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A B S T R A C T   

The dynamics controlling the spatial and temporal expressions of storm surges over the coastal wetlands and 
communities of the South Atlantic Bight (SAB) is complex and not well understood. Leveraging a newly devel
oped high-density hyper-local network of water level sensors in the North Georgia coast, we implement and test 
an unstructured numerical coastal ocean model (up to 10-m horizontal resolution) that can resolve and diagnose 
the storm-induced sea-level rise during the two Hurricanes Matthew (2016) and Dorian (2019) that have shore- 
parallel tracks. Using a set of model sensitivity analyses we decompose the drivers of the storm surge into a 
component that is associated with direct surface forcing by the hurricanes over the targeted area (e.g., local 
atmospheric wind and pressure condition in the nested model domain) and remote ocean forcing that is con
nected to hurricane-induced sea level anomalies and baroclinic effect through the open boundary of the model. 
For both hurricanes, we find that local surface atmospheric forcing leads to a uniform alongshore response in 
water level along the entire North Georgia coast with amplitudes that are proportional to how close to shore are 
the hurricane tracks (e.g., stronger in Matthew and weaker in Dorian). However, the alongshore structure and 
location of maximum storm surge are determined entirely by the arrival timing of ocean remote forcing. In the 
case of Matthew, the remote forcing arrives within 2 h of the direct passage of the hurricane over North Georgia 
and drives peak surges in the northern region of the domain (e.g., the City of Savannah and Tybee Island). In 
contrast, during Dorian, there is a 14-h difference between the remote and local forcing, and maximum storm 
surges are found in the southern region around Sapelo Island. We estimate that if local and remote forcing were 
to be simultaneous, the peak storm surge and the water level would be amplified by up to 30% for Matthew and 
50% for Dorian. While this sensitivity analysis only includes two hurricanes and is focused on a case study 
around North Georgia, it is clear that predicting and understanding the regional expressions and timing of the 
hurricanes’ coastal-wide remote ocean forcing in the SAB is important for estimating worst-case scenarios for 
coastal communities as they face emergency and management decisions.   

1. Introduction 

The southeastern coast of the U.S. is highly vulnerable to hurricanes, 
which can lead to loss of life and property damage reaching up to 
hundreds of billions of dollars for just one hurricane (Grinsted et al., 
2019). Storm surge is known as one of the most destructive factors to 
human life and infrastructure during hurricane events (Shultz et al., 
2005; Zhong et al., 2010; Wang et al., 2012; Gayathri et al., 2017). The 

damages due to storm surge are expected to increase because of sea level 
rise with more powerful and frequent North Atlantic hurricanes under 
planetary surface warming (Knutson et al., 2013; Mori and Takemi, 
2016; Hoegh-Guldberg et al., 2018). Given the potential threat in the 
future, better understanding the main drivers that determine storm 
surges can lead to a more accurate prediction of such catastrophic 
events, which can in turn help decision makers to manage 
hurricane-induced risks. 
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Numerical models are now capable of capturing complex high- 
resolution physical processes and geographical features and thus have 
been widely used to investigate and predict storm surges during hurri
cane events. Earlier storm surge modeling efforts focused on capturing 
the evolution and the location of maximum storm surge, although the 
simulations were limited to the coast because of low computational 
capability, which exclude the coastal dynamic connected with inland 
flow. In particular, as the water flow from the coast to inland were 
ignored in the simulations, the modelled storm surges were often 
overestimated (Gayathri et al., 2017). With the increase of computing 
resources more advanced models now explicitly consider the geo
morphology and the coastal habitats and inland waters (e.g., wetlands in 
the case of the U.S. southeastern coast) to simulate extreme water level 
changes from the open ocean to the inland rivers and the marshes during 
hurricane events (Olbert et al., 2017; Siverd et al., 2019; Santiago-
Collazo et al., 2019). However, as the computational cost of the 
high-resolution simulation is still not affordable to cover a global- or 
shelf-scale domain size, limited area models in targeted areas of interest 
have been used to efficiently represent the complicated coastlines and 
inland waterways (Trotta et al., 2021) and downscale large-scale 
models. 

The main drivers of storm surge in limited area models (e.g., 
downscaling models) can be separated into local and remote forcing 
(Morey et al., 2006; Zhong et al., 2010; Liu et al., 2018; Zhang and Li, 
2019; Yang et al., 2020). The local forcing represents atmospheric 
air-sea fluxes of momentum, heat and water occurring in the coastal 
model domain while the remote forcing is contained in the signals 
coming from the lateral boundaries of the coastal region in the form of 
sea surface height, velocity, temperature and salinity. As the definition 
of what is attributed to local vs. remote forcing is dependent on the sizes 
of the downscaling models, hurricane characteristics and the sur
rounding environments (Zhong et al., 2010; Li et al., 2013), the relative 
role of the two forcings in storm surge widely vary with cases. Zhong 
et al. (2010), for instance, examined the relative contribution of local 
forcing (e.g., wind stress on the surface of a model domain) and remote 
forcing (e.g., non-tidal sea level on the open ocean boundary) during 
Hurricane Isabel (2003) that passed landward and made landfall in the 
west of Chesapeake Bay in the U.S. east coast. The remote forcing 
generated similar storm surges from the estuary to the upper bay in 
terms of peak level and timing as long waves with little dissipation and 
amplification. On the other hand, the storm surges induced by the local 
forcing had spatial variability, showing significantly larger surges in the 
upper bay than in the lower bay and spatially varying peak timing. The 
local and remote forcing also showed the different peak levels and 
timings of storm surges. The local forcing generally caused higher peak 
surges than remote forcing inside the bay, showing the difference of up 
to 0.5 m. While the peak timings for local and remote forcing were 
similar in the lower bay (e.g., Hampton), the remote forcing caused 
earlier peak surge than local forcing in the upper bay, showing hours 
differences. Cho et al. (2012) reported that the water level response to 
remote forcing during Hurricanes Floyd (1999) and Isabel (2003) were 
similar in the Chesapeake Bay although the two hurricanes had different 
hurricane tracks and intensities (e.g., Floyd passed directly over the east 
of the bay). However, the local forcing caused the dramatic difference in 
storm surge due to different wind directions between the two hurricanes 
even though the wind speeds during the two hurricanes were similar (e. 
g., ± 4 m/s). Specifically, Hurricane Floyd was followed by the offshore 
winds that caused a set-down in the Bayhead while the onshore winds of 
Hurricane Isabel increased the water levels in the upper Bay. Eventually, 
the peak surges between Floyd and Isabel showed greater than 2 m 
differences in the Chesapeake Bay due to the different roles of the local 
forcings. Similarly, Liu et al. (2018) reported that remote forcing is of 
little importance to the spatial distribution of storm surge in the Zhan
jiang coastal area at the inlet of the South China Sea although the remote 
forcing induced higher storm surge than local forcing. Based on 66 
historical hurricanes, they simulated storm surges and categorized the 

spatial patterns of the storm surges to investigate the spatial influence of 
local and remote forcing on storm surges. Depending on the patterns of 
storm surges, the remote forcing caused the averaged peak surge in the 
range of 0.7–1.4 m while the range of averaged peak surge by the local 
forcing was 0.2–0.9 m. However, as the local forcing interacted with 
geographical features such as topography and bathymetry, the local 
forcing controlled the spatial distribution of storm surges in the study. 
Sensitivity experiments performed by Ma et al. (2017) pointed out that 
the local forcing could contribute to peak storm surge by up to 62% 
during Hurricane Leslie (2012) in Placentia Bay on the southeast coast of 
Newfoundland in Canada. On the other hand, Yang et al. (2020) showed 
the effects of remote forcing is dominant in storm surge in Salish Sea 
while the contribution of local forcing to storm surge is about 20% at the 
peak storm surge and only a few percentages on average during the 
White Christmas snowstorm (1996) and the Hanukkah Eve windstorm 
(2006). Taken together, these previous studies show that the effects of 
local and remote forcing vary widely across coastal areas and are 
regionally dependent. This implies that the downscaling models are 
necessary to understand and characterize the storm surge dynamics in 
specific coastal areas. 

The southeastern U.S. coast is highly vulnerable to storm surge 
damage, however to date, the use of nested 3D high-resolution (~10 m) 
modeling studies has not been applied comprehensively to understand 
the drivers of coastal flooding and their relative importance on peak 
water levels during hurricanes. Previous studies in the southeastern U.S. 
coast have examined the impact on storm surge from the changes in 
hurricane’s track (Peng et al., 2006; Ezer, 2019), asymmetry (Xie et al., 
2011) and forward speed (Thomas et al., 2019). However, the model 
resolutions used in these studies are relatively coarse (150 m–10 s km) to 
properly reproduce the complicated coastlines and inland channel net
works. In addition to hurricane-induced local forcing such as wind and 
atmospheric pressure, the variation in coastal sea level can also be 
affected by a remote forcing such as shelf-scale sea-level anomalies and 
the Gulf Stream (GS). Morey et al. (2006) reported that local forcing in a 
downscaling model is not solely responsible for storm surge on the coast 
during Hurricane Dennis. The remote hurricane forcing, such as baro
tropic shelf waves, generate a high sea-level anomaly along the coast of 
West Florida in the U.S. which is amplified by the hurricane winds up to 
1 m. Eliot and Pattiaratchi (2010) documented the remote effects 
generated by the sea-level anomalies along the western side of Australia 
giving rise to delayed sea level response. Non-isostatic sea level changes 
(also called non-inverse barometer effects) can contribute to the coast
ally trapped signals. Zhao et al. (2017) found the non-isostatic oceanic 
response at frequencies of about 5 days to large-scale atmospheric 
pressure using bottom pressure data off the continental shelf of the 
South China Sea and Hong Kong sea level data. The western boundary 
current, GS, has been also shown to be dynamically linked to coastal sea 
level along the U.S. east coast (Park and Sweet, 2015; Ezer et al., 2013). 
Recent studies have reported that the variation in water level is also 
strongly related to a change in ocean circulation during Hurricanes 
Matthew and Dorian (Ezer et al., 2017; Ezer 2020). For instance, the GS 
transport decreased by nearly half during Hurricane Matthew. This 
weakening and the relaxation of the large-scale sea-level gradient 
showed a high anti-correlation with an increase in sea level along the U. 
S. southeast coast (Ezer et al., 2017). Ezer (2020) also reported that a 
similar weakening of the GS occurred during Hurricane Dorian, which 
caused elevated coastal sea levels in the days after the hurricane passed 
the region. Ye at al. (2020) performed a sensitivity experiment to 
identify the effect driven by GS on water level in the Delaware Bay in U. 
S. during Hurricane Irene (2011). Their simulation results showed that 
the storm surge was affected by the change in GS during Hurricane Irene 
although the effect was not significant. The noticeable effect of the GS on 
the water level occurred during the post-surge adjustment period that 
lasted more than 2 weeks. Despite of the importance, the role and 
contribution of the remote forcing on coastal water level has not been 
investigated thoroughly along U.S. southeastern coast using 
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downscaling models. 
In this study, we configure a high-resolution downscaling model 

along the southeastern U.S. coast and inland waterways to investigate 
the relative role and contribution of local vs. remote drivers on spatial 
and temporal patterns of storm surge during Hurricanes Matthew (2016) 
and Dorian (2019). We focus primarily on the North Georgia coast 
where not only the highest storm surge occurred along the U.S. south
eastern coast during the two hurricanes but also a newly developed 
high-resolution water level sensor network provides an unprecedented 
observational view of the regional signatures of water level across the 
coast and wetland boundary. The comparative study of the two hurri
canes can provide a unique opportunity to understand mechanisms of 
observed storm surge as they have coast-parallel tracks that have sig
nificant influence on the remote forcing and consequently on the storm 
surge due to superposition with local forcing (Eliot and Pattiaratchi, 
2010). In addition, the two hurricanes show significantly different storm 
surge effects although they share similar hurricane intensities when they 
pass southeastern U.S. coast. Therefore, understanding the role of local 
and remote forcing on storm surge between Hurricanes Matthew and 
Dorian can provide new insights on hurricane-induced storm surges 
along the South Atlantic Bight (SAB). 

The remainder of the paper is structured as follows. Section 2 de
scribes the characteristics of the two hurricanes and the resultant storm 
surges from observational evidence. Section 3 provides a description of 
the numerical model framework and the validation of reproduced total 
water level and storm surges during Hurricanes Matthew and Dorian. 
Section 4 illustrates the sensitivity analysis, and section 5 concludes with 
a discussion. 

2. Hurricanes Matthew (2016) and Dorian (2019): description 
and data 

Both Hurricanes Matthew and Dorian were major hurricanes, passing 
along the southeastern U.S. coast. Hurricane Matthew obtained the 
name first at 12:00 UTC on September 28, 2016 as the tropical wave 
developed into a tropical storm near Barbados. Matthew intensified at 
00:00 UTC on September 30, increasing its maximum wind from 130 
km/h to 270 km/h, which made it Category 5 hurricane on the Saffir- 
Simpson scale (Stewart, 2017). When the hurricane traveled along the 
shelf of the SAB, the intensity significantly weakened to a Category 1 
hurricane. After Hurricane Matthew made landfall near McClellanville, 

South Carolina, on October 8, the hurricane pulled away from land to
ward the northeast until it dissipated on October 10, 2016. The 1-min 
maximum sustained wind speed and minimum pressure of Matthew 
were recorded as 270 km/h and 934 mb, respectively (Stewart, 2017). 
Almost three years later, on August 19, 2019, Hurricane Dorian formed 
as a tropical wave in western Africa. Dorian was not labeled as a major 
hurricane until the hurricane hit the U.S. Virgin Islands on August 28, 
2019. As the hurricane traveled northward from the U.S. Virgin Islands, 
a favorable environment rapidly intensified Dorian into a Category 2 
hurricane on August 30 and then into a Category 5 hurricane on 
September 1 with 1-min maximum sustained wind of 295 km/h and 
minimum pressure of 910 mb (Avila et al., 2019). Dorian made landfall 
on Grand Bahama at 02:00 UTC on September 2 and stalled in this area 
for about a day. During the landfall period, the hurricane significantly 
weakened to a Category 2 hurricane. On September 3, Dorian began to 
move northward along the warm waters of the GS, making landfall once 
again in Cape Hatteras, North Carolina as the Category 2 hurricane until 
it dissipated on September 10 (Avila et al., 2019). 

Fig. 1 (a) shows the intensity and tracks of Hurricanes Matthew 
(square symbols) and Dorian (triangle symbols) with the locations of the 
center of the hurricanes every 6 h, which are obtained from the National 
Hurricane Center (NHC). The intensities of the two hurricanes are 
colored according to the Saffir-Simpson scale. The two hurricanes show 
a similar hurricane intensity of Category 1 to 3 when they travel along 
the U.S. southeastern coastline. However, the recorded hurricane dam
ages between Matthew and Dorian were very different. According to 
reports from the NHC, Hurricane Matthew caused approximately $10 
billion in damages, whereas the total damage caused by Dorian was 
estimated at about $1.6 billion in the United States (Stewart, 2017; Avila 
et al., 2019). The difference in water level response to the two hurri
canes can explain the dramatic difference in damages between Matthew 
and Dorian. To investigate the water level along the U.S. southeastern 
coast during the two hurricanes, the five tide gauge stations of the Na
tional Oceanic and Atmospheric Administration (NOAA) are selected at 
Wilmington, North Carolina (NC), Charleston, South Carolina (SC), Fort 
Pulaski, Georgia (GA), Mayport, Florida (FL1) and Trident Pier, Florida 
(FL2) as shown in Fig. 1 (a). The maximum nontidal residuals are pre
sented in Fig. 1 (b) to compare hurricane-induced water level between 
Matthew (blue bar) and Dorian (red bar). The nontidal residuals were 
calculated by the difference between observed water level and an as
tronomical tide prediction from NOAA stations. Note that although a 

Fig. 1. (a) The location of NOAA tide gauge stations 
(black diamond), NOAA submarine cable (yellow 
line) and the hurricane track for Matthew (line with 
square) and Dorian (line with triangle). The locations 
of hurricane eyes are indicated every 6 h and the 
hurricane intensity is colored according to the Saffir- 
Simpson scale. (b) The maximum nontidal residual at 
the NOAA stations during Matthew (blue bar) and 
Dorian (red bar). (c) The targeted area for sensitivity 
experiments using the limited area numerical model.   
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storm surge plays a key role in determining the nontidal residual during 
hurricane event, extreme precipitation, river discharge, wave and 
tide-surge interaction (TSI) also influence the residual (Thomas et al., 
2019; Arns et al., 2020; Santiago-Collazo et al., 2019; Idier et al., 2012). 
All selected stations along the U.S. southeastern coast show higher peak 
levels of the nontidal residual during Matthew than those for Dorian in 
Fig. 1 (b). The different peak level of nontidal residual can be attributed 
to the different distance of the hurricane eyes from the coastline. Dorian 
was about 90 km further offshore from the coast compared to Matthew, 
although the intensity of Dorian was stronger than that of Matthew. The 
nontidal peak water-level recorded at the tide-gauges increased as the 
hurricanes travel along the coast and reached its maximum in GA 
(Fig. 1b). After Matthew and Dorian generated the highest nontidal re
sidual (e.g., 2.35 m for Matthew and 1.22 m for Dorian) in GA, the peak 
level decreased to 1.26 for Matthew and 0.61 for Dorian as it moved to 
higher latitude (e.g., NC). The detailed location of GA stations is pre
sented in Fig. 1 (c). 

The temporal evolution (6-min interval) of the observed water level 
(blue line), astronomical tide prediction (red line) and nontidal residual 
(green line) for Hurricanes Matthew and Dorian at selected stations are 
illustrated in Fig. 2. The tide predictions at the NOAA tide gauges are 
calculated by harmonic analysis of multiple years record at each station. 
Although the tidal ranges during Hurricane Dorian were higher than 
those of Matthew along the coast because of spring tides, the higher 
water levels were observed during Matthew than those during Dorian 
due mainly to the nontidal sea level. The extent of the increase in 
nontidal sea level was smaller for Dorian compared to Matthew. The GA 
station experienced the biggest temporal variation in the nontidal re
sidual among the stations during both hurricane events. Furthermore, 
the nontidal residual showed also a tidal periodicity representing the TSI 
(tidal signal in nontidal residual) for the two hurricane events. Thomas 
et al. (2019) reported that the TSI decreased the total water level along 
the SAB during rising or high tide while increased the water level by TSI 
was observed during a low or falling tide during Matthew. The TSI 
widely varied with location along the SAB, showing the magnitude of 
~0.1 m (near coast) to ~1 m (in the estuary). In particular, the effect of 
TSI was stronger at GA station than the other stations in Fig. 2, 

consistent with the analysis of Feng et al. (2016) that shows most con
spicuous effects of TSI on water level at GA among the tide gauge sta
tions along the U.S. east coast in the period 1996 to 2014. Considering 
the significant impacts of the hurricanes on the GA water levels, the 
Georgia coast indicated in Fig. 1 (c) is targeted to analyze the main 
drivers of storm surge through a comparative study of the two Hurri
canes Matthew and Dorian. 

Fig. 3 shows the time history of the hurricane-induced forcing 
components during Hurricanes Matthew and Dorian at the GA station, 
representing the dramatic change in wind speed and direction, and at
mospheric pressure. The wind direction and speed for Hurricanes 
Matthew and Dorian were similar to each other before the two hurri
canes were close to the Georgia coast (e.g., on October 5 to 7, 2016 for 
Matthew and on September 2 to 4, 2019 for Dorian), showing the ±3 m/ 
s difference of wind speed in a southward direction. When the two 
hurricanes hit the Georgia coast (on October 8, 2016 for Matthew and on 
September 5, 2019 for Dorian), the wind speed reached up to 25 m/s for 
Matthew and 16 m/s for Dorian. The wind directions also changed to 
northeasterly wind (toward southwest), pushing more water into the 
inland along the Savannah River and increasing the water levels (see 
nontidal residual in Fig. 3). After the two hurricanes passed the GA 
station, the water levels dramatically decreased up to − 0.6 m due to 
weakening of wind speed and offshore direction of wind-induced 
transport. The atmospheric pressures for Matthew and Dorian showed 
noticeable changes, decreasing to minima of 973 mb and 998 mb, 
respectively. In addition to dramatic variation in local forcing (e.g., 
wind and atmospheric pressure), the responses of large-scale ocean 
circulation to hurricanes were conspicuous during Matthew and Dorian. 
In Fig. 3 the Florida Current (FC) transport observed by NOAA’s sub
marine cable at 27◦N (see the location in Fig. 1) is shown to characterize 
the western boundary current barotropic transport along the U.S. 
southeastern coast, feeding the Gulf Stream transport before detachment 
from the coast. This transport is an indicator of the large-scale ocean 
circulation on the continental slope (Meinen et al., 2010). Substantial 
weakening of the FC transport was observed for both hurricane events 
although the timings when the FC begins to decrease were different 
between Matthew and Dorian as shown in Fig. 3. During Dorian, the FC 

Fig. 2. Time histories of observed water level (blue line) and astronomical NOAA tide prediction (red line) above MHHW for Hurricane Matthew (left column) and 
Dorian (right column) at five tide gauge stations. The nontidal residual (green line) indicates the difference between the observed water level and astronomical 
tide prediction. 
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decreased sharply by about 10 Sv before the maximum storm surge 
occurred, whereas the intensity of the FC during Matthew was almost 
constant until Matthew passed the Georgia coast. The FC started to 
decrease after Hurricane Matthew passes the Georgia coast. Note that 
the persistence (about 24 h) of Dorian around the Bahama has influ
enced the different timings of weakening of FC between Matthew and 
Dorian. The weakening of FC during the hurricane events has been re
ported to play an important role in water level as remote forcing, 
showing anti-correlation with coastal sea level along the southeastern U. 
S. coast (Ezer et al., 2017; Ezer, 2020). The fact that the drop in FC 
transport during Dorian was earlier than in Matthew meant that when 
Dorian reached the Georgia coast FC transport had already started to 

recover and increased which could contribute to lowering sea level and 
reducing the storm surge impact in Dorian relative to Matthew. 

The large-scale footprints of the hurricane sea-level anomalies along 
the SAB shelf are also an important factor to construct the remote forcing 
during hurricane events (Morey et al., 2006; Eliot and Pattiaratchi, 
2010; Zhao et al., 2017; Zhang and Li, 2019). To better understand the 
character of the remote ocean forcing in the Georgia coast during the 
passage of Hurricanes Matthew and Dorian, we decompose the 
large-scale Sea Surface Height (SSH) evolutions (1-year record) into a 
High-Pass Filtered (HPF; ≤ 11 days) and Low-Pass Filtered (LPF; > 11 
days) component for Matthew (in Fig. 4) and Dorian (Fig. 5). The cut-off 
periods for the filter are decided based on the duration of the two 

Fig. 3. The temporal evolution of nontidal residual (1st row), wind (2nd row), and atmospheric pressure (3rd row) from the NOAA’s Fort Pulaski meteorological 
station associated with the tide gauge, and the Florida Current transport (4th row) in Sverdrup (Sv) for Hurricanes Matthew (left column) and Dorian (right column). 

Fig. 4. The instantaneous fields during Hurricane Matthew. Each column from left to right correspond to Sea Surface Hight (SSH), Low-Pass Filtered (LPF) SSH, 
High-Pass-Filtered (HPF) SSH, atmosphere pressure (AP), wind speed and vector (WSV). 
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Fig. 5. Same with Fig. 4 but for Hurricane Dorian.  

Fig. 6. Hovmöller (latitude-time) diagram of the High-Pass Filtered Sea Surface Height (HPF SSH) and atmospheric pressure (AP) during Hurricanes Matthew (left 
two columns) and Dorian (right two columns). The latitude in x-axis follows the coastline from Florida (FL) to Georgia (GA) and North Carolina (NC). 
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hurricanes passing along the SAB. The snapshots in Figs. 4 and 5 show 
the temporal evolution of SSH, Atmospheric Pressure (AP) and Wind 
Speed and Vector (WSV) around the Georgia coast. The SSH data is 
obtained from Copernicus Marine Environmental Monitoring Service’s 
(CMEMS) 1/12 of degree global ocean analysis product while European 
Centre for Medium-Range Weather Forecasts (ECMWF) analysis prod
ucts are used for the atmospheric fields. These are the same products 
used to drive the limited area numerical model presented in section 3. 
The LPF SSHs show the slow evolving circulation, which by definition 
changes very slowly during the passage of Matthew and Dorian. In 
contrast, the responses of HPF SSH clearly show the spatial extent of the 
oceanic response to the hurricane tracks. The HPF SSH anomalies occur 
along the coastal boundary at the scale of the entire SAB with higher 
than usual SSH on the north edge of the hurricanes eye and with lower 
SSH on the southern edge. The HPF SSH enters the Georgia coast prior to 
the maximum storm surge. 

Hovmöller (latitude-time) diagrams of HPF SSH stretching from the 
Florida coast to North Carolina in Fig. 6 clearly show the northward 
propagation of hurricane-induced large-scale SSH anomalies along the 
SAB shelf, which is connected to coastally amplified anomalies following 
the hurricane tracks. In particular, hurricanes travelling parallel to the 
coast (e.g., Matthew and Dorian in this case) have been reported to 
typically cause most significant impact on coastal sea level compared to 
other hurricane tracks because the coastally trapped signals can be su
perposed on local forcing-induced storm surges (Eliot and Pattiaratchi, 
2010). We refer to the shelf-scale sea-level anomalies as a factor of 
remote forcing together with the GS changes in the form of nontidal sea 
surface height, temperature, salinity and velocity on the open boundary 
of the model in this study. 

This analysis of the large scale, remote forcing conditions during the 
two hurricane events (Figs. 3–6) already highlight important differences 
in the temporal evolution of the local response to the remote forcing 
between Hurricanes Matthew and Dorian. In the case of Matthew, for 
example, we find larger HPF sea level anomalies than for Dorian. In 
contrast, earlier weakening of FC occur during Dorian compared with 
Matthew, implying that the remote forcing caused by the FC/GS large- 
scale ocean circulation during Dorian can have more influence on 
water level than Matthew. However, the observations and the large- 
scale model analysis do not allow a precise understanding of the role 
and contributions of the local and remote forcing in generating storm 
surge. Therefore, sensitivity experiments using the limited area nu
merical model are performed to investigate the effect of different drivers 
on the storm surge. 

3. Numerical model set up 

3.1. Model description 

SHYFEM is a 3-D fully baroclinic finite element model that solves the 
Navier-Stokes equations with hydrostatic and Boussinesq approxima
tions (Umgiesser et al., 2004; Federico et al., 2017; Ferrarin et al., 2018). 
Recent studies have shown that hurricanes also have a significant in
fluence on large-scale ocean circulation (e.g., Gulf Stream on the U.S. 
east coast) and consequently change the 3-D baroclinic structure of the 
ocean fields. Specifically, changes in Ekman transport and vertical 
stratification affect coastal sea level dynamics (Ye et al., 2020; Ezer, 
2019). Ye et al. (2020) showed that water levels on the Delaware Bay of 
the U.S. east coast during Hurricane Irene were better captured by 3-D 
simulation compared to the 2-D equivalent. For example, the compari
son of Gulf Stream transport between 2-D and 3-D simulation showed a 
mean absolute difference of 19%, which eventually caused differences in 
the coastal sea level. In particular, the baroclinicity plays a key role in 
rebounding water level in the post-hurricane period, which can be only 
captured by 3-D simulation with the baroclinic effect. Therefore, the 3-D 
simulation is important to properly analyze the effect of hurricanes on 
coastal sea level, especially in areas where large-scale circulation exists 

(e.g., Gulf Stream or Kuroshio current). The unstructured grid is Ara
kawa B with triangular meshes, which is tailored for high-resolution 
coastal modelling implementations, exploiting its efficiency at 
handling complex coastlines. Furthermore, the model uses open lateral 
boundary conditions that smoothly connect the nested area to 
large-scale and remote processes, fostering the exchange between the 
different scales. Scalars are computed at grid nodes, whereas velocity 
vectors are calculated at the center of each element. Vertically a z-layer 
discretization is applied, and the dynamical variables are averaged over 
the layers. The vertical discretization in this system has 18 levels. The 
horizontal resolution ranges from 1 km (open ocean) to 10 m (water
ways), allowing an accurate representation of the complex coastlines 
and channel networks as presented in Fig. 7. The 1/3 arc-second (~10 
m) and 3 arc-second (~90 m) resolutions of Digital Elevation Models 
(DEMs) of NOAA are combined for the model bathymetry. A Total 
Variation Diminishing (TVD) scheme is applied for horizontal and ver
tical advection in the transport and diffusion equation for scalars. Hor
izontal advection of momentum is discretized by an upwind scheme and 
horizontal eddy viscosity is computed by the Smagorinsky (1963) 
formulation. For the computation of vertical viscosities and diffusivities, 
a k–ε turbulence scheme is used, adapted from the General Ocean Tur
bulence Model (GOTM) model described by Burchard and Petersen 
(1999). At the surface, the air-sea heat flux is parameterized by bulk 
formulas described by Pettenuzzo et al. (2010), while the surface stress 
is computed with the wind drag coefficient according to Hellerman and 
Rosenstein (1983) that calculate the drag coefficient using wind speeds 
and air-sea temperature differences. The bottom stress is calculated 
based on quadratic formulation. The bottom drag coefficient in the 
quadratic formulation is defined by the logarithmic formulation and 
depends on water depth as specified in Maicu et al. (2021). In the log
arithmic formulation, the Von Karman constant and roughness length 
are constant and equal to 0.4 and 0.01 m, respectively. The model pa
rameters in this study are decided based on previous studies that suc
cessfully applied the SHYFEM model in the coastal and inland regions 
(Ferrarin et al., 2019; Federico et al., 2017; Trotta et al., 2021; Maicu 
et al., 2021). Although surface waves can significantly contribute to 
storm surges in coastal areas, the model configuration in this study does 
not include waves because previous studies show that waves along the 
Georgia coast play a minor contribution to high water levels and 
flooding associated with the arrival of hurricanes. Specifically, Marsooli 
and Lin (2018) show that the maximum wave setup was on the order of 
magnitude of 10− 1 m along the U.S east coast during 27 years of his
torical hurricane events. Near the coast of Georgia, for instance, the 
maximum wave setup reached near 0.3 m, which is a minor impact of 
wave setup compared to the large tidal range (e.g., 1.8–2.7 m) on the 
Georgia coast. Hegermiller et al. (2019) also reported that the 
wave-current interactions were negligible on the shelf of the U.S. 
southeast coast during Hurricane Matthew. Consistent these previous 
findings, the error statistics of the model results (e.g., root mean square 
error, bias and correlation coefficient) in Table 1 are comparable with or 
better than other numerical models that include the impact of waves in 
water levels during Hurricane Matthew (Thomas et al., 2019; Heger
miller et al., 2019). The results show that neglecting waves does not add 
any significant error in the model results. 

The surface forcing, initial and lateral open boundary conditions are 
interpolated from the CMEMS and ECMWF analysis products. The 
analysis data provide high accuracy information of past weather and 
ocean by the data assimilation that combines observations with nu
merical model results. However, limited spatial and temporal resolu
tions pose key challenges to properly investigating the coastal sea level. 
Therefore, the downscaling models (e.g., SHYFEM in this study) using 
the analysis products play a key role in the assessment of coastal 
flooding. The CMEMS global ocean analysis products have horizontal 
resolutions of 1/12◦ and 50 vertical levels. Dirichlet boundary condi
tions were employed at the open boundary for sea surface height and 
inflow active tracers. Total velocities were nudged at the open 
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boundaries and zero gradient boundary conditions were used for 
outflow active tracers. For initial and open ocean boundary conditions of 
the SHYFEM model, CMEMS 3-D fields of daily mean water temperature, 
velocity and salinity are interpolated to horizontal and vertical grids 
while hourly mean SSHs from CMEMS are utilized to consider the sig
nificant and rapid change in the sea levels during a hurricane event. The 
CMEMS SSH is merged with the tidal astronomical elevations on the 
ocean open boundaries using fourteen tidal constituents: 2N2, M4, Mf, 
Mm, Mn4, Ms4, M2, S2, N2, K2, K1, O1, P1 and Q1 from the Oregon 
State University Tidal Prediction Soft (OTPS) model (Egbert and Ero
feeva, 2002). The initial values of temperature and salinity in the regions 
that are not covered by the CMEMS products (e.g., inland channel and 
creeks) are extrapolated from the closest coastal nodes of CMEMS using 
a sea-over-land procedure (Trotta et al., 2021). This method uses a 
diffusive boundary layer approach that extrapolates the field values on 
the areas near the coastline where the parent model solutions are not 
defined. The procedure iteratively computes the ocean quantities on the 
land grid points, so that these quantities can be interpolated on the 
nested higher resolution grid. No-slip conditions are applied at closed 
lateral boundaries (e.g., inland boundaries around rivers and coast
lines). The surface forcing is derived from the ECMWF-HRES analysis 

products with 1/8◦ horizontal resolution and 6 h of frequency. The 
ECMWF-HRES product provides information about the atmospheric 
fields including air temperature, dew point temperature, total cloud 
cover, mean sea level atmospheric pressure and 10 m wind velocities. In 
this study, the precipitation and river discharge are excluded. The 
Matthew and Dorian storm surge simulations are produced by initial
izing the model four days before the day of highest storm surge, which 
leads to stable kinetic energy ratios between the currents in the nested 
domain and the coarse resolution initial condition fields. 

3.2. Model validation 

Detailed comparison of total water level and storm surge between the 
model and observations are performed to check the accuracy of the 
numerical model. The observations used in this study consist of NOAA, 
USGS and Smart Sea Level Sensors (SSLS) as shown in Fig. 7 (a). As the 
SSLS have high-density hyper-local network (55 sensors) to observe and 
record water level around the North Georgia coast, the model results can 
be evaluated under diverse environments (e.g., inland creeks and wet
lands). Ten locations are selected to compare the model results with the 
observations, which include not only the estuary and the upstream of 

Fig. 7. (a) The model domain with bathymetry in the area of interest, which extend from the open shelf to the inland waterways of Georgia. White boxes indicate 
specific regions including: (b) the city of Savannah and (c) the Sapelo Island with the locations of observations to compare with model results. The colored dots 
indicate ten observational stations: one from NOAA (red), three from USGS (green) and six from SSLS (orange). 

Table 1 
Error statistics of the total water level and storm surge during Matthew and Dorian at different locations indicated in Fig. 7.  

Locations Hurricanes Total water level Storm surge 

RMSE (m) Bias (m) R RMSE (m) Bias (m) R 

NOAA 1 Matthew 0.212 − 0.079 0.958 0.165 0.023 0.930 
Dorian 0.190 − 0.013 0.971 0.066 0.012 0.986 

USGS 1 Matthew 0.241 − 0.108 0.955 0.211 0.023 0.902 
Dorian 0.200 − 0.023 0.973 0.083 − 0.015 0.963 

USGS 2 Matthew 0.334 − 0.197 0.937 0.261 − 0.018 0.897 
Dorian 0.282 − 0.106 0.967 0.097 − 0.017 0.968 

USGS 3 Matthew 0.241 − 0.003 0.934 0.196 − 0.012 0.873 
Dorian 0.291 0.045 0.942 0.075 0.016 0.980 

SSLS 1 Dorian 0.310 − 0.047 0.934 0.096 − 0.024 0.984 
SSLS 2 Dorian 0.314 − 0.037 0.923 0.074 − 0.023 0.972 
SSLS 3 Dorian 0.366 − 0.017 0.901 0.102 0.001 0.979 
SSLS 4 Dorian 0.367 0.022 0.911 0.101 0.036 0.976 
SSLS 5 Dorian 0.337 0.010 0.914 0.106 0.029 0.972 
SSLS 6 Dorian 0.309 0.016 0.931 0.101 0.038 0.975  
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rivers but also creeks and salt marshes as shown in Fig. 7 (b) and (c). 
NOAA 1, USGS 1 and USGS 2 in Fig. 7 (b) are located from the estuary to 
upstream of the Savannah River while USGS 3 exists on the inland creek 
around Sapelo Island as shown in Fig. 7 (c). The SSLS 1 to 6 in Fig. 7 (b) 
represent the observations that measure the water levels in the creeks 
and the wetlands around the City of Savannah and surrounding Chat
ham County, GA. Note that the comparisons of model results with SSLS 
consider only Hurricane Dorian because the SSLSs have recorded the 
water level since their installation in 2018. 

Fig. 8 shows the comparison results of total water level during 
Hurricane Matthew at the locations of NOAA and USGS stations. 
Generally, the model can capture well the evolution, peak level and 
timing of Matthew-induced water levels at most locations. The differ
ence between model and observation is larger in the location upstream 
of the Savannah River. In particular, the largest differences on the up
stream of the river occur after peak level (e.g., near 18:00 UTC on 
October 8, 2016). We attribute the error at the upstream location to the 
effect of precipitation and river discharge, which are not resolved in this 
model. The comparison of model results with USGS 3 around Sapelo 
Island is also favorable with significant correlations R > 0.9 (see Table 1 
for error statistics). Overall, the model shows a good agreement with the 
available water level observations despite the lack of hydrological 
forcing and wave, especially when compared with previous model re
sults by Thomas et al. (2019) that used the hydrodynamic model with 
wave effects to simulate water level along the U.S. southeast during 
Matthew. The evolution of total water level during Dorian are compared 
between model and observation in Fig. 9. In this case, we additionally 
compare the model result with observation in the creeks and wetland 
using SSLS. As the track of Hurricane Dorian is farther from the coast 
than that of Matthew and peak storm surges occur around low tide, the 
maximum water level is not significant during Dorian. However, it is 
clear that the increased level of low tide (e.g., the water level on 
September 5 in Fig. 9) and decreased water level after the hurricane 
passage (e.g., after September 5) show the impact of Dorian on the water 
level at each observational site. Generally, the model captures the 
variation induced by Hurricane Dorian and tide at the different locations 
with significant correlations R > 0.9 (see Table 1). 

To better isolate the storm surge signals, we perform a set of simu
lations without tidal signals at the lateral boundaries. Because the 
nontidal residual (see Fig. 2) still include the tidal effect (e.g., tide-surge 
interaction and error of tide prediction; Horsburgh and Wilson, 2007), a 
data filtering process is utilized to extract pure storm surges from the 
nontidal residuals (Feng et al., 2016; Spicer et al., 2019; Xiao et al., 
2021). This process can be performed by two steps. First, calculate the 
nontidal residual by subtracting harmonic tidal signals (Pawlowicz 
et al., 2002) from the observed total water level. Second, extract the 
storm surge from the nontidal residual using low-pass filter. In this 
study, we consider a cut-off period of 13 h for the filter based on the tidal 
characteristics around the Georgia coast (e.g., semidiurnal tide). Figs. 10 

and 11 show the comparison of storm surge between the model without 
tides and the tidally filtered observations during Matthew and Dorian, 
respectively. The extracted storm surge from observation during 
Matthew show smoothed evolution unlike modelled storm surge in 
Fig. 10 because the low-pass filter excludes the rapid increase and 
decrease in water level by wind direction and speed that have relatively 
high frequency (see Fig. 2). Therefore, the conspicuous differences in 
storm surge between model and observation occur in maximum and 
minimum level. However, the general evolution of storm surge for 
Matthew is reproduced well by the model, capturing the timing of an 
increase in storm surge and rebounding water level after the passage of 
the hurricane (Fig. 10). Unlike Matthew, the storm surge for Dorian 
develops slowly with a gentle profile. The model can reproduce well not 
only the timing and magnitude of peak surge but also the entire evolu
tion of storm surge during Dorian (Fig. 11). 

To quantitatively evaluate the model results, statistical error pa
rameters are utilized. The root-mean-square error (RMSE) is used to 
quantify the agreement between observed and simulated water level: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(si − oi)

2

√
√
√
√

where N, oi and si indicate the number of samples, observations and 
model results, respectively. An ideal value of zero for RMSE means 
perfect agreement between observed and simulated water level. 

The Bias indicates whether the model overestimates (positive value 
of Bias) or underestimates (negative value of Bias) the observation. Zero 
Bias means perfect match between model results and observations: 

Bias =
1
N

∑N

i=1
(si − oi)

The correlation coefficient (R) is used to measure the relationship 
between model results and observation and has values from 0 to 1 where 
1 indicate a perfect fit while 0 indicates a complete disagreement: 

R=

∑N
i=1(si − s)(oi − o)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(si − s)2∑N
i=1(si − s)2

√

These error statistical parameters are calculated for the period of 
Hurricanes Matthew (October 5 to October 11 in 2016) and Dorian 
(September 2 to September 8 in 2019). Table 1 shows the error statistical 
parameters according to observations during Matthew and Dorian. 
Generally, the RMSE, Bias and R for total water level and storm surge 
indicate a good agreement with observations at all locations during 
Matthew and Dorian. The ranges of statistics for the total water level 
during the two hurricanes are 0.19–0.36 m for RMSE, − 0.19 to 0.04 for 
Bias and 0.91 to 0.96 for R while those for storm surge have 0.07–0.26 m 
for RMSE, − 0.02 to 0.04 m for Bias and 0.89 to 0.98 for R. The errors on 

Fig. 8. The comparison of total water level between model and observations during Hurricanes Matthew at different locations (NOAA and USGS) indicated in Fig. 7. 
Color code is used to indicate the different observations such as NOAA (red) and USGS (green). Here the vertical datum is NAVD88. 
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the upstream of Savannah River (USGS 2) and Sapelo island (USGS 3) 
are relatively large for both Matthew and Dorian, showing higher RMSE 
(~0.33 m for Matthew and ~0.28 m for Dorian) and lower R (0.93 for 
Matthew and 0.96 for Dorian). The model underestimates the observed 
total water level and storm surge on the upstream of the Savannah River, 
showing the negative Bias for Matthew and Dorian. In wetlands (e.g., the 
locations of SSLS 1 to 6), the simulated total water level and storm surge 
during Dorian also show relatively high values of error statistical pa
rameters, which can be caused by interaction with vegetations in the 
wetlands and small-scale morphology features (small channels and 
marsh elevations) that are not captured well in DEM or grid systems. 
Nevertheless, the overall statistics represent a good capability of model 
to simulate the dynamic change in water levels during the hurricane 
events, having similar or better error statistics compared to previous 
studies that utilized hydrodynamics models to simulate the hurricane- 
induced water level (Thomas et al., 2019; Hegermiller et al., 2019; 
Zheng et al., 2020). Therefore, within the model errors, we examine the 
relative role of local and remote forcing in spatial and temporal evolu
tion of storm surge during Hurricanes Matthew and Dorian. 

4. Sensitivity experiments 

A total of ten sensitivity experiments were conducted to examine the 
relative role and contribution of different forcing components to the 
storm surge during Hurricanes Matthew and Dorian. The simulation 
period of all experiments is 8 days, including spin-up. The simulation for 
Matthew is carried out from the 4th to the 12th of October in 2016 and 
denoted as MT, while the time period for Dorian starts on the 1st and 
ends on the 9th of September in 2019 and it is referred to as DR (see 
Table 2). As these periods cover extreme water level changes, the ex
periments help us evaluate the sensitivity of storm surge to local and 
remote forcing for Hurricanes Matthew and Dorian. The “base simula
tions” represent the storm surge only simulations without tide and TSI 
during the hurricane events. The base simulations (BS) that include all 
forcing are compared with other sensitivity experiments to study the 
relative contribution of local and remote forcing to the total storm surge. 
The total storm surge simulations are named as MT-BS and DR-BS for 
Matthew and Dorian, respectively. The surface forcing (e.g., wind stress 
and atmospheric pressure) and open ocean boundary conditions (e.g., 

Fig. 9. The comparison of total water level between model and observations during Hurricanes Dorian at different locations indicated in Fig. 7. Color code is used to 
indicate the different observations such as NOAA (red), USGS (green) and SSLS (orange). Here the vertical datum is NAVD88. 

Fig. 10. The comparison of storm surge between model and observations during Hurricanes Matthew at different locations (NOAA and USGS) indicated in Fig. 7. 
Color code is used to indicate the different observations such as NOAA (red) and USGS (green). 
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sea surface height, water temperature, salinity and velocities) are 
controlled in other experiments to analyze the different forcing com
ponents during hurricanes Matthew and Dorian, while other configu
rations remain the same as that of MT-BS for Matthew and DR-BS for 
Dorian. 

Table 2 summarizes the sensitivity experiments conducted in this 
study. Since the main drivers during hurricane events are subdivided 
into Local Forcing (LF) and Remote Forcing (RF), the relative roles and 
contribution of LF and RF in generating total storm surges are 

investigated by sensitivity experiments of Group A. The LF consists of 
Wind Stress (WS) and Atmospheric Pressure (AP) at the surface of the 
limited area model, whereas the RF represents the adjustment of ocean 
state to hurricane forcing (e.g., change in Gulf Stream and occurrences 
of coastally trapped signals) in the form of velocity, salinity, tempera
ture and non-tidal sea-level fluctuation imposed on the open boundary 
of the model. For the cases of MT-LF and DR-LF in Group A, the nontidal 
sea-level is specified as zero while, the velocity, salinity and temperature 
are fixed to their initial values to exclude the impact of the RF variability 
entering through the open boundaries. For RF experiments (e.g., MT-RF 
and DR-RF in Group A), the wind speeds are set to zero and atmospheric 
pressures are kept to a standard atmospheric pressure (1013 mb) over 
the nested model domain while the open boundary conditions vary with 
specification of CMEMS fields. The experiments of Group B compare the 
influences of WS and AP on storm surge to identify their relative role in 
generating storm surge. As the WS and AP belong to LF, experiments of 
Group B are based on the configuration of LF cases (e.g., MT-LF and DR- 
LF) that restrict the impact of RF. In the case of MT-WS and DR-WS, the 
standard atmospheric pressure is imposed on a surface during the 
simulation period to ignore the variation in AP by hurricanes, allowing 
only the impact of WS on storm surge. For MT-AP and DR-AP, the wind 
stress remains zero to observe how atmospheric pressure affects storm 
surge, while other parameters remain the same as those of the LF cases. 

4.1. Local and remote forcing 

In order to investigate the roles of LF and RF in total storm surges 
over time, the time histories of the storm surge for BS and Group A are 
compared at Fort Pulaski (e.g., the location of NOAA 1 in Fig. 7) in 
Fig. 12. The residual (magenta line) in Fig. 12 is calculated by sub
tracting the sum of LF- and RF-induced storm surge from the total storm 
surge (e.g., MT-BS and DR-BS), which quantifies an interaction between 
LF and RF. As the residual in Fig. 12 is close to zero over time at Fort 
Pulaski, we argue that the interaction between LF- and RF-induced 
storm surge is negligible and that their combined effects can be 
modelled as a linear superposition. The LF- and RF-induced storm surges 

Fig. 11. The comparison of storm surge between model and observations during Hurricanes Dorian at different locations (NOAA, USGS and SSLS) indicated in Fig. 7. 
Color code is used to indicate the different observations such as NOAA (red), USGS (green) and SSLS (orange). 

Table 2 
Sensitivity experiments main characteristics. MT = Matthew, DR = Dorian, LF =
Local Forcing, RF = Remote Forcing, BS=Base Simulation, WS=Wind Stress, AP 
= Atmospheric Pressure.  

Group 
index 

Experiment 
name 

Description Simulation 
period 

Base 
cases 

MT-BS Total storm surge simulation for 
Matthew 

Matthew 

DR-BS Total storm surge simulation for 
Dorian 

Dorian 

Group A MT-LF Same as MT-BS but lateral open 
boundary forcing variability is 
excluded 

Matthew 

MT-RF Same as MT-BS but local surface 
forcing is excluded 

Matthew 

DR-LF Same as DR-BS but lateral open 
boundary forcing variability is 
excluded 

Dorian 

DR-RF Same as DR-BS but local surface 
forcing is excluded 

Dorian 

Group B MT-WS Same as MT-LF but the impact of 
atmospheric pressure is excluded 

Matthew 

MT-AP Same as MT-LF but the impact of 
wind stress is excluded 

Matthew 

DR-WS Same as DR-LF but the impact of 
atmospheric pressure is excluded 

Dorian 

DR-AP Same as DR-LF but the impact of 
wind stress is excluded 

Dorian  
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for both hurricane events show similar behavior over time. In Fig. 12 the 
RF-induced storm surges (blue line) for Matthew and Dorian always 
show higher level than those induced by LF (red line), indicating 
important role of RF (e.g., coastally trapped signals and Gulf Stream) in 
generating the total storm surge (black line). As hurricanes approach 
Fort Pulaski, the LF and RF begin to increase storm surge and reach the 
peak value within one day. The peak level induced by RF is higher than 
that of LF by nearly 0.66 m for Matthew and 0.33 m for Dorian. After 
peak, the LF-induced storm surge for both Hurricanes Matthew and 
Dorian decreased to negative anomalies when the hurricanes move 
northeast and the wind shifts from the onshore direction ahead of the 
storm to offshore in the back of the storm. After Hurricanes Matthew and 
Dorian pass the North Georgia, the LF-induced storm surge decreases 
close to zero as hurricane-induced atmospheric forcing disappears. On 
the other hand, the RF continue to increase the water level again by up 
to 0.75 m for Matthew and up to 0.3 m for Dorian due to post-hurricane 
effect of RF ocean adjustment (e.g., baroclinic effect caused by Gulf 
Stream), which is consistent with previous findings (Ezer 2020; Ye et al., 
2020). In summary, the dominant role of RF is identified in the evolution 
of storm surge over all time including before and after the hurricane 
events, while the LF mainly contribute to storm surge when Matthew 
and Dorian are close to targeted area (e.g., Fort Pulaski here). The signs 
of storm surges for LF depend on wind characteristics while the RF 
maintains positive anomalies over time at Fort Pulaski during the two 
hurricanes. The major differences between Matthew and Dorian are 
found in peak level, timing and duration of storm surge induced by LF 
and RF. The LF and RF during Matthew result in higher peak storm surge 
than those of Dorian at Fort Pulaski, showing a difference of 0.46 m in 
LF-induce peak and 0.79 m in RF-induced peak between Matthew and 
Dorian. However, the high storm surge effect for Dorian persists longer 
compared to that of Matthew because Dorian traveled slower than 
Matthew, which allowed more time for water to converge into the coast. 
The arrival times of peak surge for LF and RF also show a noticeable 
difference between Matthew and Dorian as represented with dotted lines 
in Fig. 12. The peak surge associated with the LF and RF almost occur 
simultaneously (e.g., 2-h difference) during Hurricane Matthew 
compared to those of Dorian that show about a 14-h difference in arrival 
time between LF- and RF-induced peak surge (e.g., LF cause 14-h earlier 
peak than RF does). Interestingly, the variability of arrival time of 

locally and remotely induced maximum storm surge can affect the peak 
timing and level of the total storm surge. For instance, If the RF and LF 
cause peak surge simultaneously, the maximum total storm surges for 
Matthew and Dorian increase to about 12.6% and 14.8%, respectively. 

The 2-D maps of the maximum storm surges that are the highest 
surges at each location over the simulation period are presented in 
Fig. 13 to investigate the spatial influence of LF and RF on the storm 
surges during hurricanes Matthew and Dorian. The MT-BS and DR-BS in 
Fig. 13 (a) and (b) represent peak surges including all forcing for 
Matthew and Dorian, respectively. Note that the open boundary con
dition of LF simulations seems to restrict the evolution of water level 
around the lateral boundary as sea-level is imposed to be null on the 
boundary. However, as the total storm surges at the coast are repro
duced well by superposition of LF- and RF-induced storm surge in 
Fig. 12, we argue that the artificial forcing induced by the open 
boundary condition in LF experiments does not reach the coast and the 
inland. We analyze, therefore, the 2-D field of peak surge along the 
coast, waterways and creeks in this figure. Even if the Matthew and 
Dorian have similar intensities with shore-parallel track, we can clearly 
identify some differences in the spatial impacts of LF and RF between the 
two hurricanes. The LF shows a similar cross-shore gradient of peak 
storm surge for both hurricanes with lower peak levels on the coast and 
higher peak levels in the inland where the bathymetry is shallower for 
both hurricanes. The intensity of the LF pattern is overall larger in 
Matthew with high peak surges reaching ~1 m along the Savannah 
River compared to the ~0.5 m during Dorian as presented in Fig. 13 (b) 
and (f). In contrast, the RFs patterns are characterized by alongshore 
gradients that are different between Matthew and Dorian. In the case of 
Matthew, the RF cause higher peak surge in the north region and lower 
peak value in the south region, and vice versa during Dorian as shown in 
Fig. 13 (c) and (g). These spatial patterns and magnitudes suggest that 
the location of peak storm surges along the coast are strongly controlled 
by the RF, while the LF determines the overall maximum amplitude of 
water levels in the wetlands (see Fig. 13 (a) and (e)). The RF high sea 
level was also evident in Figs. 4 and 5 coming from the large scale, global 
ocean model which however does not reproduce the rich and detailed 
spatial coastal structure derived by the high-resolution nested model 
(Fig. 13 versus Figs. 4 and 5). The spatial difference in the peak storm 
surges between Matthew and Dorian are shown in Fig. 13(i–k) according 

Fig. 12. Temporal variation in storm surge obtained from BS (black line), LF (red line) and RF (blue line) experiments at Fort Pulaski during Hurricanes Matthew 
(top) and Dorian (bottom). The residual (magenta line) means the difference between storm surge of BS and summation of LF- and RF-induced storm surge. The red 
and blue dotted lines indicate the arrival timing of peak surge caused by LF and RF, respectively. 
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to BS, LF and RF experiments. Interestingly, the differences in LF be
tween the two hurricanes are limited to the local area while the RF 
shows the broader and higher spatial differences. For example, the LF of 
Matthew causes higher storm surges than those of Dorian mainly along 
the Savannah River, which amounts to a 0.7 m difference as shown in 
Fig. 13 (j). On the other hand, in Fig. 13 (k), the spatial differences of RF- 
induced peak surges between the two hurricanes show evident along
shore gradient that has the small difference of peak level (~0.3 m) in the 
south region and high difference (~0.9 m) in the north region. Conse
quently, the RF plays a key role in the different spatial distribution and 
magnitude of the storm surges in Fig. 13 (i). As the stronger LF and RF of 
Matthew are concentrated to the north region of the domain, especially 
around Savannah, the biggest differences in peak surges between 
Matthew and Dorian occur around Tybee Island and along the Savannah 
River in Fig. 13 (i), which reaches up to a nearly 1.4 m difference. In 
contrast, the range of difference in peak storm surge between Matthew 
and Dorian is from 0.3 m to 0.6 m in the south region of the model 
domain. The change in maximum surge when the peak surge caused by 
LF and RF co-occur are presented in Fig. 13 (d) for Matthew and (h) for 
Dorian. The biggest increase in peak level by the simultaneous peak 
timings mainly occur in the channel and creeks, showing the increases of 

up to 30% for Matthew and up to 50% for Dorian. This implies that the 
variability of peak timing caused by the LF and RF have significant in
fluence on the inland water level compared to those along the coast. 

4.2. Wind stress and atmospheric pressure in LF 

The snapshots of local Wind Stress (WS)- and Atmospheric Pressure 
(AP)-induced storm surges are illustrated in Fig. 14 to show the spatial 
influence of WS and AP in the LF response during Matthew and Dorian. 
The instantaneous fields in Fig. 14 are rendered based on three time slots 
corresponding to two days before the event day, the event day, and two 
days after the event day. The event day indicates the time when 
maximum storm surge occurs at Fort Pulaski during Matthew and 
Dorian. On the event day, the WS results in a dramatic increase in storm 
surge up to ~1 m for Matthew and ~0.5 m for Dorian as shown in Fig. 14 
(b) and (h). In addition to the different magnitudes of peak surges, 
spatial patterns of storm surge caused by WS are generally different 
between Matthew and Dorian. The higher storm surges during Matthew 
are concentrated in the north region of the model domain, especially 
around the city of Savannah, while the high storm surges for Dorian 
occur around both Sapelo Island and Savannah. Although the AP also 

Fig. 13. Maximum storm surge obtained from BS (a and e), LF (b and f) and RF (c and g) experiments for Matthew (first row) and Dorian (second row). The change in 
peak surge by the aligned peak timings of LF and RF are illustrated in (d) and (h) for Matthew and Dorian, respectively. The differences in peak surge between 
Matthew and Dorian are presented with regard to BS (i), LF (j) and RF (k) experiments. 
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causes an increase in storm surge of up to ~0.1 m for Matthew and 
~0.08 m for Dorian, the locations where AP-induced storm surge 
sharply increases on the event day compared to those of two days before 
are different than those of WS-induced storm surge. For instance, the 
increased storm surge by AP during Matthew (MT-AP) is observed to 
spread to the open ocean and south more than those of WS-induced 
storm surges as compared between Fig. 14 (b) and (e). During Dorian 
the increase in storm surge by WS (DR-WS) occur around the Savannah 

and the Sapelo Island as presented in Fig. 14 (h), while the AP of Dorian 
(DR-AP) causes an increase in the surge mainly along the coast in the 
south region, especially around the Sapelo Island as shown in Fig. 14 (k). 
These high-resolution maps show that WS and AP both affect storm 
surge but with different contributions to the pattern of the surge. The 
different spatial impacts of WS and AP are attributed to the different 
mechanisms that lead to the increase in water levels. The low AP around 
the eye of hurricanes locally pulls up the sea surfaces and increases the 

Fig. 14. The instantaneous field of storm surge obtained from WS (first row) and AP (second row) experiments for Hurricanes Matthew (a–f) and Dorian (g–l). 
Columns correspond to: two days before the storm surge event (first and fourth columns); the storm surge event (second and fifth columns); and two days after the 
storm surge event (third and sixth columns). The storm surge event here is defined as the time when the peak surge occurs at Fort Pulaski. Note the different color 
scale for Matthew and Dorian. 

Fig. 15. Temporal variation in storm surge obtained from LF (black circle), WS (red) and AP (blue) experiments at Fort Pulaski during Hurricanes Matthew (top) and 
Dorian (bottom). 
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water level. On the other hand, the strength and direction of WS strongly 
interact with geographical features such as bathymetry and topography 
to elevate the sea surface. For example, Kennedy et al. (2012) compared 
the storm surges between steeply-sloping and gently-sloping topogra
phies based on Hurricane Iniki (1992) event and showed the significant 
increase in surges for the mild-slope topography, which can reach up to 
3.5 m higher surge than deeper and steep-sloped bathymetry. The 
magnitude of AP-induced storm surge is much smaller than that of 
WS-induced surge, indicating that the storm surge due to AP on the 
event day accounts for less than 12% of those induced by WS during 
both Matthew and Dorian. Consequently, it is clear that WS play a 
dominant role in LF-induced storm surge. 

The time histories of the storm surges caused by WS and AP are 
compared with LF-induced storm surge at Fort Pulaski during Matthew 
and Dorian in Fig. 15. The profiles of the storm surges caused by WS and 
LF are almost the same for both Matthew and Dorian, whereas AP- 
induced storm surge shows only a very minor contribution to the LF- 
induced storm surge, which again implies the dominant role of WS in 
LF. Consequently, we attribute the different LF-induced storm surge 
between Matthew and Dorian to stronger WS of Matthew although both 
WS and AP of Matthew result in a higher storm surge than those of 
Dorian. 

5. Summary and conclusions 

This study reveals the roles of LF (e.g., localized wind and atmo
spheric pressure over the small subregional areas) and RF (e.g., coastally 
trapped signals and Gulf Stream) in generating the regional spatial ex
pressions of storm surges and the factors that result in different storm 
surge responses between two hurricanes that have similar intensities 
with shore-parallel tracks. A numerical unstructured grid model, SHY
FEM, with high-resolution (~10 m horizontal resolution) is utilized to 
reproduce the storm surges and to investigate their sensitivity in relation 
to the main drivers that are known to be correlated to the dynamics of 
coastal sea level. The accuracy and reliability of the model is assessed by 
the comparison with observation from NOAA, USGS and SSLS – a high- 
density network of water level sensors for the North Georgia. Through 
the comparisons and error statistics, it is verified that the model can 
reproduce well water level changes along the coast, waterways and 
creeks during Hurricanes Matthew and Dorian. 

The high-resolution spatial maps from the SHYFEM model show that 
the peak storm surges during Matthew and Dorian highly vary with lo
cations along the North Georgia coast, showing the range of peak storm 
surges from 1 m to 2.2 m during Matthew and from 0.6 m to 1.2 m 
during Dorian. The details of these regional footprints of peak surge are 
not captured in the large-scale model and indicate that high-resolution 
models are needed to properly simulate the spatial variations in 
extreme water levels. In addition, even if Hurricanes Matthew and 
Dorian have similar intensities with shore-parallel tracks, the locations 
in both space and time where peak storm surge occurs are different 
between the two hurricanes. The LF and RF contributions for Matthew 
mainly generate high peak surge on the northern region of the model 
domain whereas the southern region has relatively high level of LF- and 
RF-induced storm surges during Dorian. The temporal evolution of 
storm surges caused by the LF and RF indicate the dominant role of RF in 
generating the high sea levels compared to LF during both hurricane 
events. In particular, after hurricanes pass the targeted area, the water 
levels rebound up to 0.75 m for Matthew and 0.3 m for Dorian due to the 
persistent effect of RF. These simulation results clearly show the 
importance of properly capturing the basin-scale coastal signals in the 
downscaling model through the open boundaries of the nested domain. 
This study also reveals that a key factor to produce the correct storm 
surge elevation is connected to the arrival times of peak surge induced 
by LF and RF. For example, if locally and remotely driven peak storm 
surge were simultaneous, the maximum level in the inland would in
crease by up to 30% for Matthew and up to 50% for Dorian. We attribute 

the different role of local and remote forcing between Matthew and 
Dorian to different distance from the hurricane eye to the targeted area, 
different ocean adjustments (e.g., coastally trapped signals and large- 
scale ocean circulation) to the hurricanes and different hurricane size 
and forward speeds. Note that Hurricanes Matthew and Dorian have 
shore-parallel tracks passing the U.S. southeast coast so that the two 
hurricanes can have a persistent influence on the Gulf Stream and 
coastally trapped signals. Therefore, the relative contributions and roles 
of LF and RF to the surges can differ if the hurricanes do not have parallel 
tracks (e.g., landfalling hurricanes). The local forcing that shows the 
uniform contribution to peak surges (see Fig. 13) along the coast would 
be also affected by the hurricane tracks. In this first paper we have not 
fully studied the nature of the remotely forced coastally trapped signals 
that occur at time frequencies lower than about 11 days from the large- 
scale atmospheric forcing of the hurricanes. This should be thoroughly 
investigated in the next paper where experiments could be carried out 
with larger scale models using different kinds of ocean circulation, at
mospheric pressure and wind conditions and analyzing the coastally 
trapped response. 

In addition, we confirm the dominant role of wind stress forcing in 
LF-induced storm surge through a comparison between storm surges 
induced by wind and barometric pressure. Specifically, both wind stress 
and atmospheric pressure generate storm surge during the hurricane, 
although they drive different patterns and magnitudes of storm surge. 
However, as the magnitude of the AP-induced storm surge is an order of 
magnitude smaller than that of the WS-induced surge, the WS alone can 
represent most of the impact of LF. 

Based on these analyses, we attribute the difference in the storm 
surge effect between Matthew and Dorian on the Georgia coast to not 
only the stronger LF and RF but also relative timing of the two forcings 
during Hurricane Matthew. In other words, during Matthew, the similar 
peak surge timings (e.g., 2-h difference) of LF and RF contribute to a 
higher peak surge compared to Dorian, which has a 14-h difference 
between LF- and RF-induced peak storm surges. These finding have 
important implications for improved and optimized storm surge pre
diction models which require high-quality, large-scale nesting models 
and limited area downscaling models, capturing the details of the 
coastlines and the river estuaries. The knowledge garnered from this 
study will be able to help evacuation and protection plans based on the 
characterization of sea level worst-case scenarios. 

Finally, while this study explored predominantly the role of LF and 
RF on sea level change during Hurricanes Mathew and Dorian, we 
recognize that the compounded effect associated with additional drivers 
such as extreme precipitation and river discharge become important in 
the inland areas that are surrounded by marshes and wetlands. Future 
investigation with the SHYFEM modeling platform that focus on the 
inland areas, where there is increasing observational data from the 
hyper-local sensing network provided by SSLS, will include the effects of 
land-hydrology and precipitation forcing. 
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Appendix. Evaluation of input forcing and boundary conditions 

The global-scale models (e.g., CMEMS and ECMWF) are compared with observations to show the uncertainties of input forcing and boundary 
conditions. In Fig. A.1, the time histories of wind speed and atmospheric pressure from ECMWF analyses are compared with observation at the NOAA 
station on the Georgia coast (see Fig. 7 for the location). The ECMWF underestimates the peak wind speed (e.g., about 2 m/s difference) and minimum 
pressure (e.g., about 8 mb difference) during Hurricane Matthew. During Dorian that has a relatively mild hurricane impact, the ECMWF shows better 
reproduction of atmospheric pressure and wind speed than Matthew although there is still about 2 m/s difference in peak wind speed between ECMWF 
and observations. The differences are partly due to the spatial and temporal resolution of ECMWF, which cannot capture the dynamic and rapid 
change in atmospheric fields caused by the hurricanes. Nevertheless, the overall accuracies of ECMWF products are good enough to provide atmo
spheric forcing input for the SHYFEM model.

Fig. A.1. The comparison of atmospheric pressure and wind speed between ECMWF and observations for Matthew (left column) and Dorian (right column).  

CMEMS products such as 3-D fields of temperature and salinity and SSH also show good agreement with observations (e.g., satellites, tide gauges 
and Argo). Lellouche et al. (2018) compared the CMEMS’s SSH with tide gauges along the U.S. east coast and showed the RMSE of 0.03–0.1 m. For the 
vertical profile (depth of 0–5000 m) of temperature and salinity, they reported that CMEMS had a global averaged RMSE of about 0.15Co for tem
perature and about 0.17 psμ for salinity. Because the RMSEs is based on a global scale, we additionally compared the temperature and salinity 
structure inside the ocean with Argo on the U.S. southeast coast during hurricanes Matthew and Dorian. The locations and identifiers of Argo used in 
this study are presented in Fig. A.2. Overall comparison results between CMEMS and the observations in Fig. A.3 to A.6 show that the CMEMS captures 
well the thermohaline structures during the two hurricane events in the U.S. southeast coast. As a result, we utilized the CMEMS product to consider 3- 
D oceanic forcing (e.g., baroclinic effect) and sea level anomalies coming through the open ocean boundary of the SHYFEM model.” 
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Fig. A.2. The locations and identifiers of Argo profiles for Matthew (green circle) and Dorian (red circle).  

Fig. A.3. Comparison of the CMEMS’s temperature with Argo profiles during Hurricane Matthew.   
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Fig. A.4. Comparison of the CMEMS’s salinity with Argo profiles during Hurricane Matthew.  

Fig. A.5. Comparison of t the CMEMS’s temperature with Argo profiles during Hurricane Dorian.   
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Fig. A.6. Comparison of the CMEMS’s salinity with Argo profiles during Hurricane Matthew.  
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