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The use of Multi-model Super-Ensembles (SE) which optimally combine different models, has been shown to
significantly improve atmospheric weather and climate predictions. In the highly dynamic coastal ocean, the
presence of small-scales processes, the lack of real-time data, and the limited skill of operational models at
the meso-scale have so far limited the application of SE methods. Here, we report results from state-of-the-
art super-ensemble techniques in which SEPTR (a trawl-resistant bottom mounted instrument platform
transmitting data in near real-time) temperature profile data are combined with outputs from eight ocean
models run in a coastal area during the Dynamics of the Adriatic in Real-Time (DART) experiment in 2006.
New Kalman filter and particle filter based SE methods, which allow for dynamic evolution of weights and
associated uncertainty, are compared to standard SE techniques and numerical models. Results show that
dynamic SE are able to significantly improve prediction skill. In particular, the particle filter SE copes with
non-Gaussian error statistics and provides robust and reduced uncertainty estimates.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction
An increasing number of models are routinely providing opera-
tional (atmospheric) weather forecasts and climate predictions. The
use of model ensembles has become an important method of
investigating dispersion problems (Galmarini et al., 2004), tracking
individual model errors (for example from initial and boundary
conditions, numerical discretization, turbulence closure), increasing
forecast skill, and reducing uncertainties (Lermusiaux, 1999; Lermu-
siauxet al., 2006) in highly dynamic and complexenvironmentswhere
predictability is limited (Lorenz, 1963; Roe and Baker, 2007). Model
biases are challenging to remove in short-term forecasts but may be
addressed by statistical tools. The multi-model Super-Ensemble (SE)
ll rights reserved.
technique (Krishnamurti et al., 1999), which uses an optimised
combination of an ensemble of models has previously been demon-
strated to improve weather, seasonal and interannual forecast skill in
atmospheric (Shin and Krishnamurti, 2003a,b; Yun et al., 2005) and
ocean (Rixen and Ferreira-Coelho, 2006, 2007; Rixen et al., 2008,
2009-this issue; Logutov and Robinson, 2005) models over simple-
ensemble and bias-removed ensemble means. SE methods (Williford
et al., 2003) have been further improved by the use of dynamic (Shin
and Krishnamurti, 2003a), regularization (Yun et al., 2003), non-linear
(Rixen and Ferreira-Coelho, 2007) and probabilistic (Rajagopalan
et al., 2002) techniques. These methods all aim at finding a com-
bination of models that optimally agrees with reference data over a
training period (the hindcast); this combination is subsequently used
to produce a SE forecast. A critical aspect for all SEmethods is therefore
whether the regression solution is capable of extrapolation in time and
is applicable to future events. In other words, the learning should be
adequate to provide generalization skills.

mailto:rixen@nurc.nato.int
http://dx.doi.org/10.1016/j.jmarsys.2009.01.014
http://www.sciencedirect.com/science/journal/09247963


Fig. 1. Area of interest of the DART06 experiments: a) location of moorings in the Gulf of Manfredonia including SEPTR 104 b) SEPTR operations sketch: deployment, profiling and data transmission c) illustration of small-scale instabilities
along the WAC as seen from an infrared NOAA AVHRR Sea Surface Temperature image (°C) on 5 September 2006 d) same as (c) but for chlorophyll A (mg m−3). S283
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Operational implementation of SE in the atmosphere has been
quite straightforward due to the reliability of observational data
streams and the robustness of the models. However, in the ocean, the
lack of long real-time data time series – especially in heavily fished
areas – and a limited suite of operational models have so far limited
the application of such promising techniques.

The use of SE methods for coastal ocean prediction was explored
during two Dynamics of the Adriatic in Real-Time (DART06A inwinter
and DART06B in summer) inter-disciplinary and multi-institutional
experiments carried out in 2006 near the Gargano Peninsula and in
the central Adriatic Sea (Mediterranean Sea), areas with intense
navigation and fishing activity (e.g. Cushman-Roisin et al., 2001;
Burrage et al., 2009-this issue). The purpose of these experiments was
to assess ocean monitoring and prediction skill (Taylor, 2001;
Robinson et al., 2002) in highly dynamic areas. The project specifically
focused on small-scale processes resulting from instabilities of the
Western Adriatic Current (WAC), which flows southward along the
Italian coast. This area, like many coastal areas, is subject to intense
mesoscale activity (Fig. 1). The time-scales of eddies, fronts and
filaments are typically of the order of a few hours to a day. Other
processes, e.g. the non-linear interactions of the instabilities with
internal waves and tides, make operational forecasting in the area
even more complex and challenging. Results presented hereafter refer
to the B75 mooring (SEPTR 104) during the summer experiment.

2. Methods

With the exception of the simple ensemble mean method, the
fusion of the different models by elaborate and reliable SE techniques
require independent observations.

The delivery of real-time observations was ensured by the SEPTR
(Perkins et al., 2000; Grandi et al., 2005), a bottom-mounted platform in
a trawl-resistant configuration (Fig. 1), equipped with an Acoustic
Doppler Current Profiler (ADCP) and a winch-controlled profiling unit
Fig. 2. Time series of temperature (°C) versus depth (m) at mooring B75 from
fitted with Conductivity Temperature Depth (CTD), wave, and optical
sensors. Data were transmitted through a GLOBALSTAR link every 6 h
after profiling the water column. In practice not all of the data were
successfully received in near-real time and thus the SE methods were
applied to the full data set after recovery rather than the more limited
and patchy real-time data set. However, future improvements to SEPTR
technology will be focused on improving data transmission and
hopefully make future near-real time applications more practical. The
collection of models from the various home institutions and those run
onboardR/VALLIANCEwasensured through continuousmirroringof the
NURC and R/V ALLIANCE FTP servers over a dedicated, high-bandwidth
satellite-link system (a standard 2-way SATCOM connection comple-
mented by a Digital Video Broadcasting System asymmetric link).

Eight different medium- to high-resolution ocean models (Fig. 2,
see details of the model implementations in Appendix A) were run in
the framework of DART. These models exhibited different skills,
dynamic responses, and biases, as a result of their different physical
assumptions and configurations (numerical discretization, initial and
boundary conditions, atmospheric forcing, data assimilation, turbu-
lence closure schemes and sub-grid scale parameterizations). This
diversity offered a good opportunity to test SE methods.

The high spatio-temporal variability of prediction skill makes the
application of ensemble techniques difficult in the ocean. Naïve
averaging (i.e., ensemble mean, hereinafter ENSMEAN) exhibits poor
skill and calls for methods with increased complexity to cope with
biases (i.e., a mean of models corrected for their respective biases,
hereinafter ENSMEANUNBIASED) or perform collective bias correction
(i.e. a least-square linear regression between the data and the models,
hereinafter LINREG) (Krishnamurti et al., 1999). To allow a dynamic
evolution of model combinations, a Kalman filter (hereinafter KAL-
MAN) (Kalman, 1960) can be used; this assumes that the weight
statistics follow a normal distribution. The full Kalman filter has been
implemented here without additional hypotheses. The sequential
importance resampling filter (hereinafter PARTICLE) (van Leeuwen,
the eight ocean models (see Appendix A) and SEPTR 104 real-time data.
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2003)was also tested to challenge the assumption of theweights having
a Gaussian distribution (see additional details in Appendix B). For both
KALMAN and PARTICLE, the a priori error statistics were optimised by
cross-validation, yielding observational errors of 0.2 °C (including
sensor errors and unmeasured scales) and SE model weight errors of
0.05 (this corresponds roughly to a change in weights of 20%/day).

All these methods may be complemented with additional ‘tricks’
(Rixen and Ferreira-Coelho, 2007): 1) normalizing the models and data
for better numerical conditioning (NORM suffix), 2) adding a synthetic
model (predicting 1 all the time) to allow for a constant or dynamic bias
to be removed (for all SEmethods: LINREG, KALMAN, PARTICLE), and 3)
a regularization using empirical orthogonal functions (EOF suffix) by
retaining only the dominant modes represented in the models (95% of
the variance in the present study). Method 3) avoids collinearities
between themodels (whichmay generate numerical problems); hence
it usually significantly improves generalization skills.

All the methods are computed at every single depth, yielding
different weights at different depths. Additionally, dynamic methods
use time-evolving weights, initialized with the LINREG solution. It
should be noted that observations that are assimilated by numerical
models could be assimilated in the SE as well, although this was not
considered in the present work.

3. Results

The results focus on 24-hour predictions of temperature with a
learning period starting 16 August 2006 and an evaluation period
from 4 to 9 September 2006. For a given ‘present’ time, past data are
used for the learning phase (linear regression, Kalman filter or particle
filter data assimilation). Future data are used for verification.

The time series of temperature from SEPTR 104 atmooring B75 show
a gradual coolingof the surface anddeepeningof the thermoclineduring
amajor coolingeventoccurring in early September (Fig. 2). Qualitatively,
all models were able to reproduce the general patterns identified in the
Fig. 3. Time series of 24-hour temperature (°C) forecast errors versus depth (m) for 6 consecut
bottom: the 8 individualmodels, ENSMEAN, ENSMEANUNBIASED, LINREG_NORM, LINREG_NORM
SEPTR data. Quantitatively (Figs. 3 and 4), the models exhibit various
kinds of errors including systematic biases, amplitude and phase errors,
offsets in the thermocline depth, strength and response of the ther-
mocline, discrepancies in the penetration of mixing events, anomalous
under or over-heating at the surface, and weak temporal variability.

It can be noticed from Fig. 3 that errors for the different Super-
Ensemble solutions decrease with increased complexity from the classic
ENSMEAN and ENSMEANUNBIASED to LINREG, KALMAN, and PARTICLE
complemented by regularization. The ENSMEAN, although reducing
somewhat the errors at the bottom and surface is unable to correct the
large errors at the level of the thermocline because it is incapable of
integrating the data information. The ENSMEANUNBIASED allows for a
substantial correction of the errors. The errors are further reduced by the
LINREG and by dynamic methods as KALMAN_NORM_EOF and PARTI-
CLE_NORM_EOF. The EOF regularization, when retaining 95% of the
variance, typically ‘compresses’ the 8 models down to 2 to 6 normal
modes, thus highlighting the fact that some of the models are closely
correlated. The resulting number of modes varies with depth and is
usually higher near the thermocline. RMS errors (Fig. 4) have been
reduced from a range of 1.35–3.21 °C for the individual models to less
than 0.51–0.53 °C for the dynamic methods with regularization. The
corresponding biases (0.02–2.15 °C) have, inmost cases, been reduced to
less than 0.14 °C and the correlations increased from 0.86–0.96 to 0.99.
The signal energy discrepancies have similarly reduced from 0.12–1.95 to
0.23. The overall skill (Taylor, 2001), which takes into account both the
difference in the signal standard deviation and the correlation of the
signal (0being the lowest skill and1 thehighest)hasbeen increased from
0.53–0.90 to 0.98, i.e., by at least 8% as a conservative estimate. This
suggests that the signal energy of the prediction and the truth are in good
agreement and that the prediction is also better correlated to the truth.

Ensemble methods may provide improved prediction skill but
also offer as a by-product an estimate of the associated uncertain-
ty (i.e. the confidence interval) at marginal cost (see additional
details in Appendix B). For operational purposes, overestimation or
ive days of individual models and super-ensemble predictions. From left to right and top to
_EOF, KALMAN_NORM,KALMAN_NORM_EOF, PARTICLE_NORMandPARTICLE_NORM_EOF.



Fig. 4. Error statistics of 24-hour temperature (°C) forecast. From left to right and top to bottom: root mean square error, correlation, bias, signal standard deviation difference and
skill for the 8 different individual models (left) and SE models (right) of Fig. 3.
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underestimation of the uncertainty can be a serious issue. Decision
makers could ignore a valuable prediction that is assigned too much
uncertainty or be over-confident of a prediction that is assigned too
little uncertainty. Narrowing down the confidence interval for the
predictions while minimizing these types of failures is hence of great
value to the end-user.

Fig. 5 illustrates the time series of the different uncertainty
predictions for a 99.7% confidence interval (or 3 standard deviations)
and an a posteriori verification of the quality of these estimates. The
mean ENSMEAN uncertainty is 4.09 °C, as a result of the wide spread of
the individual models. By injecting SEPTR data, the SE methods narrow
down the uncertainty estimates to mean values of 2.21 °C for the
ENSMEANUNBIASED, 3.64 °C for LINREG_NORM, 2.05 °C for LINREG_-
Fig. 5. Time series of uncertainty and a posteriori verification of 24-hour temperature fo
corresponding a posteriori check if observed values is not within the 99.7% confidence inter
NORM_EOF, 1.67 °C for the KALMAN_NORM_EOF and 1.01 °C for the
PARTICLE_NORM_EOF. Compared to the KALMAN_NORM_EOF (which
assumes Gaussian error statistics), the non-Gaussian capability of the
particle filter allows error estimate reduction by a further 40%.
Uncertainty within each day increases for dynamic methods as a result
of the intrinsic uncertainty of the forecast-model weights (hence the
discontinuity at the end of the 24 h forecast period because of the
running ‘present time’ window). A posteriori verification as to whether
the ground truth is within the prediction-uncertainty range demon-
strates that the failure rate is around 3% for ENSMEAN and ENSMEA-
NUNBIASED. For linear regression methods and KALMAN_NORM, the
failure rate is 0% due to the overestimation of the error estimate and less
than 1% for the remaining SE methods.
recast (°C) versus depth (m): (left) uncertainty (99.7% confidence interval); (right)
val (black).
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For longer lead times (not shown), the advantage of complex
dynamic methods becomes less obvious. For a 36-hour forecast, the
particlefilter and Kalmanfiltermethods still showbetter error statistics.
At 48 h and beyond, the linear regression and unbiased ensemble mean
provide better results. It should be stressed however that for a forecast
range of 24–72 h almost all the SE methods show better statistics than
any of the individual models. It is expected that the SE will directly
benefit from continuous improvements on individual models skills.

4. Conclusions

Our results support the concept of ‘self-modifying’ models (Dee,
1995; Lermusiaux, 2007). The SE methods outperform the individual
models on several errormeasures. Skill improveswith increasedmethod
complexity on 24-hour forecasts. Dynamic, non-Gaussian and regular-
ized SE techniques exhibit better skill and lower uncertainty. Accurate
predictions and reliable uncertainty estimates are equally valuable
products for decisionmakers. Setting aside the SEPTR data transmission
issue, operational implementation of the variousmethods is straightfor-
ward.We have shown that, atmarginal cost, the unique approach fusing
operational predictions and real-time data from the SEPTR bottom-
mounted platform in the trawl-resistant configuration offers a new
paradigm for improved predictions and reliable error estimates for a
potentially wide range of environmental parameters in shallow waters.
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Appendix A. Description of the numerical models used in the
super-ensemble

A.1. AdriaROMS, ROMS2kmV1 and ROMS2kmV2

AdriaROMS is the operational ocean forecast system for the Adriatic
Sea running at ARPA-SIM (http://www.arpa.emr.it/sim/?mare). It is
based on the Regional Ocean Modelling System (ROMS, detailed kernel
description is in Shchepetkin and McWilliams, 2005). This Adriatic
configuration has a variable horizontal resolution, ranging from 3 km in
the north Adriatic to ~10 km in the south, with 20 s-coordinates levels.
Surface forcing is provided by the Limited Area Model Italy (LAMI, local
implementation of the model LM, Steppeler et al., 2003), a non-
hydrostatic numerical weather prediction model with 7 km horizontal
resolution.MFS data (Tonani et al., 2008) are used at the open boundary
to the southwith superimposed fourmajor tidal harmonics (S2,M2, O1,
K1), from the work of Cushman-Roisin and Naimie (2002) following
Flather (1976). Forty-eight rivers (and springs) are included, using
monthly climatological value from Raicich (1994). Persistence of the
daily discharge measured one day previously is used for the Po river.
Additional details can be found in Chiggiato and Oddo (2008).

ROMS has been run also in hindcast mode, with a different
configuration and a finer grid compared to AdriaROMS. The horizontal
resolution is 2 km overall the basin, with 20 s-coordinate levels on the
vertical. The model has been spun up from a rest state defined by
objective analysis of URANIA CTD casts collected in January 2006
(courtesy of GOS CNR-ISAC, Rome) alone (ROMS2kmV2 - version 2), or
an objective analysis of URANIA datamergedwithwinter climatological
data (Artegiani et al., 1997) as background (ROMS2kmV1 version 1).
ROMS2kmmakesuseof anMPDATA familyadvection scheme(Margolin
and Smolarkiewicz, 1998) for tracers, third order upstream scheme
(Shchepetkin and McWilliams, 1998) for momentum, with weak
background diffusivity and no viscosity. The generic length scale
turbulence closure model is used for vertical mixing (as implemented
byWarner et al., 2005). A density jacobianwith spline reconstruction of
the vertical profiles is used for the pressure gradient (Shchepetkin and
McWilliams, 2003). Surface forcing is provided by LAMI with turbulent
fluxes computed following Fairall et al. (2003) and evaporation-
precipitation flux included. At the southern open boundary, tracers
coming from the climatological dataset MEDATLAS are prescribed with
relaxation-radiation and four superimposed major tidal harmonics (S2,
M2, O1, K1), from the work of Cushman-Roisin and Naimie (2002)
following Flather (1976). Forty-eight rivers (and springs) are included,
using monthly climatological value from Raicich (1994), except for the
Po river for which daily observed discharge values were used.

A.2. HOPS

The Harvard Ocean Prediction System (HOPS) (Lozano et al., 1996)
implementation has a resolution of 3 km and 21 sigma vertical levels.
Air-sea fluxes are taken from the Limited Area Model Italy (LAMI).
Open boundaries are set for Otranto and the Po river (considered as a
channel); Orlanski radiation conditions for temperature, salinity and
velocity, and specific boundary conditions (Spall and Robinson, 1990)
for transport stream function and vorticity were used. A constant flux
of 1000 m3/sec was set for the Po river. The model uses a rigid lid and
does not include tides. The turbulence closure follows Pacanowski and
Philander (1981). Initial conditions are derived from the AREG-5 km
(Oddo et al., 2006) hindcast daily average on 2 August 2006.
Temperature and salinity data collected by R/V Dallaporta and R/V
Alliance (14–27 August) and derived geostrophic velocities were
intermittently assimilated via Optimal Interpolation (Robinson et al.,
1998) integrated with the MED2 summer climatology in areas not
covered by data in the Southern Adriatic Sea.

A.3. NCOM

NCOM and its setup for the Adriatic are described in Martin et al.
(2006). The domain consists of the entire Adriatic Sea and includes
the Strait of Otranto and a small part of the northern Ionian Sea. The
horizontal grid resolution is 1020 m. The vertical grid consists of 32
total layers, with 22 sigma layers used from the surface down to a
depth of 291 m and level coordinates used below 291 m. Daily
boundary conditions were taken from hindcasts and forecasts of a
global model (Barron et al., 2004). Tidal forcing was provided for eight
constituents using tidal elevation and depth-averaged normal and
tangential velocities at the open boundaries from the Oregon State
University tidal databases. Tidal potential forcing was used in the
interior. Atmospheric forcing was obtained from the Aire Limitee
Adaptation Dynamique development InterNational (ALADIN) atmo-
spheric model run by the Croatian Meteorological and Hydrological
Service. The NCOM sea surface temperature (SST) was relaxed
towards a satellite SST analysis. River and runoff inflows for the
Adriatic were taken from the monthly climatological database of
Raicich (1994), except for the Po river for which daily observed
discharge values were used (courtesy of ARPA-SIM Emilia Romagna).

A.4. MFS, AREG-5 km, AREG-2 km

The Italian National Institute for Geophysics and Volcanology
(INGV) provided data from three operational ocean forecasting
systems, namely the Adriatic REGional forecasting system, AREG,
with horizontal resolution of 5 and 2 km (http://gnoo.bo.ingv.it/afs/)
and data from the Mediterranean ocean Forecasting System, MFS
(http://gnoo.bo.ingv.it/mfs/). Table A1 shows themajor features of the
three forecasting systems. Additional details can be found inOddo et al.
(2005, 2006) and Tonani et al. (2008).

http://www.arpa.emr.it/sim/?mare
http://dx.doi.org/doi:10.1029/2006JC003511
http://dx.doi.org/doi:10.1029/2006JC003511
http://gnoo.bo.ingv.it/afs/
http://gnoo.bo.ingv.it/mfs/


Table A1
Implementation details of the set of three INGV forecasting systems used in the framework of the DART06 experiment.

Name AREG ~5 km AREG-2 km MFS

Code POM POM OPA

Resolution dx,dy,dz ~2 km (31 sigma) ~2 km (31 sigma) ~6.5 km (72 zeta)
Air–sea boundary conditions Interactively computed from operational

ECMWF 0.5° 6 h
Lateral boundary conditions From MFS operational output Climatological

river Raicich (1994), daily observed Po
(courtesy of ARPA-SIM)

Atlantic closed No rivers

Tides included No tide-free surface No tide – filtered free surface
Turbulence closure Mellor and Yamada (1982) KPP (Large et al., 1994)
Initial conditions and/or data assimilation 1-1-1999 from climatological run. No assimilation 1-1-1999 from MFS interannual run

No assimilation
1-1-1997 climatology SOFA data
assimilation De Mey et al. (2002)
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Appendix B. The filtering problem

Filtering is the problem of making optimal estimates of a system as
observations become available, taking into account process and
measurement noises. The best known algorithm to solve the problem
under the assumption of Gaussian error statistics is the Kalman Filter
(Kalman, 1960). For non-linear systems and non-Gaussian error
statistics, the superiority of Particle Filters (or Sequential Monte-Carlo
techniques) has been demonstrated in numerous studies (e.g. Doucet
et al., 2001). Fig. B1 illustrates thenon-Gaussiannatureof theprobability
distribution functions of weight statistics and observations in the
present study. These distributions clearly show significant departure
from normal distributions with multiple peaks, evident skewness or
kurtosis.

Uncertainties are estimated from the commonly used ‘law of
propagation of uncertainty’, which in the case of super-ensembles
yields that the uncertainty is the square mean root of model
uncertainties, weighted by the corresponding model forecasts. In
the case of the Kalman filter, an estimate of the weight errors is given
by the diagonal elements of the error covariance matrix P. In the case
of the particle filter, they are estimated by the variance of the
population of particles (variance of weights). For the simple linear
regression, they are obtained by cross-validation.
Fig. B1. Probability distributions functions (PDFs) of weights at the end of the particle filterin
right: PDFs on the 8 individual models and independent term (1000 particles), and typical
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