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Abstract

This study describes the development and evaluation of an oceanographic three-dimensional variational (3D-VAR) data assimilation
scheme based on a novel specification of the background error covariances. The new 3D-VAR scheme allows for regional variability of
the background error covariance matrix, complex coastal boundary conditions and variable bottom topography. The error covariance
matrix is formed by the successive application of linear operators that can consider vertical EOFs, horizontal covariance functions that
consider coastlines, sea level corrections that vary from shallow to deep regions and divergence dumping of velocity corrections near the
coasts. The scheme is applied to the Mediterranean Sea and the quality of analysis is assessed by comparing background estimates with
observations in the period October 2005–October 2006.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Since 1999, the Mediterranean forecasting system
(MFS) has been operationally producing analyses in the
Mediterranean Sea (Pinardi et al., 2003). It uses an optimal
interpolation scheme, the so-called SOFA (De Mey and
Benkiran, 2002), to assimilate Sea level anomaly (SLA)
observed by satellites (Le Traon et al., 2003), temperature
and salinity profiles from XBT (Manzella et al., 2007)
and Argo floats (Poulain et al., 2007). A specific feature
of SOFA is the separation of the background error covari-
ance matrix into vertical and horizontal modes. Horizontal
covariances are modelled as Gaussian functions, whilst ver-
tical error covariances are represented by Empirical
Orthogonal Functions (EOFs), calculated from the vari-
ance of a long-term model simulation (e.g. Dobricic
et al., 2005). In practice, only the most significant EOFs
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are used, and the number of EOFs is much smaller than
the size of the control vector in the physical space. In this
way the size of the background error covariance matrix is
significantly reduced. As it is never stored in the memory
of the computer, but calculated locally at each model point,
the size reduction by EOFs reduces the computational
effort needed to calculate and invert locally the background
error covariance matrix. Another advantage of the reduced
order representation by EOFs is that the background error
covariances are efficiently filtered by eliminating statisti-
cally insignificant covariances.

Demirov et al. (2003) made the initial set-up of the
scheme in the Mediterranean. The application of seasonally
and regionally varying EOFs with SOFA is described in
Dobricic et al. (2005), whilst Dobricic et al. (2007) describe
the daily assimilation cycle, the impact of the assimilation
of in situ temperature and salinity observations, the impact
of the geostrophic balance enforcement on the EOFs and
the impact of the velocity corrections on the analyses.
The relatively long-term operational application of SOFA
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in the Mediterranean showed that the quality of the
analyses was very sensitive to the specification the back-
ground error covariance matrix, which now has regional
and seasonal variability. However, probably the most
important factor which influenced the quality of the analy-
ses was the number of assimilated observations and the
number of model variables which were directly observed
(Dobricic et al., 2007). The use of an optimal interpolation
scheme requires a relatively complex implementation of the
linearized observational operator, because the Kalman
gain contains this operator several times, multiplying the
background error covariance matrix. It may therefore
become difficult with SOFA to assimilate observations with
complicated observational operators or make the existing
observational operators more complex. Another disadvan-
tage of optimal interpolation is that the solution is always
local and discontinuities might appear in the analysis due
to the presence of nearby observations (e.g. Gauthier
et al., 1999) or discontinuous regional EOFs (Bellucci
et al., 2008). The negative impact of the local operator
on the analysis field may be attenuated by the usage of
overlapping observations and EOFs. However, in this
way the problem is alleviated by arbitrary assumptions
involving an additional computational cost. Furthermore,
the computational cost of an optimal interpolation scheme
is approximately proportional to the number of observa-
tions that are assimilated. In the future this cost may
become unaffordable since the number of available satellite
and in situ observations is rapidly growing and may con-
tinue to grow faster than the available computer power
in coming years. On the other hand, the computational cost
of a 3D-VAR scheme mainly depends on the size of the
model state vector and much less on the number of obser-
vations. Therefore, we may expect that the application of
the 3D-VAR may facilitate the use of a relatively large
number of observations which were not used previously
with SOFA. In this way it could significantly improve the
quality of the analyses and forecasts of the MFS.

Variational schemes have been applied in meteorology
for a relatively long time, showing an improvement in the
analysis quality in comparison to optimal interpolation
schemes (e.g. Rabier, 2005). On the other hand, most oper-
ational systems in oceanography currently use optimal
interpolation schemes (e.g. Dobricic et al., 2005), the SEEK
filter or the Ensemble Kalman Filter (Brasseur et al., 2005)
but not variational schemes. These last have been mainly
used in oceanographic re-analyses with relatively coarse
resolution models (e.g. Derber and Rosati, 1989; Masina
et al., 2001; Stammer et al., 2002; Weaver et al., 2003; Fujii
and Kamachi, 2003; Weaver et al., 2005).

This paper describes the development and application of
a new oceanographic 3D-VAR assimilation scheme. Its
implementation in operational systems requires several
novel practical solutions, which have to be computation-
ally efficient and sufficiently accurate, in order to account
for specific oceanographic issues, like the coastlines and
variable bottom topography, as well as dynamically
adjusted corrections. Section 2 gives a general description
of the 3D-VAR scheme and explains the numerical method
used for the minimization of the cost function. Section 3
describes the background error covariance matrix defini-
tions. In Section 4, we show the implementation of
the 3D-VAR in the Mediterranean Sea and its impact on
the accuracy of ocean state estimates. Section 4 gives the
conclusions.

2. General description

2.1. Cost function formalism

The 3D-VAR scheme iteratively finds the minimum of
the following cost function:

J ¼ 1

2
ðx� xbÞTB�1ðx� xbÞ þ

1

2
ðHðxÞ � yÞTR�1ðHðxÞ � yÞ;

ð1Þ

where x is the analysis state vector, xb is the background
state vector, B is the background error covariance matrix,
R is the observational error covariance matrix and H is
the non-linear observational operator. Eq. (1) is linearized
around the background state (e.g. Lorenc, 1997) into the
following form:

J ¼ 1

2
dxTB�1dxþ 1

2
ðHdx� dÞTR�1ðHdx� dÞ; ð2Þ

where d = [y � H(xb)] is the misfit, H is the linearized
observational operator evaluated at x = xb and dx = x �
xb are the increments. The state vector considered in our
study contains the following model state variables:

x ¼ ½T ; S; g; u; v�T; ð3Þ

where T is the three-dimensional temperature field, S the
three-dimensional salinity field, g the two-dimensional free
surface elevation, and u,v are the total horizontal velocity
components. In Eq. (2) the minimization problem is de-
fined on the field of increments. The linearization creates
a quadratic cost function which has a single minimum. In
order to avoid the inversion of B and to precondition the
minimization of the cost function it is assumed that B

can be written in the form:

B ¼ VVT; ð4Þ

and the cost function is minimized using a new control var-
iable v (e.g. Lorenc, 1997) defined using the transformation
matrix V+:

v ¼ Vþdx; ð5Þ

where the superscript ‘‘+” indicates the generalized inverse.
The vector v is defined on the control space, and the vector
dx on the physical space. The cost function (2) now has the
form:

J ¼ 1

2
vTvþ 1

2
ðHVv� dÞTR�1ðHVv� dÞ: ð6Þ
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2.2. Background error covariance matrix

Due to its large size, the transformation matrix V is
modelled at each minimization iteration as a sequence of
linear operators (e.g. Weaver et al., 2003). In this way V

successively transforms increments in the control space
towards final increments in the physical space. Considering
specific requirements for oceanographic problems, the
matrix V is defined in the following way:

V ¼ VDVuvVgVHVV: ð7Þ

In Eq. (7) the linear operator VV transforms coefficients
which multiply vertical EOFs into vertical profiles of tem-
perature and salinity defined at the model vertical levels,
VH applies horizontal covariances on fields of temperature
and salinity, Vg calculates the sea surface height error
covariance from three dimensional fields of temperature
and salinity, Vuv calculates velocity from sea surface height,
temperature and salinity, and VD applies a divergence
damping filter on the velocity field. The formulation of
each linear operator is described in Section 3.

2.3. Numerical minimization

Most of the computational time necessary to minimize
the 3D-VAR cost function is spent in the transformation
of increments from the control space to the physical space
by the linear operator V and its transpose. Therefore, the
computational cost of the 3D-VAR is approximately pro-
portional to the size of the control vector v. Furthermore,
it also depends on the complexity of linear operators used
in Eq. (7). It is important to note that the reduction in com-
putational time obtained by using vertical EOFs in the 3D-
VAR is larger than in the optimal interpolation scheme. In
addition to reducing the number of operations on the state
vector inside the minimizer code, the use of EOFs in the
3D-VAR reduces the size of the control vector v and there-
fore may reduce the number of iterations of the minimizer
(e.g. Robert et al., 2005).

To increase further the computational efficiency of the
scheme, we have applied a multigrid approach. The multi-
grid method is well known for the solution of partial differ-
ential equations (Brandt, 1977; Briggs et al., 2000). In the
data assimilation this approach has been implemented in
spectral space by Courtier et al. (1994). As our model is
defined on grid points, our multigrid approach first com-
putes the analysis on a grid with a lower spatial resolution,
and then interpolates this solution to a finer grid for the fur-
ther minimization. This is implemented in the 3D-VAR
algorithm by an outer loop over the different grids, and
an inner loop that minimizes the cost function on each grid.
An additional advantage of the multigrid approach is that,
if we assume that the interpolated analysis is already suffi-
ciently accurate, we do not even have to perform further
minimizations on the finer resolution grid (Courtier et al.,
1994). Another way to reduce the computational load is
to apply a simplified version of linear operators in (7) dur-
ing the first iterations of the outer loop, and then use that
solution as a first guess for the minimization in the next iter-
ation with the full linear operators (Courtier et al., 1994).
As when the grids have different resolutions, this method
is applied in the outer loop of the 3D-VAR with computa-
tionally expensive operators Vg and VD (see Section 3).

The cost function is numerically minimized using the
quasi-Newton L-BFGS minimizer (Byrd et al., 1995).
Iterations of the minimizer are stopped when the absolute
value of the gradient of the cost function becomes small rel-
ative to its initial value (typically one percent of the initial
value). The calculation of the gradient of the cost function
requires the adjoint of the operators V and H. The adjoint
is formulated by hand-coding the transpose of each
subroutine containing operators V and H, following rules
given by Giering and Kaminski (1998).

3. Background error covariance modelling by linear

operators

3.1. Vertical covariances

The vertical covariances are represented by multivariate
EOFs of surface elevation and vertical profiles of tempera-
ture and salinity (Dobricic et al., 2005). Therefore, in each
evaluation of the cost function the control vector v contains
coefficients which multiply vertical multivariate EOFs,
which are then transformed into corrections of tempera-
ture, salinity velocity and surface elevation. The vertical
transformation operator VV has the form:

VV ¼ SK1=2; ð8Þ

where columns of S contain multivariate eigenvectors and
K is a diagonal matrix with eigenvalues of EOFs.

It is important to note in Eq. (7) that we first convert
from EOF space into physical space, and then model the
horizontal covariances. This means that the three-dimen-
sional spatial covariances VS are computed by the
multiplication:

VS ¼ VHVV: ð9Þ

A computationally more efficient approach would be first
to apply horizontal covariances in EOF space and then
transform the result into physical space: that is, to use
the formula:

V�S ¼ VVVH: ð10Þ

In Eq. (9) the computational time for the calculation of
horizontal covariances is roughly proportional to the prod-
uct of the number of vertical levels and the number of state
vector variables, whilst in Eq. (10) it is proportional to the
relatively small number of EOFs. It is clear from Eq. (4)
that both approaches result in a matrix B which is positive
definite and symmetric, but they would give the same B

only when vertical EOFs do not vary spatially within the
horizontal correlation scales. However, our EOFs vary
geographically in 13 regions in the Mediterranean
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(Dobricic et al., 2005). In this case the two approaches give
very different results at the edges of regions: in Eq. (9) cor-
rections at the edges of regions are discontinuous in EOF
space and continuous in physical space, while in Eq. (10)
they are continuous in EOF space and discontinuous in
physical space. Fig. 1 shows that the application of Eqs.
(9) and (10) gives different corrections when EOFs vary
within the horizontal correlation scales. It is evident that
if we want to produce corrections which are continuous
in the physical space, we must apply the computationally
more expensive method in Eq. (9).
3.2. Horizontal covariances

It is assumed that horizontal covariances are Gaussian
with the constant correlation radius. In oceanographic
models, isotropic and Gaussian spatial correlations can
be relatively efficiently modelled by a repeated application
of the Laplacian operator which is also the solution of the
horizontal diffusion equation (e.g. Derber and Rosati,
1989). The application of the Laplacian operator reduces
the computational cost by eliminating the explicit calcula-
tion of the exponential function between each pair of
points and may facilitate the introduction of coastal
boundaries. Weaver and Courtier (2001) investigated the
application of the diffusion equation to calculate horizontal
covariances in the ocean in the presence of coastal bound-
aries and spherical co-ordinates. However, although much
more computationally efficient than the direct application
of Gaussian correlation functions, the approximation using
the explicit solution of the diffusion equation typically
requires a relatively large number of iterations. An alterna-
tive to the Laplacian operator is the recursive filter (Lor-
Fig. 1. The impact of the order of the multiplication of vertical and horizontal
first model level (�C) along a satellite track which measured SLA. The track cr
along the longitude 26.3�E and latitude 33.6�N. In the left panel correlations a
obtained by the application of Eq. (9).
enc, 1992; Hayden and Purser, 1995). It is conceptually
simple, typically requires only a few iterations in order to
approximate the Gaussian function, and its application
on a horizontal grid can be split into two independent
directions (Purser et al., 2003). However, in the ocean the
application of the recursive filter is more complicated than
in the atmosphere, due to the presence of coastlines. Hori-
zontal covariances can be calculated by the recursive filter
as a product of following operators:

VH ¼WyGyWxGx; ð11Þ

where Gx and Gy represent the recursive filter operators in
directions x and y, whilst Wx and Wy are diagonal matrices
with normalization coefficients which may account for var-
iable grid resolutions in x and y directions. The formula-
tion of normalization matrices Wx and Wy, and the
implementation of coastal boundary conditions are de-
scribed below.
3.2.1. Horizontal co-ordinate systems

Oceanographic models often use spherical co-ordinate
grids. In this case the distance between points in the longi-
tudinal direction is a function of latitude. To deal with the
variable horizontal resolution it is necessary to calculate
coefficients of the recursive filter for each model point on
the horizontal grid and it is necessary to rescale the filtered
field by a spatially varying normalization factor (Weaver
and Courtier, 2001; Purser et al., 2003). Practically this fac-
tor can be estimated as the inverse of a filtered delta func-
tion field defined separately for each model point. On a grid
with many ocean points this method can be computation-
ally very expensive, because it requires one application of
the filter for each point on the horizontal grid. The
error covariance operators on typical corrections of the temperature at the
ossed four regions with different vertical EOFs, divided by lines which are
re obtained by the application of Eq. (10), and in the right panel they are



S. Dobricic, N. Pinardi / Ocean Modelling 22 (2008) 89–105 93
calculation has to be performed once for each model grid
set-up and for each choice for the horizontal correlation
radius. Weaver and Courtier (2001) propose the randomi-
zation of the normalization matrix in order to approximate
it in a numerically more efficient way. On the other hand
Purser et al. (2003) approximate this factor on a grid with
a smoothly varying horizontal resolution by a Taylor
expansion of the exact parameters.

In our 3D-VAR we approximate the exact normaliza-
tion factor by initially forming a look-up table for a rela-
tively small discrete number of grid distances which span
resolutions between the minimum and the maximum dis-
tance on the grid. The look-up table can be formed by
applying the filter only in one direction for each discrete
value of the horizontal resolution. Therefore, this prelimin-
ary calculation at the initialization phase of the 3D-VAR
requires a negligible amount of computational time. Then
the normalization factor on each grid point is approxi-
mated by interpolating from discrete values in the look-
up table either by linear or quadratic interpolation. Fig. 2
shows the impact of the normalization at 40�N. We can
see that on a latitude–longitude grid the application of
the look-up table practically eliminates the distortion of
the shape of the horizontal correction. This solution by
look-up table is relatively easy to implement on grids which
change the horizontal resolution smoothly. It is important
to note that the accuracy of the approximation of the exact
isotropic form of the horizontal error correlations is prob-
ably not a major problem in modelling the background
error covariance matrix. For example, there is much less
certainty in estimating background error covariances
between different model variables, or even in estimating
the horizontal radius of correlation. In comparison to
other errors, our solution will be sufficiently accurate if
the model grid resolution in the direction of the application
of the recursive filter does not vary significantly over sev-
eral distances of the horizontal correlation radius.
Fig. 2. The impact of the normalization of the recursive filter solution in
order to account for the variable horizontal resolution of the model grid.
The covariances correspond to a unit perturbation of sea level height (in
units of distance) centred at (6�E, 40�N): without the normalization due to
the variable horizontal resolution (left), and with the normalization
(right). Plots use the Lambert projection. Isolines are plotted with an
interval of 0.1 units. The horizontal radius of correlation is set to 30 km,
and there are eight iterations by the filter (four by the operator VH and
four by its transpose).
3.2.2. Coastlines

The look-up table defined above cannot estimate
normalization factors close to coastlines, because these
represent discontinuities and non-homogenous horizontal
covariances. It is important to note that in the presence
of coastlines with a z co-ordinate model the calculation
of the normalization factor from a delta function would
be computationally extremely expensive, because it would
require one application of the filter for each grid point on
every model level. In order to account for coastal bound-
aries in a computationally efficient way, we first apply an
accurate boundary condition inside operators Gx and Gy.
In each one-dimensional application of the filter the grid
is extended over land by adding several imaginary sea
points at coastlines (Fig. 3). The number of points is arbi-
trary. Typically it spans several horizontal correlation
radii. Once the grid is sufficiently extended inland it is
not necessary to provide any lateral boundary condition,
because with the grid extension we extrapolate the solution
over land. After the application of the filter the imaginary
points are removed. Therefore, if the number of imaginary
points is sufficiently large, the recursive filter does not
transfer the information across land.

In one dimension this procedure accurately defines the
function at the coastal boundary. However, in two dimen-
sions the solution in each direction is obtained on a differ-
ent grid, because imaginary sea points are eliminated after
each one-dimensional application of the filter. As a result
the filter does not provide a symmetric solution which is
independent of the order of the applications of one-dimen-
sional filters. Therefore, it is necessary to redefine (11) in
terms of a symmetric operator. Symmetry with respect to
the order of the application of one-dimensional operators
can be achieved in several ways. We have arbitrarily
decided to apply the following symmetric form:

VH ¼
1

2
ðWyGyWxGx þWxGxWyGyÞ: ð12Þ

This solution doubles the number of computations in each
application of the horizontal filter, but it still allows us to
apply the recursive filter separately in each direction. It also
permits the use of the approximation from the look-up
table close to the boundaries in order to prevent anisot-
ropy. Fig. 4 shows an example of the application of the
recursive filter near the coasts using Eq. (12).
Land
point

Sea points

Imaginary sea points

Fig. 3. The insertion of imaginary points at the coasts. Points are inserted
at each coastal grid point over the land. The recursive filter is calculated on
the extended grid with the larger number of points. After the application
of the recursive filter imaginary points are removed.



Fig. 4. The filtering result for covariances of sea level height (in units of
distance) corresponding to 1.0 unit perturbations in three points close to
the coast of Sardinia (Western Mediterranean). The contour interval is
0.1 units. The map projection is stretched latitude–longitude. The corre-
lation radius is 30 km, and eight iterations of the recursive filter were used
(four by the operator VH and four by its transpose). Land points are
shaded gray.
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An important difference between our solution and the
diffusion filter is that the diffusion filter applies the zero
gradient boundary condition at coasts (e.g. Weaver and
Courtier, 2001), while our solution extrapolates the Gauss-
ian shape of the correlation function. In the absence of any
specific information about the correlation structure, we
wanted to maintain the approximate Gaussian shape even
close to the coast. However, background error covariances
close to coasts can be non-isotropic, because dynamical
fields there obey kinematic and diffusive boundary condi-
tions (e.g. De Mey, 1997). We assume that, even if we
neglect the non-isotropic components of the covariances,
during the sequential application of the model integration
and the 3D-VAR analysis the background field is corrected
frequently enough for the model dynamics to spread the
information correctly around the observation. For exam-
ple, if there is a coastal current, the horizontal advection
will soon elongate the correction which initially had an iso-
tropic Gaussian shape along the coast.

Instead of adding imaginary sea points at coastlines, we
could estimate the boundary values by a formula with a
high-order accuracy. For example, we could use the sec-
ond-order accurate boundary condition proposed by Hay-
den and Purser (1995). However, our first tests showed that
this second-order boundary condition was producing noisy
results when the coastline was complex and observations
were located close to the coast. Furthermore, the applica-
tion of high-order boundary conditions close to a complex
coastline can be technically very difficult. The grid exten-
sion by imaginary sea points over land has been chosen
because its implementation is technically simple, and it pro-
vides an accurate boundary condition even with complex
coastlines. These advantages are obtained at the cost of less
computational efficiency. However, the grid extension pro-
cedure is coded in a way to eliminate a considerable num-
ber of land points from the extended grid, and the overall
increase of the computational time for the recursive filter
operator in realistic applications in the Mediterranean
was always less than 30%.

3.3. Free surface operator

The dynamical balance between surface elevation per-
turbations and the corresponding temperature and salinity
perturbations may be estimated either statistically (e.g.
Dobricic et al., 2005), or by applying some kind of the
geostrophic constraint (e.g. Dobricic et al., 2007). Dobri-
cic et al. (2007) found that the vertical EOF computed
solely from the covariance between temperature, salinity
and sea level could produce sea level corrections that
are not geostrophically balanced with the density correc-
tions. Clearly, if we assimilate only in situ observations
of temperature and salinity, the accurate estimation of
the corresponding sea level corrections is not an impor-
tant issue. In that case all unbalanced corrections will
be rapidly removed by the fast barotropic adjustment.
On the other hand, it was demonstrated in Dobricic
et al. (2007) that, when SLA observations were assimi-
lated, the enforcement of the geostrophic relationship
for the sea level in the error covariance matrix had a sig-
nificant positive impact on the accuracy of the analyses.
However, the geostrophic relationship is usually assumed
with some arbitrary hypothesis on the level of no motion
or the bottom pressure gradients. For example, Cooper
and Haines (1996) assume that the perturbation bottom
pressure gradient is zero, and form the surface elevation
perturbation from the vertical integral of temperature
and salinity perturbation in the whole water column.
Dobricic et al. (2007) use the formula by Pinardi et al.
(1995), which assumes that the horizontal pressure gradi-
ent at the depth of 1000 m is equal to zero. However, in
areas of highly variable bottom topography the assump-
tion of a uniform level of no motion may be wrong,
and the correction of the sea level should be derived with
more accuracy. The 3D-VAR assimilation system allows
the application of complex linear operators which can
account for the variability of the bottom topography.

Therefore, we have constructed the operator Vg which
gives the steady state results of a barotropic model forced
by density perturbations induced by the insertion of tem-
perature and salinity perturbations. The barotropic model
equations, discretized in time by the semi-implicit scheme
(Kwizak and Robert, 1971), are:
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U nþ1 � Un�1

Dt
� fV n ¼ �gH

og�

ox

�
Z 0

�H

Z 0

�z

oðdbÞ
ox

dz0
� �

dzþ cr2U n�1;

ð13Þ

V nþ1 � V n�1

Dt
þ fUn ¼ �gH

og�

oy

�
Z 0

�H

Z 0

�z

oðdbÞ
oy

dz0
� �

dzþ cr2Vn�1;

ð14Þ

gnþ1 � gn�1

Dt
þ oU �

ox
þ oV �

oy

� �
¼ 0; ð15Þ

where U and V are vertically integrated velocity compo-
nents, f is the Coriolis parameter, g acceleration due to
gravity, H the bottom depth, g the surface elevation,
db = g(dq/q0) the buoyancy anomaly, and c is the coeffi-
cient of horizontal viscosity. Horizontal viscosity terms
are added in order to speed-up the adjustment. The density
perturbation dq which forces Eqs. (13)–(15) is estimated by
the linear equation:

dq ¼ adT � bdS; ð16Þ

where a and b are expansion coefficients for temperature
and salinity. Model equations are discretized spatially
using the fully staggered C grid. The non-linear advection
terms and the bottom friction are neglected, because in
the first tests they appeared to be insignificant. The super-
scripts indicate the time step relative to n, and the super-
script ‘‘*” indicates the weighted average between two
time steps:

A� ¼ aAnþ1 þ ð1� aÞAn�1; ð17Þ

where 0.5 6 a 6 1 in order to have numerically stable solu-
tions (Durran and Klemp, 1983). The choice a = 0.5 gives
the trapezoidal scheme, and the choice a = 1 gives the
backwards Euler scheme for the temporal differentiation.
Coriolis terms are solved by the leapfrog scheme, and hor-
izontal viscosity terms by the forward Euler scheme.
Numerically, Eqs. (13)–(15) are solved by forming an ellip-
tic equation for gn+1 which is solved by successive correc-
tions, and then by substituting the solution for gn+1 into
Eqs. (13) and (14). In Eq. (17) higher values for a filter
more the short gravity waves and provide a faster conver-
gence to the steady state. However, initial tests of the mod-
el showed that sometimes for a = 1 the steady state
solution was significantly different to the solution obtained
with a = 0.5. Therefore, as a compromise between the effi-
ciency and accuracy, the model uses a = 0.8. This choice
provides a steady state solution which is practically identi-
cal to the solution with a = 0.5, and converges relatively
rapidly (not shown). It was found that the stationary solu-
tion is obtained as a daily average already after only a few
days of the integration of Eqs. (13)–(15). Expansion coeffi-
cients a and b in Eq. (16) are assumed to be constant and
are estimated in advance as mean coefficients calculated
from background fields of temperature and salinity. They
can also be obtained as a mean of non-linear expansion
coefficients calculated on each model grid point during
the background run of the ocean model. However, it was
found that increasing the level of the accuracy of estimates
for a and b had a practically negligible effect on the accu-
racy of the sea-level perturbation estimate from Eqs.
(13)–(15).

After forming corrections in temperature and salinity, we
can use the barotropic model to estimate the corrections in
sea level. Fig. 5 shows corrections corresponding to temper-
ature and salinity observations by an Argo float for the case
with and without the barotropic model. The latter affects
the solution in a smaller region than the previous method
by Dobricic et al. (2007) and with smaller amplitude.

3.4. Velocity operator

The Vuv operator calculates the velocity corrections by
splitting the velocity field into the barotropic and baroclin-
ic components. The barotropic velocity correction is
obtained by solving Eqs. (13)–(15), whilst the baroclinic
parts of the velocity components ubc and vbc are estimated
from the usual dynamic height formula, assuming geo-
strophic balance:

fvbc ¼
Z 0

�z

oðdbÞ
ox

dz� 1

H

Z 0

�H

Z 0

�z

oðdbÞ
ox

dz0
� �

dz;

fubc ¼ �
Z 0

�z

oðdbÞ
oy

dzþ 1

H

Z 0

�H

Z 0

�z

oðdbÞ
oy

dz0
� �

dz;

ð18Þ

The advantage of the geostrophic assumption is that it re-
quires only a small computational effort, but the disadvan-
tage is that it is not valid at the Equator and may produce
velocity vectors orthogonal to the coast. In this study the
evaluation of the scheme is made in the Mediterranean,
and the geostrophic assumption is valid in the whole model
domain. However, in the future it is planned to apply the
scheme in a global model set-up, and the baroclinic velocity
operator will be substituted by a more general solution
which takes into account the equatorial dynamics. Thus
our full velocity field corrections are non-geostrophic for
the barotropic component and geostrophic for the baro-
clinic one.

3.5. Divergence damping operator

In the absence of coastlines the velocity operator Vuv

imposes a dynamical balance between corrections in veloc-
ity, sea surface height and mass fields. The velocity field has
only the rotational part for the baroclinic component.
However, we need to enforce the zero boundary condition
for the total velocity component perpendicular to the coast.
As a result, the baroclinic velocity component perpendicu-
lar to the coast can suddenly change from its geostrophic
value to zero, and the divergence component of the velocity



Fig. 5. Impact of the application of the sea surface height operator to the estimate of sea level correction (cm) in a case of an Argo temperature and
salinity profile close to the coast of Greece in the Northern Ionian Sea. Left panel shows correction obtained with EOFs obtained by the method described
in Dobricic et al. (2007) and the right panel with the barotropic model described in this study.
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field may become unrealistically large. Therefore, the diver-
gence damping operator VD in (7) will damp velocity diver-
gence near coasts. It filters the divergence part of the
velocity field, and maintains the vorticity part unchanged.
The filter was successfully applied in the ocean on correc-
tions of velocity close to the coast in order to initialize
the analysis (Dobricic et al., 2007). However, it could be
especially important to apply the divergence damping oper-
ator already inside the 3D-VAR analysis scheme in order
to form a more precise estimate of velocity perturbations
when assimilating observations close to the coast. The
divergence damping is achieved by the successive applica-
tion of a filter in the form:

dvnþ1 ¼ dvn þ jrDn; ð19Þ

where dv = (du,dv)T is the total velocity increment at each
vertical level, superscripts indicate the iteration step num-
ber, j is the filter coefficient, and D is the horizontal diver-
gence of the velocity increments. The effect of the filter is
illustrated in Fig. 6. The major impact is at the coastline,
where the filter changes the direction of the velocity which
initially had an unrealistic direction perpendicular to the
boundary. Away from the coast, the impact of the filter
is practically negligible. The computational cost of the
divergence damping filter is relatively high, because it is ap-
plied on each vertical model level. Therefore, this operator
is applied only in the last iteration of the outer loop of the
numerical minimization. When there are no velocity incre-
ments close to the coast the divergence damping operator
practically provides a smoother initial condition for the
forecast.

4. Experiments

4.1. Experimental set-up

The 3D-VAR assimilation is applied to the Mediterra-
nean Sea implementation of a general circulation model
(Tonani et al., 2008). The model has a free surface which
is evolved using an implicit temporal scheme (Madec
et al., 1997; Roullet and Madec, 2000). The horizontal res-
olution is about 7 km in the latitudinal direction and
between 6 km and 5 km in the longitudinal direction. The
model has 72 levels with a 3 m deep surface layer. Due to
the low vertical stratification of the Mediterranean Sea,
the first baroclinic Rossby radius of deformation is approx-
imately 10 km (e.g. Robinson et al., 1987). Therefore, the
horizontal model resolution of approximately 6 km allows
the development of the mesoscale eddies, although the
smallest eddies are barely resolved. The atmospheric fluxes
of heat and momentum are calculated using interactive bulk
formulas. In all experiments heat fluxes are corrected by a
term which is proportional to the difference between the
model temperature at the surface and daily objective analy-
sis of satellite SST observations (Pinardi et al., 2003). The
water flux is estimated by relaxing the surface salinity to
monthly climatological values of salinity. A detailed
description of the model set-up and the evaluation of its



Fig. 6. Impact of the divergence damping operator on corrections of surface velocity (ms�1) corresponding to observations of temperature and salinity
profiles by an Argo float in the Aegean Sea (Eastern Mediterranean). The left panel shows corrections produced by the analysis without the application of
the divergence damping filter, and the right panel shows filtered corrections. Grid points corresponding to the land are shaded gray.
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results are given in Tonani et al. (2008). The size of the
model parameter space, which includes sea level, tempera-
ture, salinity and velocity defined on the model grid is�108.

The model bathymetry is shown in Fig. 7. In the Mediter-
ranean Sea the bathymetry has a relatively large variability,
with both deep ocean basins, like the Ionian Sea, the Levan-
tine and the Western Mediterranean, and extended and nar-
row shelves. An interesting area to estimate the global
circulation and the exchange between the Eastern and Wes-
tern Mediterranean is the relatively shallow area of the
Strait of Sicily. It has a highly variable bottom topography
which is shallower than 1000 m. Relatively shallow areas
also cover other regions of the Mediterranean Sea (areas
Atlantic
Ocean

Western
Mediterranean

Sicil
Stra

Fig. 7. Model topography. Isolines are plotted at depth of 500 m, 1000 m
shaded gray in Fig. 7). In previous implementations of the
optimal interpolation scheme the SLA assimilation was car-
ried out only in areas deeper than 1000 m, due to the simple
relationship between temperature, salinity and sea level
errors (Dobricic et al., 2007). On the other hand, our new
application of the barotropic model in the 3D-VAR, gives
us the possibility to assimilate observations even in areas
with depths lower than 1000 m and highly variable bottom
topographies. All experiments started on 10 October 2005
from the operational analysis available on that day. We
have assimilated SLA observations along track (Le Traon
et al., 2003), XBT profiles (Manzella et al., 2007) and Argo
profiles (Poulain et al., 2007). The SLA is assimilated using
Ionian
Sea

Levantine
y
it

, 2000 m, 3000 m and 4000 m. Depths above 1000 m are shaded gray.
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the mean dynamic topography obtained by correcting the
initial estimate by Rio et al. (2007) with un-biased estimates
obtained from observations from Argo floats in the period
2003–2005 (Dobricic, 2005).

There are three experiments. The control experiment
does not assimilate any observations. In the second exper-
iment all observations are assimilated by the 3D-VAR
scheme. Therefore, the comparison between these two
experiments shows how much we may improve the accu-
racy of our estimates of the ocean state by using the 3D-
VAR scheme. The third experiment is made with the SOFA
scheme using the same set of vertical EOFs as the 3D-VAR
but a different construction of the background error covari-
ance. The comparison between the second and the third
experiment will show the improvement in the accuracy of
the analyses due to the application of a more accurate
background error covariance matrix in the 3D-VAR. Both
the 3D-VAR and the SOFA schemes assimilate all avail-
able observations with the one-day assimilation window.
Fig. 8. The weekly r.m.s. of SLA misfits (background-observation) for the expe
without the assimilation (long dashed line), and the r.m.s. of difference between
Panel (a) shows results or the whole Mediterranean, and panel (b) only for th
4.2. Results

The evaluation of the 3D-VAR scheme will be mainly
performed by comparing misfits calculated with satellite
observations of SLA, and in situ observations of tempera-
ture and salinity by Argo floats. It is important to notice
that all misfits are calculated before the assimilation of
the corresponding observations and therefore the evalua-
tion of the analysis quality is carried out with an indepen-
dent set of measurements. In this way, we estimate the
quality of our analysis by measuring the accuracy of our
short term forecasts. Another estimate will be made by cal-
culating the r.m.s. of analysis minus observations. It will
show how much our analyses agree with observations.
Finally, the sea surface height field at the end of the assim-
ilation period will be qualitatively compared.

Fig. 8a shows the r.m.s. of SLA misfits (the r.m.s. of
observations minus background) in the period October
2005–October 2006 for experiments with and without data
riment with the assimilation by the 3D-VAR (full line), and the experiment
the 3D-VAR analyses and observation (dotted line). All values are in cm.

e Strait of Sicily.
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assimilation. We can see in that in the experiment without
the data assimilation the r.m.s. of misfits grows with time.
After two months it is almost twice the initial r.m.s. of mis-
fits, and it seems that even one year after the start of the
experiment it continues to grow, although more slowly.
On the other hand, the experiment which assimilates data
with the 3D-VAR scheme shows a significantly smaller
r.m.s. of misfits, with values that do not show any drift.
The figure also shows the r.m.s. of the difference between
analysis and observations for the 3D-VAR. We can esti-
mate that the error of SLA observations is 2–3 cm in the
open ocean (e.g. Menard et al., 2003), and becomes slightly
higher for our data due to corrections for tides, atmo-
spheric pressure and steric effects. Therefore, as a confirma-
tion of the good quality of SLA analyses, we can see in
Fig. 8a that the analysis error is on average 2.5 cm, i.e., it
is within the SLA observational error. Fig. 8b shows
r.m.s. of SLA misfits for the Strait of Sicily. We can see that
even in shallow areas the 3D-VAR analyses have smaller
Fig. 9. The full line shows the relative difference between the weekly r.m.s
assimilation by the 3D-VAR and the experiment with the assimilation by the SO
difference between analyses and observation for 3D-VAR and SOFA analy
difference is given by Eq. (20).
errors than the assimilation run. However, in this case
the improvement is smaller. The major reason for the smal-
ler improvement is that the experiment without assimila-
tion already gives smaller r.m.s. misfits than for the
whole Mediterranean. Furthermore, the r.m.s. of analysis
minus observations is slightly higher than that obtained
for the whole Mediterranean, indicating that the back-
ground error covariances are somewhat underestimated.

Fig. 9 shows the relative difference between the r.m.s of
background minus observations and analysis minus obser-
vations, calculated by the 3D-VAR and SOFA schemes. It
is calculated using the formula:

r ¼ DVAR � DOI

DVAR

; ð20Þ

where DVAR is the r.m.s. difference in the 3D-VAR exper-
iment, and DOI is the r.m.s. difference in the SOFA exper-
iment. Initially the two schemes give similar estimates for
the whole basin when measured in terms of misfits
. of SLA misfits (background-observation) for the experiment with the
FA. The dotted line shows the relative difference between the r.m.s. of the

ses and observations. The expression for the calculation of the relative
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(Fig. 9a). On the other hand, the 3D-VAR analysis are 5–
10% closer to observations. During the assimilation period
the discrepancy between estimates by the two assimilation
systems continuously grows. After one year 3D-VAR pro-
duces �10% smaller misfits, whilst the analyses are 15–20%
closer to the observations. In the shallow area of the Sicily
Strait at the beginning of the assimilation period 3D-VAR
already gives �10% smaller misfits, and the analyses are
�20% closer to observations (Fig. 9b). The same result is
maintained throughout the assimilation period. The reason
for the differences in the analyses between 3D-VAR and
SOFA scheme is that the 3D-VAR scheme assimilates data
in shallow areas. Initially, the impact of these observations
is significant only locally, but with time it becomes more
important on the basin scale.

The left panel in Fig. 10 shows r.m.s. and biases of
temperature misfits calculated as Argo observation minus
background value. The experiment with 3D-VAR analy-
ses has a lower r.m.s. of misfits than the experiment with-
out assimilation. Furthermore, with the assimilation the
bias becomes practically insignificant in deeper layers of
the ocean. It is still significant at �50 m depth which
approximately corresponds to the bottom of the summer
mixed layer. Its negative value indicates that the model
systematically overestimates the mixed layer depth in
summer. Similarly, the r.m.s. of temperature misfits has
the maximum at the bottom of the summer mixed layer.
Fig. 10. The r.m.s. and biases of misfits for the year-long period of the 3D-V
temperature (�C), and the right panel for salinity (PSU). Dots indicate the
assimilation by the 3D-VAR is indicated by full lines, and the experiment wit
Both bias and r.m.s. of misfits are relatively small close
to the surface, probably due to the fact that in both
experiments surface temperature is relaxed towards satel-
lite SST observations. The right panel in Fig. 10 shows
the r.m.s. and biases of salinity misfits (observations
minus background). The assimilation significantly reduces
the bias, especially at depths between 100 m and 300 m.
This is the layer of the local salinity maximum in the
Eastern Mediterranean in which the Levantine Intermedi-
ate Water (LIW) spreads towards the Strait of Sicily and
the Western Mediterranean (e.g. Pinardi et al., 2005).
Without the assimilation the model systematically under-
estimates the salinity in LIW. Furthermore, we can also
see that the r.m.s. of misfits is significantly reduced with
the data assimilation. However, in both experiments the
bias and the r.m.s. of misfits increase towards the surface
where they reach the maximum value. This behavior can
be explained by the fact that in the model the water
and salt flux is computed by relaxing the surface salinity
towards a climatology (Tonani et al., 2008). Therefore,
it seems that the assimilation is not able to correct the
drift of the surface salinity towards the climatology which
is fresher than observations. When compared to Argo
observations the difference in the analyses between the
3D-VAR and the SOFA was insignificant (not shown).
Clearly the major improvement of the 3D-VAR scheme
with respect to SOFA is in the SLA assimilation, since
AR and the simulation experiments. The left panel shows results for the
r.m.s. of misfits, and crosses indicate biases. The experiment with the

hout the assimilation with dashed lines.
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it is there that the effects of the bottom topography and
the coastline constraints are more important.

To show how the assimilation impacts the quality of
state estimates in the Mediterranean Sea, the sea surface
elevation field produced by the three experiments is dis-
played in Fig. 12. The major differences between the simu-
lation and the 3D-VAR are in the position and intensity of
Fig. 11. Comparison between SLA fields (cm): (a) AVISO objective analysis fo
VAR estimate on 15 October 2006, and (c) the SOFA estimate on 15 October 2
eliminate from the comparison the influence of the steric height and basin sca
several eddies like the Iera-Petra eddy (centred at 26�E and
34�N), the Pelops eddy (centred at 21�E and 36�N) and the
meandering of the Atlantic Ionian Stream (AIS) in the
Northern Ionian Sea (the gradient between high and low
areas between 35�N and 36�N). Both the Iera-Petra and
Pelops eddies were present in the initial analysis in October
2005 (not shown). After one year in the experiment without
r SLA in the week from 11 October 2006 to 17 October 2006, (b) the 3D-
006. The mean SLA over the area is subtracted from each field in order to
le barotropic effects.



Fig. 12. Comparison between sea level fields (cm) obtained on 15 October 2006: (a) the experiment without the assimilation, (b) the experiment with the
assimilation by 3D-VAR, and (c) experiment with the assimilation by SOFA.
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data assimilation the Pelops eddy almost disappeared, and
instead of the anticyclonic Iera-Petra eddy there is a uni-
form cyclonic circulation covering the whole northern Lev-
antine. On the other hand, with the data assimilation both
Pelops and Iera-Petra are strong anticyclonic eddies which
dominate large areas of the surface circulation in the Lev-
antine. Furthermore, the experiment started with the AIS
which was directed straight across the Ionian Sea (not
shown). After one year without data assimilation the AIS
did not change the initial direction significantly, and the
circulation in the Northern Ionian Sea is mainly cyclonic.
With the data assimilation the AIS changes the initial
direction and meanders into the Northern Ionian Sea, as
has often been observed (e.g. Pinardi et al., 2005). The
comparison between the analysis obtained by the 3D-
VAR and the analysis obtained by the SOFA scheme
(Fig. 12b and c) shows small qualitative differences. The
differences in accuracy shown in Fig. 9a are significant only
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at small spatial scales. Fig. 11 compares the estimate of the
SLA field by the AVISO objective analysis for the week
between October 11 and October 17 and the SLA analysis
by the 3D-VAR and SOFA schemes for the October 15.
Once again, major differences are at small spatial scales,
and the differences between 3D-VAR and SOFA have a
similar size to the differences between 3D-VAR and objec-
tive analyses by the AVISO.

5. Conclusions

The study describes the development and implementa-
tion of a new oceanographic 3D-VAR assimilation system.
Several new solutions were applied in order to model in a
computationally efficient way the background error covari-
ances in the ocean. The horizontal filtering has been devel-
oped in a way to eliminate discontinuities due to the
regional definition of EOFs. Furthermore, Gaussian hori-
zontal covariances have been modelled with a recursive fil-
ter that considers the presence of complex coastal
boundaries. Covariances between errors in the sea level
and errors in temperature and salinity vertical profiles were
estimated using a steady state solution of a barotropic
ocean model, which accurately accounts for the variability
of the bottom topography. The velocity errors were
adjusted along the coasts using the divergence damping
filter. All these solutions simplify the application of the
3D-VAR assimilation system in complex areas like the
Mediterranean Sea which combine the deep ocean with
coastal shelves. The application of vertical EOFs and the
use of the recursive filter makes our scheme similar to some
meteorological 3D-VAR schemes (Lorenc et al., 2000;
Barker et al., 2004), whereas the treatment of coastal
boundaries and the application of the barotropic model
are specific oceanographic features.

The background error covariances in our 3D-VAR
scheme dynamically connect all model state variables. This
approach differs from the common practice in the meteoro-
logical applications of the 3D-VAR in which some param-
eters contain uncorrelated and correlated parts (Derber
and Bouttier, 1999; Weaver et al., 2005). Our choice was
based on a long experience with the SOFA scheme. How-
ever, if we want to split temperature and salinity covari-
ances into correlated and uncorrelated parts, it is
sufficient to use another set of vertical EOFs, in which
some EOFs do not contain covariances between tempera-
ture and salinity. Furthermore, the state vector can contain
wind stress uncorrelated with vertical EOFs of temperature
and salinity. The corrections to the wind stress can be used
as the additional forcing term in the barotropic model, in
order to account for errors in the sea level that are not cor-
related with temperature and salinity errors. It should also
be noticed that, as our 3D-VAR applies first vertical and
then horizontal operators, it is possible to define different
horizontal radii of correlation at each horizontal level,
using the same solution for horizontal covariances with
coastal boundary conditions. However, in that case even
when vertical EOFs do not change in different geographical
regions, the vertical and the horizontal modes will no
longer be independent.

The 3D-VAR scheme developed in this study represents
a software structure which may be improved in the future.
For example, a 4D-VAR scheme can be constructed
directly from 3D-VAR by adding the tangent linear
approximation of the model to the observational operator
(e.g. Weaver et al., 2003). However, when the oceano-
graphic model has a high resolution, the linear approxima-
tion can be wrong. If it is not possible to linearize the
model, the computationally much more demanding Monte
Carlo approach may be used to estimate background error
covariances (e.g. van Leeuwen, 2003). Some computational
savings in the Monte Carlo method may be obtained by
reduced space approximations as in the SEEK filter (Bras-
seur and Verron, 2006). Independently of the form of the
background error covariances, one can use the structure
of the minimizer, observational operators and their
adjoints from the existing 3D-VAR scheme. Furthermore,
we can horizontally localize covariances using recursive fil-
ters. The update of the background covariance matrix after
the analysis may be obtained from the Hessian of the cost
function (e.g. Tarantola, 2005).

An important improvement of the 3D-VAR scheme
will be to assimilate new types of observation. As the
computational time of the 3D-VAR scheme mainly
depends on the size of the state vector, it becomes feasible
to assimilate large observational sets like satellite observa-
tions of sea surface temperature. Another possibility will
be to assimilate trajectories of Argo floats or surface drift-
ers. The trajectory assimilation can be achieved by adding
a tangent linear model of the trajectory to the observa-
tional operator in Eq. (2). These potential advantages of
the 3D-VAR scheme should be confirmed during its
future applications.
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