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ABSTRACT 

Pinardi, N. and Milliff, R.F., 1989. A note on consistent quasi-geostrophic boundary 
conditions in partially open, simply and multiply connected domains. Dyn. Atmos. 
Oceans, 14: 65-76. 

Mass conservation is used to elucidate differences between initial boundary value prob- 
lems for the quasi-geostrophic vorticity equation in regions that are fully enclosed versus 
regions that are partially open. In fully closed domains, mass conservation is explicitly 
imposed as a consistency constraint on the dynamical evolution of the flow. Partially or fully 
open domains do not require an explicit mass conservation constraint. In these cases, the 
mass conservation balance is used as a diagnostic to describe the interaction between open 
boundary conditions and the inflow/outflow vorticity implied by the quasi-geostrophic 
equation. The new formalism is carried over to multiply connected, partially open domains, 
where explicit circulation integral constraints are required around island boundaries. Implica- 
tions concerning coastal applications of quasi-geostrophic numerical models are outlined. 

1. INTRODUCTION 

The relevance of the quasi-geostrophic (QG) approximation to the study 
of open ocean, non-linear, mesoscale flows has been thoroughly documented 
(e.g. Bretherton and Karweit, 1975; McWilliams and Flied, 1976; Robinson 
et al., 1986; Pinardi and Robinson, 1987). Current efforts are directed 
toward extending QG applications into regions influenced by the presence 
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of coasts and islands. McWilliams (1977) has derived consistent quasi-geo- 
strophic boundary conditions for simply connected and multiply connected, 
closed domains. In this note, we extend the work of McWilliams (1977) to 
derive consistent QG boundary conditions for simply and multiply con- 
nected domains that are partially open at the external boundaries. The fully 
open simply connected domain case has been dealt with by Haidvogel et al. 
(1980) and Miller et al. (1983). 

The point of this note hinges on the implications of a mass conservation 
statement for the familiar QG equations. These equations can be derived by 
a Rossby number  expansion of the scaled primitive equations. For example, 
we formally expand the velocity field v = ( u ,  o) in the Rossby number 
parameter ~ as 

V=Vo+CV 1+c2v2 + . . .  

The remaining primitive equation field variables are treated in kind. Recall 
that the O(c °) geostrophic equations are degenerate and that the prognostic 
QG equations for the O(¢ °) quantities are taken from the O(c 1) balance in 
the expansion. We impose an impermeable wall boundary condition for the 
primitive equations as v.  n = 0. The Rossby number expansion then yields 
¥0"  n ~--- 0 ,  c ¥  1 • n = 0 ,  c 2 v 2  • n = 0 ,  etc; the normal velocity component  must 
vanish to all orders in c. However, the consistent wall boundary condition 
specification for the dynamical balance at a specific order in the Rossby 
number  expansion, say O(ci), does not correspond to v i • n = 0. Instead, 
mass conservation to O(d)  in a closed domain only requires pointwise 
impermeability at the wall to O ( d - l ) ,  that is, vi_ 1 • n = 0. A weaker integral 
constraint is imposed on v~. n over the wall. 

In the case of the QG equations, we will review a result from McWilliams 
(1977) that states that the weaker condition on the first-order velocity field 
along the wall is fv  I • n ds = 0, which in addition to v 0 • n = 0 properly poses 
the QG boundary value problem in a fully closed domain. The stronger 
pointwise constraint on v I • n is imposed in the closure of the next higher 
order dynamical balance at O(c2). The demonstration here will be based on 
the implications of a mass conservation statement in quasi-geostrophy. This 
approach will be extended to show that in the case of a partially enclosed 
domain in QG, no constraint on v 1 - n is required. Miller et al. (1983) have 
already shown for the fully open boundary case that no explicit constraint is 
involved. 

We begin now with a brief description of the QG formalism used 
throughout this note. It is well known that the Rossby number expansion 
yields a horizontally non-divergent relation for mass conservation at O(c°). 
Mass conservation to O(c 1) is given by 

- - V  " V 1 ~-- Wlz ( 1 )  
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We can expand the left-hand side of eqn. (1) using the momentum equations 
on a fl plane as 

- V  "vl = ( V 2 p o ) , +  Vo" V(X72po)+ f lPox -  Fh(V2Po) (2) 

where integer subscripts indicate the order in c of a given variable; letter 
subscripts indicate differentiation; v 0 = ( - P o y ,  Pox) and P0 is the stream- 
function or geostrophic pressure field; fl is the variation of the Coriolis 
parameter expanded about the central latitude of the domain; and F h is the 
horizontal part of a scale-selective eddy diffusion operator acting on the 
relative vorticity, R 0 = x7 2p0. For now, we can assume that F h is a linear 
differential operator of unspecified order and parametric range. For exam- 
ple, McWilliams (1977) uses F h = A h x7 2 and Robinson and Walstad (1987) 
use a Shapiro filter of arbitrary order in the QG numerical model. 

The right-hand side of eqn. (1) can be written 

wl~ = - ( O p o ~ ) ~ t -  Vo" V(Opo~)~ + Fo[(Opoz) ] (3) 

from the O(c 1) terms in the z derivative of the thermodynamic equation. 
Here we use o = f 2 / N 2 ( z ) ,  a measure of the local stratification where: 
N2(z) is a profile of the square of the Brunt-Vaisala frequency; and f0 is 
the constant part of the Coriolis parameter. Note that the vertical part of the 
diffusion operator Fo acts on thermal vorticity, T O = (Opoz) z. 

Naturally, combining eqns. (1) and (2), and using eqn. (3), we recover the 
familiar QG equation 

(v :po), +  o-v(v :po) + 13.o 

= , , o "  e (v :po) + Z,[(Opoz) ] (4) 

We will use eqns. (1-3) in section 2 to derive consistent QG boundary 
conditions for simply connected, fully enclosed and partially or fully open 
domains. A diagnostic relation that monitors the effects of different forms 
of the QG boundary conditions will be described in detail. In section 3, we 
extend the analysis to multiply connected, partially open domains. 

2. THE SIMPLY CONNECTED CASE 

In this section we start with a reproduction of the results of McWilliams 
(1977) for closed, simply connected domains (Fig. la), so that we can 
compare them with the partially open domain case to be developed. A 
standard definition of a simply connected region fl requires that any closed 
curve lying in fl can be shrunk continuously to a point without leaving ~2. 
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Fig. 1. Schematic boundary configurations for simply connected domains: (a) fully closed; (b) 
fully open; (c) partially open, a f  = aC + 00. Unit tangent (s) and normal (n) vectors are 
indicated; and the direction of integration along the boundary ~ff, is also shown. 

2.1. Closed domains 

The kinematic QG boundary condition on horizontal walls of f~ is 
v 0 • n = 0, which implies. 

~7Po 'S=O o n O ~  (5a) 

where (s, n) are the unit tangent and normal vectors at the wall, 0f~, 
bounding fl (Fig. la). The dynamical QG boundary  conditions, which 
involve the tangential velocity component  xTp0 • n, depend upon the physical 
situation of interest and the mathematical  considerations appropriate to the 
form of the operator F h. Here we avoid this interesting but complex problem 
and concentrate on the implications of kinematics. 

The boundary  conditions in the vertical assume a rigid lid at z = 0, and 
restricted bot tom topographic variations v h  = O(c) about a mean depth 
z = - H .  The vertical boundary  conditions are 

w l = K . x 7  ×,r  a t z = 0  (5b) 

w t = v  0 -Vh  at z = - H  (5c) 

where: ~ is the unit vector perpendicular to the x, y plane; and 'r = ('r x, "re) 
is a surface shear stress that is generally a function of the atmospheric wind 
velocity Yair and the ocean surface velocity Vo~ea .. Formally, we write "r = 

f(Vair, Vocean ). 
The boundary  conditions (eqn. (5a)) specify that, for a baroclinic fluid, P0 

along the wall is a function of the vertical coordinates and the time only, say 
g(z, t), and we require an explicit consistency condition to determine g(z, t). 
The consistency condition derives from a volume integral of eqn. (1) over 
the entire domain, e.g. 

Z Z 

/_ d:ffw   da = -f) d:ffv .¥, da 
H H 
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where df~ = dx  d y  is an infinitesimal surface area element. For  a closed 
domain,  the consistency condi t ion allows mass redistr ibution within the 
domain,  bu t  must  not  permit  net mass flow through the boundaries.  Thus,  
using the divergence theorem, mass conservat ion is enforced by 

~ v 1 - n d s = 0  (6) 

which only constrains the integral of the O(c) normal  velocity component .  
That  is, eqn. (6) does not  require v 1 • n to vanish point  by point  along 0f~; 
only the net flux must  be zero, as we described in the introduction.  

F r o m  eqn. (6), the consistency condi t ion is then 

 dzffw,  dR = 0  (7) 

Integrat ing vertically and using eqn. (5c), eqn. (7) is identically zero at 
z = - H (by eqn. (5a and c)). At z = 0, we must  also require that  

ffK.v × ~ d u : f f ~ - v  )< [f(¥air, Vocean)] d~'~ ~0  (8) 
Then,  using eqn. (3) we can rewrite eqn. (7) as 

ffw,(z) d~2= ff[-opoz, + Fo(opo )] d a = 0  <9) 

for every z in the interior of the fluid. We use eqns. (8) and (9) to determine 
g(z, t) along the walls. Hol land (1978) and McWilliams et al. (1978) find 
g(z, t) in a numerical  model  using eqn. (9). 

The  surface boundary  condi t ion approach that  we have in t roduced here 
requires the domain  average curl of the total surface stress "r to vanish (eqn. 
(8)). The contr ibut ion from Vo~ . in 'r (i.e. the stress exerted on the 
a tmosphere  by the mot ion  of the sea surface) imposes a constraint  on the 
circulation. One effect of a western boundary  current  in our formulat ion 
would be to make  up the balance of the net surface stress over a closed 
ocean basin such that  eqn. (8) is preserved. 

2.2. Fully open domains 

The QG boundary  condi t ions at open boundaries,  of simply connected 
domains  (Fig. lb),  were given by Charney,  Fjortof t  and von N e u m a n n  
(CFvN) (1950). The  CFvN condit ions require specifications of P0 at all open  
boundary  points,  and vorticity, q0 = R0 + To, at inflow points  on the open  
boundary.  We write 

Po = P0spec on O0 (10) 

qo = qospec on 0 0  at inflow (11) 

where the boundary  has been renamed OO to indicate that  it is open. 
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Now the mass can increase (decrease) in a domain average sense, over 
time, according to the inflow and outflow prescribed by eqn. (10), and 
according to the vorticity at inflow prescribed by eqn. (11). In addition, the 
solution of the interior QG equation (eqn. (4)) modulates the effect of 
vorticity at inflow, and predicts vorticity at outflow. We have already shown 
that the statement of QG mass balance (eqn. (1)) is contained in the QG 
equation (eqn. (4)) in a pointwise sense. In an open domain, the average 
mass balance is implicitly maintained by satisfying the QG vorticity equa- 
tion in the interior and predicting vorticity at outflow boundaries of the 
domain. Integrating the QG equation (eqn. (4)) over the area of the open 
domain, we obtain the average mass balance relation for all z 

ffw, da=-fooVl . n d s  (12) 

We will expand the terms in eqn. (12) when we consider partially open 
domains in the next section. In terms of a numerical model, one provides the 
CFvN conditions of eqns. (10) and (11) to start a given timestep. The QG 
model calculates new distributions of vorticity and streamfunction such that 
eqn. (12) is valid at each level. A new, mass-balance preserving vorticity is 
produced at outflow boundary grid points (Miller et al., 1983). 

In contrast to the closed domain case of section 2.1, a consistency 
condition will over determine the open domain problem. In the closed 
domain case, the boundaries are impermeable to P0, and the QG equations 
cannot modulate inflow vorticity or predict vorticity at outflow to conserve 
mass, so a constraint (eqn. (9)) must be imposed. 

2. 3. Partially open domains 

We now consider a domain boundary that is partly wall, and partly open, 
denoted by a~ = a o  + a c  (see Fig. lc). As in the fully open case (section 
2.2) the QG equations can adjust vorticity at outlow such that eqn. (12) is 
satisfied along ao ,  and we do not require an explicit consistency constraint. 
But, as in the dosed domain case (section 2.1), the kinematic side boundary 
condition (eqn. (5a)) applies at aC. The g(z,  t) variation in P0 along aC can 
be determined by connecting the specification (eqn. (10)) smoothly from an 
adjacent point on aO to the end-point of a c  and imposing eqn. (5a). 

The mass balance relation now takes the form 

ffwl da=-f o+ocV,..ds (13) 

for every z. Again, eqn. (13) is not an explicit constraint that we impose in a 
partially open domain. It is implicitly satisfied by the QG equations in 
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determining the vorticity at outf low along dO, as in the fully open domain  
c a s e .  

We can use eqn. (13) in a diagnostic way to examine the effects of a 
particular choice of g(z, t). Expanding  v 1 we write 

v 1 = K × VPl - (fly)K × V P o -  ( V P o ) , -  Vo" V ( V P 0 )  + Fh(VPo) 

where v 0 = ~ × VPo has been used. Considering only the flow normal  to the 
boundary  we have 

v l . n  = - V p , - s  + Vpo'S( f lY)  - (VPo" n)t + VPo" S(po . . )  - (½(VPo'n)Z)s 

+ Fh(Vpo .  n) 

so eqn. (13) can be rewritten using eqn. (3) as 

- f f (opoz) ,  an - f~o.O..(oeo.), as + ffFo[(Opoz).] de 

= f~ • c+~o{Vpl " s -  XTPo'S( f ly) -  VPo S(po , , )  

+ (X7Po" n)t + (½(X7Po.n)Z)s} d s -  ffFh(V2Po) an 

Since Pl must  be single valued on ~e,  the first term on the r ight-hand side 
vanishes. Similarly, the last term of the line integral vanishes because 
3 0  + 3C is a closed circuit. We can finally write 

f f (opoz). dU- f f Fh(V2po) dn- f f Fo[(oPoz)z] da 

= f~o[X7p°'s(f lY) + VP° " s(P°"")  - (~TPo • n),] d s -  f0o% • n(opoz) ~ ds  

- f0c (X7Po-n) t  ds  (14) 

We separate the contr ibut ions to the balance in eqn. (14) into three parts 
as follows 

(a) f f (opoz). dU- f f Fh(V2po) dU- f f Fv[(,,pO~)z] de 
Part (a) is the combined effects of dissipation (second and third terms) with 
thermal vorticity time rate of change, over the whole domain 

(b) - f0oVO • n(opo~)z as  

+ f {VPo. S( f ly )+ VPo. S ( P o , , ) - ( V p o . n ) , }  ds 
"2 0 
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Part (b) represents the inflow(outflow) of thermal, planetary, and relative 
vorticity at the open boundary  ao ,  as well as the time variation of the 
tangential flow along a o ,  which can modulate prescribed vorticity at inflow 
and affect the prediction of vorticity at outflow 

(c) - f 0 c ( V P o . , ) ,  a s  

Part (c) is the time variation in the tangential velocity along aC. Notice that 
we control the contribution of part  (c) through the specification of the 
dynamic boundary  condition. 

In the free-slip case, the along the wall component  of relative vorticity 
R0 = P0ss + P0n, is identically zero. However, the specification of g(z, t) at 
~C, can induce changes in thermal vorticity, T 0, which changes the strength 
of the flow parallel to OC (part (c)). In the no slip case the (c) part of eqn. 
(14) vanishes. This time, the density surface variations on aC are only 
balanced by the dissipation terms in part  (a), and the inflow(outflow) terms 
in part  (b). In general, we can expect a non-zero value of pn~ at the wall, 
which will parameterize the effects of an unresolved boundary  layer. For  
example, in the classical case of Rossby wave reflection from a western 
boundary,  the value of the vorticity at the wall is not  zero (see Pedlosky, 
1987). 

3. THE MULTIPLY CONNECTED CASE 

In this section we introduce the presence of islands to the fully closed and 
partially open domains of interest (Fig. 2). We will see that in the multiply 

Fig. 2. A multiply connected domain with islands. The fully closed case is depicted here, 
where 0~1 is a solid wall. In the partially open case, aft 1= ac + ao, as in Fig. lc. Unit 
tangent and normal vectors (s, n)are indicated along island and domain boundaries, a~ i, 
i = 1 ..... n. The directions of integration are shown for these boundaries, as well as for the 
island circuits, td, i = 2 ..... n. 
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connected case, a circulation integral is required to fix the transport between 
solid boundaries within the region. We define an n-multiply connected 
region ~21, with boundary Of~l, such that it is possible to draw n - 1 island 
boundaries; 0f~ 2 . . . . .  0f~ ~, completely within 0~21. 

3.1. Closed domain containing islands 

We begin with a digression to simple connectivity to illuminate the effect 
of a circulation integral constraint. In the simply connected closed boundary 
case already discussed (section 2.1), the mass conservation integral (eqn. (6)) 
trivially implies a conservation equation for the circulation as well (Pedlo- 
sky, 1987). Let the velocity circulation F be written as 

r=ffx72podf =f  ~ (vP0" n) ds 

then if we impose eqn. (6), at every z, we obtain 

 Vpo. nt, ds = ffF (v ;,o)dU 05t 

So mass conservation (eqn. (6)) implies that the time rate of change of the 
velocity circulation F t is balanced by the average dissipation in the basin. 
Furthermore, since eqns. (6) and (9) are equivalent, we know that the 
conditions (15) and (9) are also equivalent in the simply connected case. 
However, in the multiply connected closed domain case to be discussed in 
this section, condition (15) must be imposed explicitly on the island circuits; 
and condition (9) is imposed separately and explicitly as well. We will 
restate eqn. (15) as condition (17) for the multiply connected case presented 
in the following. 

Here again, we review the results of McWilliams (1977) for comparison 
with the results of the next section. The kinematic condition (eqn. (5a)) is 
always required. This specifies that the streamfunction along each of the 
solid boundaries, ~ ,  i = 1 , . . . ,  n, is written as g;(z, t). To determine this 
variation we again enforce the mass conservation relation 

f f w l  d~2 = 0 (9) 

at every interior z in the fluid. Furthermore, we impose a transport circula- 
tion integral, which can be defined for the volume (Fig. 2) from the island 
circuits, 0~ i, to the island boundaries, 3f~i; i = 2 . . . . .  n, and over the entire 
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depth 

f° dzf f[(v po), +*o v(V po) + Bpox- F (v  po)] dA' 

= f fw, IO) dA'- f fwlI-tt)dA' 
where dW is an infinitesimal horizontal area element between w ~ and ~ ; .  
Evaluating the right-hand side by using eqn. (5b and c) 

0 =  - f°d ffF (v%)d,4' 

+ "- ~[°dzf'((VP°'n)' + VPo'S(Po, , )+ Vp0 • s(fly)} ds 

+ f,~,(vo.n[h(x, y)] - ' r . s }  ds (16) 

Finally, we modify condition (15) to specify the circulation of the relative 
velocity at all z in the fluid interior, about each island boundary, b~i, as 

0 =  f0~,[(Vpo, n ) t -  Fh(vp0- n)] ds (17) 

Using the combination of eqns. (9), (16) and (17), we can determine the 
unknown functions g;(z, t) along the rigid walls of the domain. 

3. 2. Fully or partially open domain with islands 

Finally, we consider the analogues to an island archipelago, or an island 
in the vicinity of a mainland coast. This geometry corresponds to changing 
Fig. 2 such that Of~l = ~O + OC, as shown in Fig. lc. As always, condition 
(5a) is imposed at solid walls (OC and Of~;, i =  2 . . . .  , n). The transport 
circulation (eqn. (16)) around the islands, and the circulation of the relative 
velocity in each interior level (eqn. (17)) about an island must be specified as 
well to determine the functions of g;(z, t) at the island walls. However, as 
seen before in the simply connected domain case (section 2.3), we are not 
required to enforce a global mass balance explicitly, since Off1 is open. For 
example, if a domain contains two islands, and we model the stratification 
by two levels in the fluid, then four unknown functions of time remain to be 
specified; one for each island at each level. We apply eqn. (16) around each 
of the islands (two conditions), and eqn. (17) at one of the interior levels for 
each island (two more conditions) to close the problem. 
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4. SUMMARY AND DISCUSSION 

We have presented consistent quasi-geostrophic boundary conditions for 
partially open, simply and multiply connected, regions of the ocean. We 
pose the problem of reflecting Rossby waves as a motivation for the study of 
quasi-geostrophic dynamics in the vicinity of rigid boundaries, such as 
islands and coastlines (see LeBlond and Mysak, 1978; Pedlosky, 1987). The 
wavenumber dependence of the Rossby wave reflection process controls the 
transmission of energy back into the ocean interior, or the trapping of this 
energy near the boundary (e.g. Pedlosky, 1965; Rhines, 1969; Flierl, 1977). 
Our work establishes a means for determining the necessary boundary 
conditions for a numerical study of this process. 

We have reviewed the consistent quasi-geostrophic boundary conditions 
of McWilliams (1977) for fully closed domains. These conditions have been 
compared with the partially open domain conditions developed here. The 
requirement for no geostrophic flow through solid boundaries (condition 
(5a)) is common to both open and closed geometries. In a baroclinic ocean, 
the streamfunction is then determined up to a function g(z, t) along the 
walls. In the case of a fully closed domain, a mass conservation integral 
constraint (eqn. (9)) must be explicitly imposed along the boundary circuit 
to fix g(z, t). In the partially open domain, g(z, t) can be imposed instead 
by the smooth connection from the interior solution at the open boundary 
and next to the wall, to condition (5a) along the wall. The QG equation 
controls the evolution of the flow field, modulates prescribed vorticity at 
inflow, and predicts vorticity at outflow, such that mass balance is implicitly 
maintained. When the domain of interest is multiply connected, explicit 
circulation integral constraints must be imposed to ensure that there is no 
net mass flux across island boundaries. 

In partially open domains, the g(z, t) variation along the wall can be 
determined by an extrapolation or matching condition from adjacent open 
boundary points. We note that some control over the quasi-geostrophic 
phenomena admitted to a particular numerical study is possible through 
consistent manipulation of the matching condition between 30 and ~C. 
Clearly, the form of the dynamic boundary condition, and the dissipation 
parameterization, will also affect the QG flow near the solid boundary 
portion of a partially open domain. These effects can be quantified by 
evaluating the terms in eqn. (14). 
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