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ABSTRACT

In this article the impact of multisatellite altimeter observations assimilation in a high-resolution Medi-

terranean model are analyzed. Four different altimeter missions [Jason-1, Envisat, Ocean Topography Ex-

periment (TOPEX)/Poseidon interleaved and Geosat Follow-On] are used over a 7-month period (from

September 2004 to March 2005) to study the impact of the assimilation of one to four satellites on the analyses

quality. The study highlights three important results. First, it shows the positive impact of the altimeter data on

the analyses. The corrected fields capture missing structures of the circulation, and eddies are modified in

shape, position, and intensity with respect to the model simulation. Second, the study demonstrates the im-

provement in the analyses induced by each satellite. The impact of the addition of a second satellite is almost

equivalent to the improvement given by the introduction of the first satellite: the second satellite’s data bring

a 12% reduction of the root-mean-square of the differences between the analyses and observations for the sea

level anomaly (SLA). The third and fourth satellites also improve the rms, with a more than 3% reduction for

each of them. Finally, it is shown that Envisat and Geosat Follow-On additions to Jason-1 impact the analyses

more than the addition of TOPEX/Poseidon, suggesting that the across-track spatial resolution is still one of

the important aspects of a multimission satellite observing system. This result could support the concept of

multimission altimetric monitoring done by complementary horizontal resolution satellite orbits.

1. Introduction

During the recent decades numerical model simulations

have considerably contributed to a new understanding of

the ocean circulation and its variability. Model simula-

tions have become more realistic and allow the explora-

tion of the synoptic scales of the ocean circulation in a

way that could never be achieved with sparse in situ

measurements. The realism of the model outputs can be

strongly improved by data assimilation of in situ and

satellite data. In particular, the altimeter data provide

key observations that are used to correct the model be-

cause they have almost uniform and regular coverage

with a high revisit time period (De Mey and Robinson

1987; Fukumori et al. 1999; Dobricic et al. 2005).

Since the beginning of altimetry, the question of the

optimal spatial and temporal coverage of satellites in view

of assimilation into numerical models has been studied.

Mellor and Ezer (1991) showed that low-altimeter spatial

sampling could increase the rms error by about 2–3 times

with respect to a finer sampling. Moreover, they showed
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that error associated with imperfect altimeter coverage is

larger than the error associated with imperfect parame-

terization of surface to subsurface correlation involved in

assimilation technique. However, in a single satellite as-

similation context, spatial and temporal sampling could

not be dissociated. Berry and Marshall (1989) showed that

an altimeter with a 14-day repeat period (with a 140-km

track separation in the studied area) gave optimal results.

However, as shown by Holland and Malanotte-Rizzoli

(1989), when assimilating along altimeter tracks, the

trade-off between space and time resolution just about

compensate for each other. As underlined by the same

authors, the results depends on the assimilation tech-

nique and parameterizations and also on space and time

scales of motion in the region studied and capacity of the

model to reproduce these structures and variability.

Since 1992 multialtimetry data have been available (Le

Traon 2002) and numerical models have increased the

spatial resolution, reaching a few kilometers horizontal

grid spacing, and the question of the optimal altimeter

sampling scheme in a model assimilation context can be

reviewed. Recent studies (Benkiran 2007) focused on the

question of the optimal spatial and temporal coverage of

the satellite in view of the assimilation in numerical

models. Benkiran (2007) made the first estimation of

the impact of the assimilation of four satellites into an

oceanographic data analysis system of the northern At-

lantic, and he found that the impact of the addition of

a fourth satellite was insignificant. However, his result

was obtained by a coarse spatial resolution model setup

(1/38) and the weekly assimilation window.

In this study we will estimate the impact of the mul-

timission spatial/temporal coverage on the analyses of

the Mediterranean Forecasting System (MFS; Pinardi

et al. 2003; N. Pinardi and Coppini 2010, unpublished

manuscript). The numerical model has a resolution of
1/168 latitude 3 1/168 longitude (approximately 6.5 km),

and it is able to represent eddies because the first Rossby

radius of deformation is 10 km. Eddies in the Mediter-

ranean are pervasive (Millot 1999; Millot and Taupier-

Letage 2005; Robinson et al. 2001), and the reproduction

of mesoscales in the sea surface variability is a key pa-

rameter that is used to judge the quality of the assimila-

tion and model system. Furthermore, we will assess the

optimal satellite multimission monitoring parameters

by estimating how each of the four satellites, character-

ized by different sampling schemes, impacts the analysis

quality.

The study is focused on the period from September

2004 to March 2005 during which four different altime-

ters were active. Different assimilation experiments for

the various altimeter combinations are shown. They are

described in section 2 after a brief presentation of the

MFS model and the assimilation method used. The high-

resolution error covariance matrix used for this study is

presented in section 3. Analysis fields are compared with

sea level anomaly (SLA) and Argo independent data to

estimate the quality of the analyses. The results obtained

are discussed in section 4 in terms of improvement of the

root-mean-square error for SLA, temperature, and sa-

linity. Section 5 summarizes and offers the conclusions.

2. Data and methods

a. The MFS model and its assimilation scheme

The MFS model is based on the Océan Parallélisé

(OPA) 8.2 code (Madec et al. 1998) with an implicit free

surface. One of the interesting characteristics of this

model is its high horizontal and vertical resolution: it

reaches a 1/168 3 1/168 horizontal resolution (i.e., ap-

proximately 6.5 km) and 72 vertical levels unevenly

spaced in order to increase the resolution near the sur-

face. A detailed description of the model is given in

Tonani et al. (2008).

To assimilate observations, the MFS model is com-

bined with a three-dimensional variational data assimi-

lation (3DVAR) ocean scheme (OceanVar; Dobricic

and Pinardi 2008; also see the appendix herein). For this

study, both SST and altimeter data were assimilated.

The SST assimilation is done by correcting the surface

heat fluxes, as explained in Pinardi et al. (2003), with

a term that is proportional to the difference between the

model temperature at the surface and the observational

SST. The latter is produced daily by an objective analysis

scheme developed by Buongiorno Nardelli et al. (2003).

In the OceanVar scheme, the background error co-

variance is subdivided into a sequence of operators

(Dobricic and Pinardi 2008), with one of them contain-

ing statistically estimated vertical error covariances of

temperature and salinity, which is a key element for

the assimilation of SLA observations as explained in

Dobricic et al. (2007). They are represented by multi-

variate empirical orthogonal functions (EOFs) com-

puted from a 9-yr model simulation (from 1993 to 2001).

New EOFs were computed specifically for this study.

The method and the resulting EOFs are presented in the

section 3.

Assimilation can be used for various purposes (Robinson

and Lermusiaux 2001; Lermusiaux et al. 2006). In this

paper the data assimilation system is used to correct

the model background (or first guess) fields by com-

bining them with the information from the observations.

To do so it is necessary to make sure that the observed

and background quantities are comparable. The altimeter

measurements are given as SLA obtained by subtracting

a long-term mean of the satellite data, the so-called mean
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sea surface height (MSSH), for the period of 1993–99. To

compute the model SLA, a mean dynamic topography

(MDT) is removed from the model sea surface height.

This MDT is estimated from model output and data for

the same period that characterizes the MSSH (Rio et al.

2007), and is further corrected by long-term assimilation

diagnostics (Dobricic 2005).

The altimeter SLA signal gives the time-dependent

dynamical part of the sea level variations (frequencies

higher than 0.05 days21 have been removed). They

correspond to barotropic aliased signals (Carrère and

Lyard 2003), which contain a multiplicity of time scales.

A major part of the SLA signal is induced by long time-

scale signals, such as the steric effect (seasonal vari-

ability of water masses); another part is due to mean

current variability (seasonal-to-interannual variability)

and shorter time variability, which is mainly dominated

by mesoscale structures (,200 km).

In the model, the sea surface is a prognostic variable.

It represents the dynamic height induced by large-scale

forcing of the circulation (wind, water, and heat fluxes)

and by the mesoscales. Because the model is incom-

pressible and Boussinesq, which, at zeroth order, implies

incompressible flows, the steric contribution to sea level

averaged over the whole model domain does not con-

tribute to the dynamics (Mellor and Ezer 1995) and

should be excluded from the model–data misfit, as ex-

plained in Demirov et al. (2003). Because our model

domain is closed we must remove the steric effect from

the observations. We remove it by subtracting the mean

of the misfits along each satellite track. The amplitude of

the steric oscillation in the Mediterranean is similar to

that in the North Atlantic, where it is about 10–20 cm

(Ivchenko et al. 2007; Oddo et al. 2009). The ocean

thermal expansion is slow, and therefore it can be easily

estimated by calculating the basin-averaged SLA once

a week. However, there are other large-scale effects that

are not simulated by the model and have shorter time

scales. For example, the inverse barometer is removed

from SLA observations by using the ECMWF atmo-

spheric pressure analyses that contain some uncertainty.

Furthermore, because the only connection to the global

ocean is through the narrow Strait of Gibraltar, rapidly

moving atmospheric pressure disturbances produce baro-

tropic oscillations that may affect the sea level in the

Mediterranean for several days (Le Traon and Gauzelin

1997). The local variability of the wind in the Strait of

Gibraltar, which is poorly represented in the European

Centre for Medium-Range Weather Forecasts (ECMWF)

wind analyses, may produce high-frequency oscillations

of the mean sea level in the Mediterranean (Fukumori

et al. 2006). The intercalibration (Le Traon and Ogor 1998)

process removes most of the high-frequency barotropic

oscillations from the observations, but it could leave some

biased high-frequency oscillations at smaller spatial scales.

In the MFS operational system it was found that by

removing the mean misfit along each track (Dobricic

et al. 2005) the rms error for SLA was reduced by about

10%–20% with respect to the subtraction of the cli-

matological estimate of the steric height (Demirov et al.

2003).

In this paper we follow this nomenclature: Xa 5

[T, S, h]T is the analysis state vector containing all of

the gridpoint values of temperature, salinity, and sea

level; Xb 5 [T, S, h]T is the background or first-guess

model field that we want to improve with assimilation;

and YO is the observational quantity. The assimilation

scheme computes misfits, or the differences between the

observations and the model first guess before the anal-

ysis. The analyses correct not only the sea level but also

other model-state variables, in particular, temperature and

salinity vertical profiles through the vertical and hori-

zontal components of the background error covariances

(Dobricic and Pinardi 2008).

The assimilation cycle is daily and the correction of

the model fields is done in filter mode (Demirov et al.

2003); that is, only observations in the past are used to

produce an analysis. Every day, up to 600 SLA data

points for that day are assimilated along different tracks

in the Mediterranean Sea. It should be mentioned that

Archiving, Validation, and Interpretation of Satellite

Oceanographic data (AVISO; AVISO 2009) provides

composed gridded datasets that can be successfully as-

similated into ocean models (e.g., Oey et al. 2005). The

AVISO gridded product is daily (near-real-time prod-

uct); however, short frequencies are ‘‘averaged’’ in the

gridding process (AVISO uses a 3-week temporal win-

dow). The key difference between the two approaches

(using along-track data and objectively analyzed sea

surface height maps) is the fact that by using directly

along-track altimeter data we allow for the high-frequency

signal to be assimilated. Although our approach requires

more careful preprocessing of the along-track data, it is

more general and does not preclude the inclusion of all

space and time frequencies of the observations in the as-

similation scheme.

The resulting analyses for sea level h, temperature T,

and salinity S are compared after assimilation to the

observations in order to estimate a difference vector D,

defined as

D 5 YO�H(Xa), (1)

where H is a simple bilinear interpolation to the obser-

vational spatial and temporal point and Xa is the analysis

state vector. These differences are an estimate of the

agreement of the analysis with observations. The mean
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of the vector values of jDj and the square root of the

mean of jDj2 will be called the bias and root-mean-square

(rms) of the posterior residuals [or ‘‘analyses minus ob-

servations’’ (AMO)], respectively. For SLA differences,

the mean is subtracted along each track, as done for the

misfits, in order to eliminate the steric effect. For SLA in

particular, we calculated the mean of the absolute value

of AMO.

b. The altimeter data

The altimeter data used in this study are along-track,

near-real-time data distributed by AVISO. Data from

the following four altimeters were collected: Jason-1 (J1),

Ocean Topography Experiment (TOPEX)/Poseidon (T/P),

Envisat (EN), and Geosat Follow-On (G2); they were

geophysically corrected (tides, wet and dry tropospheric,

and ionospheric corrections). The low-frequency inverse

barometer effect and high-frequency barotropic response

to wind and pressure forcing given by the Modèle aux

Ondes de Gravité 2 Dimensions (MOG2D; Carrère and

Lyard 2003) was removed to the altimeter signal. This

allowed for an improved correction of aliasing effect in-

duced by the satellite’s repetition of the measurement.

All of the data were intercalibrated, performing a global

crossover adjustment using J1 as the reference mission

(Le Traon and Ogor 1998). Along-track data were re-

sampled every 7 km using cubic splines. SLAs were

computed by removing a 7-yr mean sea surface height

corresponding to the period of 1993–99. Finally, mea-

surement noise was reduced by applying Lanczos (hav-

ing a cutoff wavelength of 42 km) and median (21 km)

filters. The data were then subsampled every ;14 km in

order to limit the number of redundant observations.

The characteristics of the different altimeter sampling

schemes are given in Table 1. The J1 mission and T/P

present the best temporal revisit time but have low

spatial resolution. Note that T/P tracks are located be-

tween the J1 during the tandem mission (September

2002–October 2005). The combination of J1 and T/P

thus allows optimal spatial coverage. However, the com-

bination with temporal coverage is limited because the

two satellites are flying side by side. Contrary to J1, EN

presents a higher spatial coverage but a longer revisit

period; G2 characteristics are halfway between J1 and EN.

c. Independent data for validation

Argo data are now a consistent real-time input data

for assimilation and validation in the Mediterranean Sea

(Poulain et al. 2007). Nearly 700 vertical profiles were

collected during the studied period. The position of the

different Argo profiles used is shown in Fig. 1. In this

study, Argo data are used the first time as an assimilated

dataset in order to verify the robustness of the back-

ground error covariance matrix (section 3). In a second

instance, Argo profiles are used as a completely in-

dependent dataset (section 4). All of the statistics com-

puted for AMO by Eq. (1) with Xa at day J consider

observations at day J 1 1. In this way, even when tem-

perature and salinity observed by Argo floats are as-

similated (this is done only for the validation of the

background error covariance matrix in section 3), it can

be assumed that AMO represent an independent data-

set for the validation. In the Mediterranean the Argo

profiles occur every 5 days, and with a correlation scale

TABLE 1. Between track distances (in the Mediterranean Sea) and

repeat view characteristics of each altimeter used.

J1 and T/P G2 EN

Between track distance in the

Mediterranean Sea (km)

;260 ;130 ;65

Repeat view (days) 10 17 35

FIG. 1. Position of the different Argo profiles for the period of September 2004–March 2005.
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of 10 km the drifter only needs an average motion of

2 cm s21 to be in an independent location. Furthermore,

Argo observations on day J and day J 1 1 are made by

different floats. Therefore, it may be reasonable to as-

sume that the differences between model fields in two

consecutive days will be smaller than the differences

between those fields and the verifying observations.

SST and color data are used for a qualitative valida-

tion of the posterior ocean estimates. These data are

used as gridded maps, which are 10-day averages built

from Moderate Resolution Imaging Spectroradiometer

(MODIS) level 2 products downloaded from the Ocean

Color Web (http://oceancolor.gsfc.nasa.gov). They are

compared with the SSH model output.

d. The numerical experiments

Five experiments are illustrated in this paper. They

are done in order to analyze the impact of the different

background error covariance matrix and to test various

satellite combinations and their impact on the analysis

quality. Each experiment covers the period from Sep-

tember 2004 to March 2005. The only difference be-

tween the experiments is the number of altimeter data

assimilated and the optional assimilation of Argo and

XBT profiles.

The different combinations of satellites used in the

experiments are summarized in Table 2. The reference

experiment does not assimilate altimeter data (Exp0).

In experiment 1 (Exp1), only J1 data are assimilated.

Then, two dual-satellite combinations are tested in

experiments 2a and 2b (Exp2a and Exp2b); in the first

one (Exp2a), we consider the combination J1 1 EN,

combining thereby the respective high temporal and

spatial sampling characteristics of each satellite. In

Exp2b, the duo J1 1 T/P interleaved is used, suppos-

edly offering optimal coverage (Chelton and Schlax

2003). In experiment 3 (Exp3), data from J1, EN, and

T/P are combined. Finally, in experiment 4 (Exp4),

data from the four satellites (J1, EN, T/P, and G2) are

assimilated.

An additional experiment (Exp4TS), assimilating four

altimeters as well as Argo (T/S) and XBT profiles, is

carried out to analyze the impact of different background

error covariance matrices.

An SST relaxation was applied to all of the experiments.

3. Computation of the background vertical error
covariance matrix

Data assimilation requires the knowledge of the spatial/

temporal structure of the background error covariances.

In OceanVar (see the appendix), the background error

covariances of temperature and salinity are estimated

successively in vertical and horizontal directions. SLA

error covariances are then estimated as the steady-state

solution of a barotropic oceanographic model simulation

forced by temperature and salinity error covariances. The

accuracy of the analyses of T and S thus strongly depends

on the quality of the estimated covariances of tempera-

ture and salinity in the vertical direction. In Dobricic and

Pinardi (2008), vertical error covariances between tem-

perature and salinity are statistically estimated with vertical

EOF defined for 13 regions of the Mediterranean Sea and

seasonal temporal resolution. Throughout, we will refer

to them as low-resolution EOF (LR EOF) because they

have low spatial and temporal resolution. Here we de-

scribe the methodology used to compute higher-resolution

EOFs that should better fit the model resolution and its

capability to represent smaller spatial scales. We will

also show the importance of this part of the error co-

variance matrix for the quality of temperature and sa-

linity corrections.

The multivariate vertical error covariance EOFs are

estimated considering the covariance matrix between

temperature, salinity, and sea level, as described in

Dobricic et al. (2005). The matrix scaling is described in

detail in Dobricic et al. (2005), and here we will say only

that we considered a depth-constant variance and the

geometrical scaling. This was shown to be necessary in

order to maintain the largest scaled errors in the ther-

mocline. A 9-yr (1993–2001) simulation is used to define

the vertical error covariance matrix and to compute new

multivariate vertical EOFs (HR EOFs; these EOFs have

a higher spatial and temporal resolution with respect to

LR EOF). The model domain is subdivided into 1/48 3
1/48 boxes and for each of them vertical monthly EOFs

are computed. Each box overlaps by an area of 3/48 3 3/48

and considers 6 weeks of data around the central time of

each month. This was done to ensure a smooth transition

from an area/month to the other. Inside each box, only

grid points deeper than 500 m were selected so that

EOFs were calculated, and assimilation was carried out,

TABLE 2. Summary of the experiments as a function of the number of altimeters.

Experiment Exp0 Exp1 Exp2a Exp2b Exp3 Exp4 Exp4TS

Altimeter

used

— J1 J1 1 EN J1 1 T/P J1 1 EN

1 T/P

J1 1 EN 1 T/P

1 G2

J1 1 EN 1 T/P 1 G2

1 Argo (T/S) 1 XBT(T )
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for depths greater than 500 m. The maximum number of

data available at each grid depth was used to define the

maximum depth (Zmax) for each area and EOF.

Performances of these new vertical EOFs are esti-

mated in terms of analysis error reduction over the period

of September 2004–March 2005. To detect the improve-

ments resulting from the higher spatial resolution of

EOFs, Exp4 and Exp4TS using HR EOFs and LR EOFs

are compared with available observations. The mean

absolute value of the bias and rms of AMO for SSH and

temperature and salinity profiles are used to estimate

the quality of the analyses.

Figure 2 presents the temporal evolution of the 7-day

mean of the absolute value of the bias and the rms of

AMO when either HR EOFs or LR EOFs are used. The

results clearly show a net reduction of the mean absolute

value when HR EOFs are used with respect to the re-

sults obtained with LR EOFs. The reduction of the

mean absolute value of the bias and its variance is given

in Table 3 in terms of the percentage of the signal with

an associated error (bootstrap method). HR EOFs al-

lows a reduction of 61% (63%) of the mean absolute

value of the bias and 45% (66%) of the rms with respect

to the LR EOFs when only SLA data are assimilated.

The introduction of Argo and XBT data leads to a lower

reduction of the SLA bias and rms (;45% and ;33%,

respectively, see Table 3). This is probably due to the

fact that temperature and salinity corrections inferred

from SLA misfits are not entirely consistent with their

corrections calculated from misfits of Argo and XBT.

However, it should be noticed that the mean absolute

value of the bias and the rms of AMO do not represent

a reliable measure for the quality of the analyses, be-

cause SLA observations are assimilated. They only show

the level of the agreement between the analyses and the

FIG. 2. Temporal evolution of the 7-day (top) absolute value and (bottom) rms of AMO for SLA. SLA data

assimilated with LR EOFs (continuous thin line); SLA data assimilated with HR EOFs (continuous thick line); SLA,

ARGO, and XBT data assimilated with LR EOFs (dashed thin line); and SLA, Argo, and XBT data assimilated with

HR EOFs (dashed thick line).

TABLE 3. Reduction of the absolute bias and rms of AMO for

SLA, induced by the use of HR EOFs with respect to the use of LR

EOFs. Values are given in percent of the signal with an associated

error corresponding to the 95% confidence interval.

Reduction of the

absolute bias

Reduction of

the rms

Four satellites assimilated 261 6 3 245 6 6

Four satellites 1 Argo

1 XBT data assimilated

245 6 4 233 6 5
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observations. For example, a higher agreement repre-

sented by a lower rms of AMO may simply reflect higher

background error variances for the sea level. All of the

experiments give the mean absolute value of the bias

and the rms of AMO, which is within the estimated error

of observations of 2–3 cm (Ducet et al. 2000; Ménard

et al. 2003). Therefore, the two sets of EOFs give equally

probable analyses of the SLA either with or without the

addition of XBT and Argo profiles.

Performances of HR EOFs were also analyzed by the

evaluation of the bias and rms of AMO for temperature

and salinity profiles using Argo observations. AMO are

calculated a posteriori, as discussed in section 2c, by

spatially interpolating the temperature and salinity anal-

yses on day J to observational points on day J 1 1 and by

subtracting the observed values on day J 1 1. Results are

presented in Figs. 3 and 4 for temperature and salinity

profiles, respectively. The reduction of the bias and the

rms of AMO (in terms of the percent of the Exp0 signal)

in the upper 400 m are reported in Table 4.

Assimilation of the SLA observations (Exp4) tends to

increase the bias of temperature AMO with respect to

the model without the assimilation (Exp0; see Fig. 3a

and Table 4). Spatial resolution of the background ver-

tical error covariances has a low impact, but an over-

all lower bias is obtained when HR EOFs are used,

FIG. 3. Vertical distribution of the (left) bias and (right) rms of AMO for temperature profiles.

FIG. 4. Vertical distribution of the (left) bias and (right) rms of AMO for salinity profiles.
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especially in the upper 300 m. The bias of AMO for

temperature is approximately 20% smaller when HR

EOFs are used instead of LR EOFs. The rms of AMO

for Exp4 with both HR EOF and LR EOF is impacted

by the observed bias (Fig. 3b and Table 4). Rms is ac-

tually about 8%–4.5% higher than that for Exp0.

However, the analysis of variability of AMO shows

a reduction of about 2%–3% (respectively, for LF EOFs

and HR EOFs). Overall, the different EOFs have a

small impact on the quality of the analyses in term of

AMO variability, and they produce a larger bias when

only SLA data are assimilated.

When Argo and XBT profiles are assimilated in ad-

dition to SLA data (Exp4TS), the bias and rms of AMO

temperature is largely reduced for both LR EOF and

HR EOF, and HR EOF leads to a nearly 20% higher

reduction of the bias than when LR EOF are used (Fig.

3a and Table 4). In the same way, the rms of the AMO

temperature is significantly reduced, reaching 23% and

27.5% of the Exp0 signal for HR EOF and LR EOF

(Fig. 3b and Table 4).

Considering the salinity now, Exp4 improves with

respect to Exp0 (Fig. 4). A significant reduction of the

bias and the rms of AMO salinity is observed especially

in the upper 300 m. Best results are obtained when HR

EOF are used. In this case, salinity bias reduction in

Exp4 reaches up to 22% of the signal and rms is reduced

up to 19% with respect to Exp0 (Table 4). When Argo

and XBT data are also assimilated, the results are again

largely improved, with slightly higher performances for

LF EOFs. In this case, AMO salinity bias reduction

reaches 70% and 72% of the Exp0 signal for HR EOFs

and LR EOFs, respectively. The AMO rms reduction is

47% and 49% for HR EOFs and LR EOFs, going from

Exp0 to Exp4TS.

The obtained results underline the limits and the ac-

curacy of the data assimilation scheme used in this study.

As mentioned before, Figs. 3 and 4 show that the tem-

perature bias and rms error in Exp4 is larger than that in

Exp0, and the result is not sensitive to the different EOF

sets used. The degradation of the bias and rms is small

however, on the order of 0.28C, and this sets the accuracy

of our method for correcting temperature. In the past,

assimilation of satellite altimeter data (Ezer and Mellor

1994; Masina et al. 2001; Haines 2002) has been carried

out with simpler methods and improvement between

assimilation and no-assimilation experiments has been

noticeably positive even if ARGO data were not avail-

able for a quantitative comparison. However, the models

used in the past studies were much less skilled in re-

producing the ocean variability and an estimate of the

accuracy limit of the assimilation scheme was not pos-

sible. In our case, it seems that such a limit can be set at

few tenths of a degree for temperature. For salinity the

Exp0 error is much larger from the start and the as-

similation overall improves.

In summary, section 3 shows that the assimilation skill

is improved by using HR EOFs with respect to LR EOFs.

Even if the benefit is more evident in the case of as-

similation of both SLA and temperature and salinity

profiles, we will use the HR EOF in all of the remaining

experiments.

4. Impact of number of altimeters on analysis
quality

a. Impact of number of altimeters on SLA analyses

The impact of the different satellite combinations on

the quality of the analyzed SLA is estimated by com-

puting AMO using (1), as done previously for tempera-

ture and salinity analysis. Considering results presented

in section 3, experiments were performed by using HR

EOFs. AMO is calculated for SLA observations by all

four satellites. Those differences are calculated a poste-

riori, by spatially interpolating the SLA analyses on day

J to observational points on day J 1 1 and by subtracting

the observed values on day J 1 1. This may be done by

assuming that mesoscale fields are highly correlated

from one day to the other. Independent data validation

will be done only for temperature and salinity profiles.

The temporal evolution of AMO rms for SLA is pre-

sented in Fig. 5. The difference was computed globally

along all of the satellites tracks and for each altimeter

independently in order to underline the impact of each

altimeter. It is clear that the rms of AMO for SLA is

TABLE 4. Reduction (%) of AMO bias and rms in the upper 400 m, for temperature and salinity.

LR EOFs HR EOFs

Exp0 /
Exp4

Exp0 /
Exp4TS

Exp0 /
Exp4

Exp0 /
Exp4TS

Exp0 /
Exp1

Exp1 /
Exp2a

Exp1 /
Exp2b

Exp2a /
Exp3

Exp3 /
Exp4

Bias T 161 241 143 265.5 120 111 27 21 29

Bias S 214 272 222 270 211 24 24 23 27

Rms T 18 227.5 14.5 223 115 213 27 13 1

Rms S 213 249 219 247 27 28 25 0 26
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reduced by assimilating all of the satellites. The assimi-

lation of the four satellites (Exp4) gave the best results

with a mean rms of AMO of ;4 cm, which is almost the

rms error of the altimeter measurement (Ducet et al.

2000; Ménard et al. 2003); whereas when using J1 data

only (Exp1), the rms is almost 5 cm. Without assimila-

tion of SLA (Exp0), the rms is almost 6 cm.

The reduction of the rms of AMO for SLA, expressed

in percent of the signal between an experiment and the

other and its 95% confidence interval, are given in Table 5.

The rms steadily decreases with the addition of satel-

lites. It is interesting to note in Table 5 that the impact

of EN is slightly higher than the impact of T/P when

added to J1. Considering EN as the second satellite with

FIG. 5. Temporal evolution of the rms of AMO (cm) using along-track satellite data. (top to bottom) Differences

along J1, EN, T/P, and G2 tracks for the different experiments of Table 2.
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J1 (Exp2a), the reduction of the rms is from 15% (63%)

and up to 17% (64%) along the G2 tracks. In the same

way, considering T/P as the second satellite (Exp2b),

a global reduction of near 12% (63%) is obtained [13%

(64%) along G2 tracks].

In a statistical reconstruction study, Chelton and Schlax

(2003) showed that SLA mapping capabilities are im-

proved when combining J1 and T/P rather than J1 and

EN. However, our results obtained by assimilating SLA

observations with a high-resolution numerical model

differ from those obtained by the simpler statistical al-

gorithms. For a high-resolution model, it seems more

beneficial to assimilate high across-track spatial resolu-

tion data (like EN data) in addition to J1, rather than

additional high temporal resolution data (like T/P). This

result is confirmed by Exp3 and Exp4. In addition, we

see that the impact from the addition of G2 is higher

than that from the addition of T/P (especially along J1

and EN tracks), even if G2 is used as a fourth satellite.

Moreover, the limit of the spatial coverage of T/P and J1

is underlined by the neutral result obtained with Exp3

when looking at the signal along the J1 tracks; instead of

reducing the rms of AMO, the assimilation of T/P data

rather seems to induce a small increase of the error. This

is certainly because T/P tracks are exactly between the

J1 tracks. As a consequence, considering the 10-km

Rossby radius of deformation in the Mediterranean Sea,

the correction given by T/P is not propagated, or hardly

so, on J1 tracks.

In most cases the representation of the mesoscales is

optimal when four altimeters are used. The spatial dis-

tribution of the reduction of the mean rms of AMO (over

the studied period) from one experiment to another is

given in Fig. 6. The energetic areas [i.e., Ierapetra area,

central Ionian and Algerian basin, as evidenced by Pujol

and Larnicol (2005)] are clearly impacted from Exp0 to

Exp1. The reduction of the rms of AMO reaches up to

30% in these areas. However, while a decrease of rms is

observed in most of the points (global mean reduction of

13% of the rms), in some points it is increasing (up to

20%). The increase of errors when going from Exp0 to

Exp1 is probably due to the nonuniform sampling scheme

of J1 by itself, while in the case of two and three satellites

the problem is alleviated, even if consistency between the

raw signals of the satellites becomes an issue. In our case

we use intercalibrated along-track products, which should

have the most compatible signals between satellites. In

any case, our work concentrates on the basin and time

mean average values of the errors resulting from the

addition of different satellites, and specific work on sub-

areas should be done in the future.

The second satellite reduces the rms the most at points

where there is the largest increase in rms caused by the

first satellite. This indicates that the second satellite is

complementary to the first, especially at the between-

track location of the first satellite. The impact of the in-

sertion of a second to a fourth altimeter is to refine the

position, shape, and intensity of various eddies, especially

in the areas of important mesoscale variability (e.g., the

Algerian basin, Ionian basin, and Levantine Sea). Note

that in terms of the reduction of the rms of the AMO, the

impact of the second satellite (Exp2a and/or Exp2b) is

almost as important as the contribution of the first sat-

ellite (Exp1). In fact, the mean rms reduction over the

Mediterranean Sea is nearly 12% for EN (Exp2a) and

nearly 10% for T/P (Exp2b). It locally reaches nearly

30% (in the Levantine Sea). The impact of the third and

fourth satellites in term of rms reduction is lower: a re-

duction of around 3% is observed in Exp3 and Exp4.

However, using a third and fourth satellite largely con-

tributes to the precision of the analysis improving rep-

resentation of position, intensity, and shape of predicted

eddies.

The impact of the SLA assimilation can be also esti-

mated by the surface eddy kinetic energy (EKE) of the

analyses, as shown in Table 6. The assimilation of the

first satellite (Exp1) induced an increase of the mean

EKE of 27% with respect to the run with no assimilation

(Exp0). However, the impact in terms of EKE of the

assimilation of a second, third, or fourth satellite is dif-

ferent. Assimilation of EN (Exp2a) or T/P (Exp2b) as

second satellites, respectively, leads to a 5% and 6%

decrease of the EKE with respect to the one-satellite

assimilated run (Exp1). With a third satellite assimilated

(Exp3), an additional decrease of nearly 2% is regis-

tered. Finally, adding a fourth satellite (Exp4) leads to

a 2% increase of the mean EKE with respect to Exp3.

The mean EKE level for January 2005 captured by the

model corrected with four satellites is nearly 200 cm2 s22.

This behavior is quite different from that reported by

Pascual et al. (2007) from altimetry reconstructed SLA

with one and four satellites. The mapped products showed

TABLE 5. Reduction of the rms of the along-track SLA AMO:

the difference is calculated along the different satellite tracks as

a function of the different experiments. Values are given in percent

of the signal with an associated error corresponding to the 95%

confidence interval.

Exp0

/
Exp1

Exp1

/
Exp2a

Exp1

/
Exp2b

Exp2a

/
Exp3

Exp3

/
Exp4

J1 229 6 3 29 6 4 24 6 4 10 6 5 21 6 5

EN 215 6 4 214 6 4 211 6 3 24 6 4 25 6 2

T/P 212 6 5 223 6 4 225 6 4 210 6 5 25 6 5

G2 214 6 3 217 6 4 213 6 4 24 6 5 25 6 5

All 220 6 2 215 6 3 212 6 3 23 6 4 24 6 4
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a regular increase of the EKE from one to four satellites,

that is, 140%, 110%, and 15% when two, three, and

four satellites are merged. These differences make it ev-

ident that when assimilating SLA data in a high-resolution

model, the introduction of mesoscale eddies does not

automatically impact EKE because the corrections have

to be dynamically adjusted by the model. Given a model

horizontal and vertical resolution, the insertion of new

structures in the sea level could modify only available

potential energy, and some others will be dissipated by the

model representation of viscosity and diffusion. The im-

pact on EKE of sea level assimilation is connected to the

dynamical adjustment by the model of the corrections,

while in statistical reconstructions the addition of obser-

vations in areas of data voids automatically increases the

kinetic energy of the flow field, but the result is probably

dynamically unbalanced.

We now show the impact of altimetric data assimila-

tion in the representation of specific structures of the

circulation. This is the case, for example, of the Ierapetra

Eddy (IE, which is usually located off the southeastern

corner of Crete, Greece (Horton et al. 1994). This im-

portant structure of the circulation is known to be very

energetic and presents an important annual and in-

terannual variability. It can detach from its usual position

to migrate into the central Levantine Basin (Larnicol

et al. 2002; Hamad et al. 2005). Without assimilation

(Exp0) the IE is misplaced and weak, if not absent, in the

model simulation (Fig. 7). Actually, IE formation pro-

cesses are quite complex because they involve at least

wind forcing (Horton et al. 1994) and water flow through

the straits of the eastern Cretan Arc (Horton et al. 1997),

while other forcings have also been claimed, such as

bottom topography and water circulation in the Nord-

Western Levantine Basin (Alhammoud 2005). Another

difficulty of the accurate representation of IE comes

from the importance of nonlinear terms in the dynamics

of the eddy (Lermusiaux 2002). On the contrary, the

TABLE 6. Changes in the mean surface EKE over the Mediterranean

Sea during January 2005, expressed in percent of the signal.

Exp0 /
Exp1

Exp1 /
Exp2a

Exp1 /
Exp2b

Exp2a /
Exp3

Exp3 /
Exp4

127 25 26 22 12

FIG. 6. Spatial distribution of the relative reduction of (top to bottom) AMO rms for SLA. Reduction of the rms is evidenced by negative

values (green to blue).
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FIG. 7. SST maps over the IE area for (top to bottom) different days (experiments). Model SSH is

superimposed with black isolines. The isolines range from 225 to 25 cm, with a 2-cm contour interval.

Negative SSH (dashed lines) and positive SSH (solid lines); (left) simulation and (right) assimilation with

four satellites; and warm waters (red) and cold waters (purple) are shown.
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FIG. 7. (Continued)
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assimilation of altimeter data introduced the IE in the

analysis estimate. The position of the IE for different

days is given in Fig. 7 superimposed to SST data. At the

beginning of the studied period, IE was present in the

simulation pressed against the southeastern corner of

Crete (see the snapshot for 10 June 2004). Then, it de-

tached from this position and slowly migrated southward.

At the beginning of December 2004 it was centered

around 348N, 26.258E, and it was visible around 33.58N,

26.258E at the end of March 2005. This behavior is

similar to what has been known from the literature. The

model analyses reproduce this behavior while the model

simulation is seldom capable of resolving it.

Another improvement in the representation of eddies

is shown for two anticyclonic eddies of the Algerian cur-

rent. In Fig. 8 we show chlorophyll satellite data overlaid

on the sea level analyses: one eddy is located around

36.98N, 2.458E and the second is at 37.18N, 3.48W. Without

assimilation, the model simulation has a weak anticyclonic

flow field detached from the coasts that does not corre-

spond to the position and shape of the maxima in chlo-

rophyll. As expected, the analysis improves with respect

to the simulation if J1 (Exp1) and then EN (Exp2a) are

assimilated since the position of the anticyclonic struc-

tures seems to match better the chlorophyll observations.

Contrary to what is observed with EN, the use of T/P as

second satellite (Exp2b) seems to degrade the model

output because the intensity of the western eddy is de-

creased and the eastern nearly disappears. On the con-

trary, combining T/P with J1 and EN (Exp3) improves

the representation of both eddies. Finally, the optimum

analysis is obtained by assimilating the fourth altimeter

G2 (Exp4) and a nearly perfect correspondence of the

two eddies is observed between the analyzed anticy-

clones and chlorophyll observations.

b. Impact of the number of altimeters on temperature
and salinity analyses

To analyze the impact of multimission SLA assimi-

lation on the temperature and salinity analysis fields, we

compared the analyses of Exp0-Exp4 with Argo profiles

as discussed in section 2c.

Results are reported in Table 4 for the different ex-

periments. As mentioned before (section 3), assimila-

tion of SLA only (Exp4) has a negative impact on AMO

temperature bias and rms errors with respect to Exp0.

For salinity, the assimilation of SLA with respect to the

simulation has always had a positive impact. As shown in

Table 4, smaller errors for salinity are obtained when the

four satellites are assimilated and the error is decreased

by the addition of each satellite.

The contribution of each satellite to the temperature

reconstruction is more difficult to interpret: the specific

combination of satellites seems to have different and

contrasting impacts on the temperature reconstruction

errors. A positive impact is observed when T/P is used as

a second altimeter for both bias and rms, but a larger

decrease in rms is obtained with the addition of EN as

a second satellite. However, when both EN and T/P are

added to J1 (Exp3) the impact is small, or even negative,

with respect to the single satellite case (Exp2a). If G2 is

used as a fourth satellite, the rms of AMO for temper-

ature decreases, showing that even G2 has a positive

impact on the quality of the temperature analyses.

In terms of the impact of the different satellites on the

quality of temperature and salinity reconstruction, our

analysis is far from being conclusive. However, if XBT

and Argo observations are combined to whatever com-

bination of satellite SLA observations, the bias and rms

errors in temperature and salinity profiles are always

decreased (not shown). In section 2b we also point out

that the absolute value of the bias and rms errors are

now close to the observational error limits for the sat-

ellite SLA, and this limits our capability to understand

small changes resulting from the addition of single

satellites.

5. Summary and conclusions

This study has shown the impact of SLA assimilation

on the quality of the analyses produced by an opera-

tional assimilation scheme in the Mediterranean Sea. A

background error covariance matrix with a high spatial

resolution was especially developed for this study, giving

an improvement in the analysis reconstruction when all

data—SLA and temperature and salinity profiles—are

assimilated. Experiments were performed with five dif-

ferent altimeter combinations involving one to four

satellites.

The experiments highlight the importance of multi-

satellite data assimilation in terms of quality of the anal-

yses, measured as bias and rms of the differences between

the analyses and the observations (AMO). In comparison

with the model simulations (Exp0), the assimilation of

SLA observations by one altimeter reduces the mean rms

of AMO by more than 13%. The impact of the assimila-

tion of a second satellite is nearly as important as that for

the first satellite with more than 12% reduction of the

mean rms of AMO. The impact of a second satellite es-

pecially underlines the complementarity with the first

satellite, when a major rms reduction is locally observed

in points where the first satellite assimilation introduced

an rms increase. Impacts of a third and fourth altimeter

are lower, but reductions of the AMO rms for SLA of

3% by each satellite are indicated. In some energetic

areas, such as the Algerian current system, the assimilation
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FIG. 8. Maps of chlorophyll along the Algerian Current observed during 9 Mar 2005. Model SSH is superimposed with black isolines

from the six different experiments. The isolines range from 225 to 25 cm, with a 2-cm contour interval. Negative SSH (dashed lines) and

positive SSH (solid lines) are shown. High concentrations of chlorophyll are presented (red), as are low concentrations (purple).
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of observations from the fourth satellite reduced the rms

of AMO by more than 10%.

The results obtained differentiate between spatial and

temporal satellite sampling schemes. It is shown that high

spatial resolution combined altimeters have a greater im-

pact on the analyses. Although there is a certain proba-

bility that there is not a significant difference between

Exp2a and Exp2b, it is more probable that EN as second

satellite in addition to J1 improves the analyses somewhat

better than when T/P is added to J1. Moreover, the impact

of G2 as a fourth satellite is also important, or even a little

bit more significant, than T/P as third satellite. The impact

of EN is probably due to the high spatial resolution of the

model, which allows the resolution of mesoscales that are

better corrected by the high across-track resolution of EN.

This result could support the concept of multimission al-

timetric monitoring done by complementary horizontal

resolution satellites.

Comparison with independent temperature and salin-

ity profiles confirms that the assimilation of more satel-

lites improves the quality of the analyses, especially for

salinity. The result is more questionable for temperature,

an issue that will be treated in the future.

The EKE significantly increases by the assimilation of

one altimeter. However, contrary to what was observed

from altimeter-reconstructed fields without data assim-

ilation (Pascual et al. 2007), once specific structures are

introduced into the model with the assimilation of the

first satellite, assimilation of additional altimeter data

does not lead to a significant increase of the mean EKE.

This might be associated with the specific model reso-

lution, which allows a different dynamical adjustment of

the assimilation corrections.

Our study shows that the inclusion of each of four

altimeters has a significant impact on the accuracy of the

analyses. We argue that the impact of the number of

satellites on the data assimilation scheme depends on

the data assimilation scheme approximations and the

model capability to absorb the information from the ob-

servations. In the future the oceanographic models will

have even higher horizontal resolutions. Therefore, we

may expect that in the future the impact of additional

altimeters should be reevaluated and assessed in light of

the different model and analysis schemes.
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APPENDIX

OceanVar Data Assimilation Scheme

The OceanVar scheme (Dobricic and Pinardi 2008)

minimizes the following cost function:

J 5
1

2
dxTB�1dx 1

1

2
(d� Hdx)TR�1(d� Hdx), (A1)

where dx is the vector of analysis increments, B is the

matrix of background error covariances, d 5 y 2 H(xb)

is the vector of misfits, R is the matrix of observational

error covariances, H is the tangent linear approximation

of the nonlinear observational operator H, y is the vector

of observations, and xb is the vector of the background

state. Assuming that background and observational er-

rors are independent, and that their corresponding error

covariances are Gaussian, at the minimum of cost func-

tion (A1) the analysis state xa 5 xb 1 dx is the most

probable for the given background state xb, observations

y, and the corresponding error covariances B and R. To

avoid the inversion of the matrix B, a control variable v is

defined by

dx 5 Vv, (A2)

where B 5 VVT. In the control space v the cost function

becomes

J 5
1

2
vTv 1

1

2
(d� HVv)TR�1(d� HVv). (A3)

Furthermore, matrix V is modeled by the sequential

application of linear operators V 5 VDVu,yVhVHVV.

Operator VV consists of vertical EOFs with temperature

and salinity error covariances. Therefore, control spaces

v are weights that multiply the vertical EOFs, and VV

transforms them into vertical profiles of temperature

and salinity increments. Vertical EOFs are eigenvectors

with the largest eigenvalues estimated from the vari-

ability of a long-term model simulation around its mean

value. The vertical profiles of temperature and salinity

are further multiplied by the operator VH. It models

horizontal Gaussian covariances depending on the hori-

zontal distance in the presence of the coastlines. Operator

Vh estimates the sea level and barotropic velocity in-

crements for the given three-dimensional structure of

temperature and salinity increments. It consists of a two-

dimensional barotropic model forced by the vertically
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integrated buoyancy force resulting from temperature

and salinity increments. The model accurately finds the

sea level increments even in areas with the highly variable

and shallow bottom topography. Baroclinic components

of velocity are estimated from the geostrophic relation-

ship in the operator Vu,y. At coastlines the geostrophic

relationship is often incorrect and may produce the non-

divergent velocity increments. The divergence along the

coastlines is attenuated by operator VD, which applies the

divergence damping filter. By sequentially applying dif-

ferent linear operators, the weights that multiply vertical

covariances of temperature and salinity are transformed

into a two-dimensional field of sea level increments and

three-dimensional fields of temperature, salinity, and

velocity increments by taking into account the coastlines

and the bottom topography. The conversion from the

control to the full physical space is performed in each

iteration of the minimization in order to calculate cost

function (A3). In addition, it is necessary in each iteration

to calculate the gradient of the cost function by applying

the adjoint of the observational and transformation linear

operators that substitute transpose of matrices in

$J 5 v 1 VTHTR�1(d� HVv). (A4)

Once the minimum is found in the control space, the

model correction is calculated by applying Eq. (A2).

OceanVar is a three-dimensional variational scheme,

because it applies estimates of vertical temperature and

salinity error covariances that are independent of actual

model dynamics.
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Marseille II, 210 pp.

AVISO, 2009: Ssalto/Duacs user handbook: (M)SLA and (M)ADT

near-real time and delayed time products. Edition 1.10, SALP-

MU-P-EA-21065-CLS, 52 pp. [Available online at http://www.

aviso.oceanobs.com/fileadmin/documents/data/tools/hdbk_duacs.

pdf.]

Benkiran, M., 2007: Altimeter data assimilation in the Mercator

Ocean System. Mercator Ocean Quarterly Newsletter, Vol. 25,

April 2007, Mercator Ocean, 32–39. [Available online at http://

www.mercator-ocean.fr/documents/lettre/lettre_25_en.pdf.]

Berry, P. J., and J. C. Marshall, 1989: Ocean modelling studies in

support of altimetry. Dyn. Atmos. Oceans, 13, 269–300.

Buongiorno Nardelli, B., G. Larnicol, E. D’Acunzo, R. Santoleri,

S. Marullo, and P. Y. Le Traon, 2003: Near real time SLA and

SST products during 2 years of MFS pilot project: Processing,

analysis of the variability and of the coupled patterns. Ann.

Geophys., 21, 103–121.

Carrère, L., and F. Lyard, 2003: Modeling the barotropic re-

sponse of the global ocean to atmospheric wind and pressure

forcing—Comparisons with observations. Geophys. Res. Lett.,

30, 1275, doi:10.1029/2002GL016473.

Chelton, D., and M. Schlax, 2003: The accuracies of smoothed sea

surface height field constructed from tandem satellite altime-

ter datasets. J. Atmos. Oceanic Technol., 20, 1276–1302.

De Mey, P., and A. R. Robinson, 1987: Assimilation of altimeter

eddy fields in a limited-area quasi-geostrophic model. J. Phys.

Oceanogr., 17, 2280–2293.

Demirov, E., N. Pinardi, C. Fratianni, M. Tonani, L. Giacomelli,

and P. De Mey, 2003: Assimilation scheme of the Mediterra-

nean Forecasting System: Operational implementation. Ann.

Geophys., 21, 189–194.

Dobricic, S., 2005: New mean dynamic topography of the Medi-

terranean calculated from assimilation system diagnostics.

Geophys. Res. Lett., 32, L11606, doi:10.1029/2005GL022518.

——, and N. Pinardi, 2008: An oceanographic three-dimensional

variational data assimilation scheme. Ocean Modell., 22,

89–105.

——, ——, M. Adani, A. Bonazzi, C. Fratianni, and M. Tonani,

2005: Mediterranean Forecasting System: An improved as-

similation scheme for sea-level anomaly and its validation.

Quart. J. Roy. Meteor. Soc., 131, 3627–3642, doi:10.1256/

q j.05.100.

——, ——, ——, M. Tonani, C. Fratianni, A. Bonazzi, and

V. Fernandez, 2007: Daily oceanographic analyses by Medi-

terranean Forecasting System at the basin scale. Ocean Sci., 3,

149–157.

Ducet, N., P.-Y. Le Traon, and G. Reverdin, 2000: Global high-

resolution mapping of ocean circulation from TOPEX/Poseidon

and ERS-1 and -2. J. Geophys. Res., 105, 19 477–19 498.

Ezer, T., and G. L. Mellor, 1994: Continuous assimilation of Geosat

altimeter data into a three-dimensional primitive equation

Gulf Stream model. J. Phys. Oceanogr., 24, 832–847.

Fukumori, I., R. Raughunath, L. Fu, and Y. Chao, 1999: Assimi-

lation of TOPEX/Poseidon altimeter data into a global ocean

circulation model: How good are the results? J. Geophys. Res.,

104, 25 647–25 665.

——, D. Menemenlis, and T. Lee, 2006: A near-uniform basin-wide

sea level fluctuation of the Mediterranean Sea. J. Phys. Oce-

anogr., 37, 338–358.

Haines, K., 2002: Assimilation of satellite altimetry in ocean

models. Ocean Forecasting: Conceptual Basis and Applica-

tions, N. Pinardi and J. D. Woods, Eds., Springer, 117–130.

Hamad, N., C. Millot, and I. Taupier-Letage, 2005: The surface

circulation in the eastern basin of the Mediterranean Sea. Sci.

Mar., 70, 457–503.

Holland, W. R., and P. Malanotte-Rizzoli, 1989: Assimilation of

altimeter data into an ocean circulation model: Space versus

time resolution studies. J. Phys. Oceanogr., 19, 1507–1534.

Horton, C., J. Kerling, G. Athey, J. Schmitz, and M. Clifford, 1994:

Airborne expendable bathythermograph surveys of the east-

ern Mediterranean. J. Geophys. Res., 99, 9891–9905.

——, M. Clifford, J. Schmitz, and L. H. Kantha, 1997: A real-time

oceanographic nowcast/forecast system for the Mediterranean

Sea. J. Geophys. Res., 102 (C11), 25 123–25 156.

Ivchenko, V. O., S. D. Danilov, D. V. Sidorenko, J. Schröter,
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