MARK3 indicating a stronger surface
flow. Furthermore, MARK2 shows smaller-scale eddies, especially in the northern part
of the Mediterranean.

The same type of differences between sea-surface-elevation fields simulated by the
two experiments were obtained throughout a four-year-long period of the assimilation
(not shown). Without a comparison with independent observations, these differences
in the results do not indicate which assimilation scheme gives a better result, but we
can conclude that large-scale features in surface analyses produced by two experiments
are relatively similar. This conclusion could be expected, because sea surface eleva-
tion analysis fields are obtained from directly observed SLA data which are available
with a relatively high temporal frequency and spatial resolution. However, it should be
noticed that MOM is a rigid-lid model with the background sea-surface-elevation fields
diagnostically calculated by inverting the Laplacian of the surface pressure. As a conse-
quence, in MOM we only correct temperature, salinity and barotropic stream-function
fields. However, the corrections are done in a way to reduce the residuals between
diagnosed background sea-surface-elevation fields and SLA observations. Therefore,



3636 S. DOBRICIC et al.

Figure 6. Difference between salinity on 5 September 2000 and 7 September 1999 at the depth of 350 m (PSU):
(a) Experiment MARK2 and (b) Experiment MARK3.

sea-surface-elevation corrections depend mainly on residuals and less on the structure
of the background-error correlation matrix and we can explain the large-scale similarity
between the two experiments by the fact that they assimilated the same set of SLA
observations.

On the other hand, we can expect that the change in the background-error
correlation matrix will mostly influence the correction of fields that are not directly
observed. In the case of the SLA assimilation these fields are temperature, salinity and
the barotropic stream function. Figure 6 shows the difference between the salinity at the
depth of 350 m on 5 September 2000 simulated by the two experiments and the initial
salinity on 31 August 1999. Now we can see that MARK3 gives a result which is quite
different from that of MARK2. In MARK2 there is a clear drift of the salinity towards
higher values especially in the eastern Mediterranean. At the same time in MARK3 the
drift is smaller if not absent. The salinity is higher in some areas and lower in others,
showing a wave-like adjustment without large-scale drifts. The salinity drift in MARK2
was evident throughout the five-year-long comparison period, and in 2004, after the full
period of comparison, the salinity at deep layers in MARK2 reached unrealistic values,
while MARK3 did not show drifts (not shown). We can explain this result, that the
surface fields in two experiments are relatively similar, although salinity fields at the
350 m depth are different, by the fact that there can be an infinite number of very dif-
ferent vertical profiles of temperature and salinity that give similar sea-surface-elevation
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(a)

(b)

Figure 7. Difference between temperature fields at 1000 m depth simulated by (a) MARK2 and (b) MARK3 in
February 2004 and the MEDATLAS winter climatology (degC).

distributions. This can happen because the sea surface elevation depends only on the
gradient of the vertical integral of salinity and temperature fields (see (6)) which can be
similar for different vertical profiles.

Similarly to the difference in the salinity fields at 350 m depth, a difference was
noticed in the temperature field in the deep layers. As an example, Fig. 7 shows the
difference between the temperature fields at the 1000 m depth obtained in MARK2
and MARK3 in February 2004 and the winter temperature field from the MEDATLAS
climatology (The Medar Group 2002). We can see that, in comparison with MARK2,
the use of temporal and spatially variable EOFs in MARK3 significantly reduced the
difference between the temperature analysis and the MEDATLAS climatology.

A direct quantitative evaluation of the two assimilation schemes can be obtained
by comparing the forecast with independent observations. Figure 8 shows the r.m.s. of
residuals of SLA during the period September 1999–December 2002. They are obtained
by calculating the difference between SLA fields predicted by the model during 14-
day simulations and observed SLA. Residuals are calculated using the first guess at
appropriate time method with model SLA fields, which temporally correspond to the
time of observations. It is important to notice that observations are compared with
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Figure 8. The r.m.s. error (cm) of the SLA predicted by the model. Predicted values are obtained during two-
week simulation which start from analyses. The bold dashed line shows results for MARK2, the bold continuous

line for MARK3 and the thin continuous line for the run without assimilation.

forecasts before their assimilation and therefore represent an independent dataset for
the validation. We can see that in MARK2 the mean r.m.s. of residuals is around 6 cm,
while in MARK3 it is around 5.5 cm. In the free run the r.m.s. of the residuals is always
higher than with the assimilation scheme, with the mean value of approximately 8 cm,
meaning that both schemes improved the prediction of the SLA in comparison with the
run without the assimilation.

We have further compared analyses from two experiments with the independent
observations which were not assimilated by the system. Independent temperature and
salinity observations were taken from ARGO floats positioned in different locations in
the Mediterranean in the first six months of 2003, available through the Coriolis Data
Center and produced by the Naval Oceanographic Office. Figure 9 shows the r.m.s. of
the difference between temperature simulated by the two experiments and observations
by ARGO floats. We can see that, in deep layers below 150 m, MARK3 has a much
lower r.m.s. error. However, in the first 50 m close to the surface, temperature fields
from MARK2 are closer to the observed temperature.

MARK2 predicts more accurately the temperature close to the surface because the
single EOF used in MARK2 is set to zero in the top 120 m of the water column, while
in MARK3 the temperature correction goes to the surface. As a consequence the surface
temperature field in MARK2 is corrected only by SST measurements, and in MARK3
also by SLA measurements. Figure 9 shows that corrections due to SST observations
result in a more accurate temperature field close to the surface in comparison with that
obtained also from corrections by SLA measurements. This means that MARK3 gives
too large a weight to the surface temperature correction due to SLA observations in
comparison with the weight due to SST observations.

Figure 9 also shows that in deeper layers, due to the temperature drift, MARK2 is
often less accurate than the climatological estimate or the free run without assimilation,
although it was always more accurate than the free run for the SLA field (Fig. 8). On the
other hand, in deeper layers the temperature field from MARK3 is more accurate than
the climatological estimate or the free-run simulation.

Figure 10 shows the r.m.s. error for salinity using the ARGO floats for the com-
parison. MFS does not assimilate any direct observation of salinity. Therefore, the com-
parison of predicted and observed salinity provides a completely independent validation
of the assimilation system. At almost all depths MARK3 has a smaller r.m.s. error than
MARK2, which does not depend significantly on the month. In addition to a relatively
large amplitude of the r.m.s. error, MARK2 also shows its relatively large temporal
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Figure 9. Comparison of the temperature simulated by MARK2 (crosses) and MARK3 (stars) with independent
observations by ARGO floats. R.m.s. errors (degC) are grouped in four layers in the vertical, and are shown
for the first six months of 2003. Empty circles show the r.m.s. errors for the climatological estimate using the
MEDATLAS climatology, and filled circles the r.m.s. errors for the free simulation. In each month the comparison

is made using approximately 40 ARGO profiles.

variability. MARK2 has a slightly lower r.m.s. error at the depth of 200 m in April, May
and June, but at all other depths and months the r.m.s. error in MARK3 is significantly
smaller. Again, due to the salinity drift, MARK2 is often less accurate while MARK3
is always more accurate than the climatological estimate or the free simulation. Further-
more, the comparison with the errors by the climatological estimate or by the free run
shows that at the depth of 200 m the higher accuracy of MARK2 in comparison with
MARK3 is practically insignificant.

5. DISCUSSION AND CONCLUSIONS

This study presents the changes occurred in the MFS operational system for the
assimilation of SLA. A new system MARK3 has been designed and implemented. It
uses multivariate time- and space-dependent EOFs in the background-error covariance
matrix. The previous operational scheme called MARK2 (Demirov et al. 2003) used a
single EOF in space and time. Soon after the start of the four-year comparison period we
could notice differences between the results of the two assimilation schemes. Generally,
MARK3 resulted in a less intensive surface circulation and unlike MARK2 did not show
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Figure 10. Same as Fig. 9, but for salinity (PSU units).

a major salinity drift. Furthermore, the SLA predicted in MARK3 had a smaller r.m.s.
error in comparison with MARK2.

As a confirmation of these results, a comparison with a completely independent
dataset of vertical temperature and salinity profiles measured by ARGO floats showed
smaller r.m.s. error in MARK3 than in MARK2. Clearly, the use of geographically
and seasonally variable EOFs resulted in significantly improved analyses. However,
the comparison between MARK2 and MARK3 evidenced that MARK3 corrected the
surface temperature field too much using SLA measurements in comparison with the
correction by SST measurement. This led to less accurate surface temperature fields
obtained in MARK3 in comparison with MARK2. In order to correct this deficiency of
the new assimilation scheme, in future it will be necessary to give more weight to the
surface temperature correction by SST measurements in relation to the weight of the
correction by SLA measurements.

The specification of the background-error correlation matrix in MARK3 can be
further refined. For example, we could expect that vertical structures of the error approx-
imately satisfy the geostrophic balance between temperature and salinity error vertical
profiles and errors in sea-surface-elevation and stream-function fields (e.g. Daley 1991).
A check of the geostrophic balance using (4) showed that some EOFs in MARK3 did
not satisfy it (not shown). We are currently investigating how to enforce the approximate
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geostrophic balance in the error EOFs and what are the consequences of these changes
on the assimilation results.

Another change of the background-error correlation matrix which is currently under
development consists in substituting the barotropic stream-function correction with the
correction of the full vertical profile of the velocity. In the future we plan to perform
analyses each day and update the background-error correlation matrix more frequently.
Furthermore, MFS will soon use the same background-error correlation matrix for the
assimilation of all observational datasets at once, avoiding the alternating cycle.

Experimental results obtained from the comparison between MARK2 and MARK3
with independent datasets confirm that a more accurate specification of the background-
error correlation matrix significantly improves the assimilation results. They suggest
that, if other changes in our assimilation system, like increased horizontal and vertical
resolution of the numerical model, the improved calculation of surface fluxes, improved
assimilation schemes and the assimilation of new datasets will be necessary, further im-
provements in the calculation of the background-error correlation matrix will represent
an important part of the MFS development.
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