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ABSTRACT 

Pinardi, N. and Robinson, A.R., 1986. Quasigeostrophic energetics of open ocean regions. 
Dyn. Atmos. Oceans, 10: 185-219. 

We present a method for local energy and vorticity analysis (EVA) of open regions of 
oceanic flow govemed by quasigeostrophic dynamics. The purpose is to infer from real and 
simulated data sets the physics of synoptic/mesoscale processes, and to identify general 
signatures of such processes. We first derive, via a Rossby number expansion, the form of the 
local conservation law for quasigeostrophic energy density in terms of the geostrophic 
pressure field. We relate the quasigeostrophic terms to their more general form and also 
identify the different local ageostrophic contributions to the pressure work flux divergences. 
Analysis methods include time series of maps of terms, space-time integral time series, and 
schematic open region diagrams. Rossby wave and normal mode barotropic and baroclinic 
instability processes are studied in open regions, and local conversion/transport properties 
are defined. It is found that the instability process is indicated by both Reynolds-stress-like 
terms (AFt, A F4 ) and ageostrophic pressure work divergence (AF" 8f;'). The process of 
local growth of energy is indicated by the local growth of asymmetries in the divergence 
terms. The application of EVA to real data situations which are made self-consistent by 
quasigeostrophic filtering is introduced. Real data initialization of a quasigeostrophic dy- 
namical model provides the required dynamical interpolation procedure. Finally an eddy 
merger event captured during a successful dynamical forecast in the California Current region 
(Robinson et al.) is described and interpreted via EVA. 

1. INTRODUCTION 

T h e  energet ic  ba lances  of  the oceans  have  been  s tudied extensively  in 
recent  years.  The  studies have  been  p r e d o m i n a n t l y  wi th  p r imi t ive  equa t ion  
d y n a m i c s  and  in c losed basins .  S o m e  research  has  been  ini t ia ted for  open  
subreg ions  and  also for  quas igeos t roph ic  d y n a m i c s  bu t  wi th  bas in  in tegra ted  
energet ics  (e.g., H a i d v o g e l  and  Ho l l and ,  1978; H a r r i s o n  and  Rob inson ,  
1978; Har r i son ,  1979). O c e a n o g r a p h e r s  are of  course  bu i ld ing  on  the exper i -  
ence of f u n d a m e n t a l  a t m o s p h e r i c  concep t s  and  s tudies  (Lorenz ,  1967: Van  
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Mieghem, 1973) and recent studies share some common concerns (Plumb, 
1983). Here we treat formally the local, nonintegrated energetics of arbitrary 
open regional quasigeostrophic systems. The ocean is of course spatially 
inhomogeneous in its dynamics. Also, interesting intensive data sets exist 
only for limited areas. Our motivation is to be able to deduce local 
dynamical processes from regional data sets, both real oceanic and numeri- 
cally simulated. Many processes are now known to be quasigeostrophic, and 
quasigeostrophic modeling is prevalent. As developed below, we will subject 
real data sets to a quasigeostrophic dynamical filter, before taking the higher 
derivatives required for energy balance estimates. 

We first derive quasigeostrophic local energy equations for open boundary 
systems in a self-consistent way, i.e., expressing all the energy fluxes and 
their divergences in terms of the quasigeostrophic streamfunction field. The 
approach simply parallels the familiar vorticity equation derivation; we 
work through first order equations but eliminate first order fields. 

An important aim is to interpret the energy dynamics of quasigeostrophic 
open ocean systems and to relate the somewhat unfamiliar expressions 
which arise to more familiar forms, e.g., those of the primitive equations. 
Furthermore, since geostrophic flows have a divergenceless energy flux, it is 
of interest to identify the ageostrophic effect which gives rise to a local 
energy source. 

We next study the signatures of basic baroclinic and barotropic instabili- 
ties, processes that occur in quasigeostrophic systems as an aid to the 
understanding of the finite amplitude processes using the local energy 
equations. Finally we illustrate the application of this approach to a real 
ocean data study. The horizontal and vertical resolution of measurements is 
usually poor even in regions with relatively more accurate and intensive data 
sets (MODE, POLYMODE); direct evaluation of high order derivatives as 
they appear in the energy equations is usually precluded except for a very 
few 'point' experiments (Bryden, 1982; McWilliams et al., 1983). We show 
that the use of a dynamical interpolation scheme as provided by a numerical 
model which assimilates the data, adjusts the fields in such a way that a 
consistent diagnostic study of the energy and vorticity dynamics can be 
achieved. Thus definite and unambiguous dynamical processes can be 
elucidated for fields with the general features of the observed fields. To the 
extent that quasigeostrophic dynamics is an accurate physical model, these 
processes will be relevant to real ocean dynamics. 

In section 2 we introduce the energy equations for a Boussinesq incom- 
pressible flow, and in section 3 we derive the self-consistent energy equa- 
tions in the quasigeostrophic approximation which are summarized in sec- 
tion 4. Section 5 analyzes Rossby-wave propagation, section 6 the local 
energetics of baroclinically unstable Eady waves, and section 7 the baro- 
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tropic instability of a linear zonal shear flow between two regions of uniform 
flow. In section 8 an example of dynamically interpolated field of eddies and 
jets in the California Current system (Robinson et al., 1985a, b) is analyzed 
and local conversions of energy are interpreted during a process of baro- 
tropic finite amplitude instability. 

2. THE ENERGY EQUATIONS 

Consider the three-dimensional momentum and thermodynamical equa- 
tions for an ideal hydrostatic, Boussinesq incompressible fluid in a rectangu- 
lar B-plane system of coordinates (x, y, z) with u, v, w the eastward, 
northward and vertical velocity components, f = Ji~ + Bo(Y - Y0), and Y0 the 
central latitude. Let P be the total density, Po its volume and time average, g 
the gravitational acceleration, and P the pressure. 

Let the density and pressure fields be divided into a basic motionless state 
t~(z) and /5(z) independent of x, y, t, and dynamical perturbation fields 
A(x, y, z, t) and p(x ,  y, z, t), i.e. 

P ( x ,  y, z, t) =/3(z)  + p ( x ,  y, z, t) = -Oofg (z') dz'  + p ( x ,  y, z, t) 

(la) 

o(x, y, z, t ) =  ~ ( z ) 0 0 -  p0 a ( x ,  y ,  z, t )  ( l b )  

This basic state is defined to be the long time horizontal space average for 
the open domain subregion of the ocean which we are interested in studying. 
In many open ocean regions of interest, the decomposition of the field 
variables in (1) is consistent with data o v e r  O ( 1 0  2 -  10 3 km). By our 
convention, any steady regional flow will contribute to the perturbation 
dynamical variables, p and A. The equations for momentum, mass and 
density anomaly are 

3u 3u Ou 3u p~ 
- -  + u - -  + v + w - -  - f v -  (2a) 
3t 3x by 3z Oo 

3v 3v 3v 3v Pv 
- -  + u - - + v - - + w - - + f u -  (2b) 
3t 3x 3y 3z Po 

P- 
o = - - -  + a g  (2c) 

Po 

U~ +v,, + w  = 0  (2d) 

32x 3A 02x 3A 0t5 
- - + u - - + v - - + w - - - w - - = 0  (2e) 
3t 3x 3y 3z 3z 
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Equations 2 regarded as a general dynamical system have associated first 
integrals of motion which are the quadratic invariants called kinetic energy 
and available potential energy. The total kinetic energy equation is obtained 
by multiplying eqs. 2a-c  by u, v, w, respectively, and summing them; the 
multiplication of (2c) by w produces the total pressure work flux, but the 
approximate hydrostatic balance eliminates the w2/2 contribution to the 
kinetic energy. From a physical energy viewpoint, since the motion is 
divergenceless, the internal energy does not change by mechanical work and 
the potential energy is only gravitational energy. The available gravitational 
energy equation is obtained multiplying (2e) by - ( p 0 g  A)/[(~/~z)].  The 
weighting factor for the A 2 energy is chosen to allow buoyancy work 
conversion between the two energies. We obtain 

Oo~ 2 = - p o V .  ~ 2 -v.(p~)+OogZXw Oa) 

P°~t 2--7 = - P 0 V "  ~ - s  ] 2s 2 wo~ - p ° g A w  (3b) 

where s = -(3~)/(Oz). 
Lorenz (1955) first derived a version of (3b), Bray and Fofonoff (1981) 

discussed the consistency of the definition of ~ and the evaluation of A2/s 
from real ocean data, and Holliday and McIntyre (1981) also took the 
quadratic invariant viewpoint. 

The time rate of change of the kinetic energy density K-= (u2+  v2)/2 is 
due to advection of K in and out of the region (advective working rate), to 
the rate of doing work by the fluid against the pressure force (pressure 
working rate) and to the negative of the buoyancy working rate. The time 
rate of change of the available gravitational energy A =- g A2/2s is due to 
advection of gravitational energy in and out of the region (advective working 
rate), to the buoyancy working rate and to an apparent source or sink due to 
the shear in the basic stability profile. The buoyancy working rate is now 
seen to be a conversion term between K and A since it appears in eqs. 3a 
and 3b with opposite signs. The term - f t .  xTp has been equivalently written 
as - ~7 • (pfi) since the motion is divergenceless. 

Finally, we nondimensionalize the variables and equations using the 
following time, velocity and length scales 

( x ,  y )  = D ( x ' ,  y ' )  z = / 4 z '  t = , 0 r  
H 

(,,, ~)= ~,(u', ~') w = - ~ , w '  
D 

foVo D 
p= VofoPoD p, A-- - -  

gH 

(4) 



T A B L E  I 

Nond imens iona l  Expression C o m m e n t  
pa ramete r  

e 1 

fot  0 

a V 0 
0~ = 1 0 ~  

F 2 f2D2  

Uo~H 2 

Ng 
N 2 ( z )  

,8 ,8 = f lo to  D 

189 

Rat io  of local ro ta t ion  period T = 1 / fo  to 
time scale t 0 

Rat io  of t ime scale t0 to advective time scale 

t A = D ~  V o 

Rotat ional  internal  Froude n u m b e r  

Stabili ty parameter ;  N 2 ( z ) = - g ~ 5 / ~  z; 
N~ 2 characterist ic  buoyancy  frequency 

Rat io  of p lanetary  Rossby wave time scale, 
tl ~ = (f loD) 1 to t ime scale to; 

2 fa cos 0 o 
/~o 

r 
r = radius of the Ear th  

Upon  dropping the primes, eqs. 3a and 3b become in nondimensionai form 

, - ( 5 )  
a t  2 2 

- E a F 2 o - - w  - - 8 w  (6) cF 2 o = - E a F  2 V' • r i o  2 

The parameters in eqs. 5 and 6 are 

1 V o N0 2 fc~D 2 

D t° N 2 (  z ) N02H 2 - f o t o  a = - -  o -  F 2 -  

w h i c h  are also listed in Table I. The Rossby number of our system is chosen 
to be c which is assumed to be much less than one; a, the ratio of imposed 
and advective time scales, and F 2, the squared ratio of the horizontal length 
scale to the characteristic internal deformation radius, are taken to be 0(1). 

We now write eqs. 5 and 6 symbolically and identify the physical terms 
and symbols in Table II. These equations result 

R = AF~ + 8f~ + AF~ + 8f,~ - b (7a) 

. d = A F  A + S f A + a s + b  (7b) 
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3. Q U A S I G E O S T R O P H I C  E N E R G E T I C S  

3.1. The Rossby number expansion of the energy equations 

We now expand 6, p, u, v, w in the Rossby number E. The subscripts 
indicate the order in the expansion and w 0 is taken to be zero. Henceforth, 
the vector arrows and the gradient operator, V, will denote two-dimensional 
quantities. 

The zeroth order Rossby number  expansion of the kinetic energy equation 
(5) is the diagnostic relationship V - ( p 0 f i 0 )  = 0 which is the well-known 
statement that the pressure energy flux by completely geostrophic motions 
does not diverge or change the kinetic energy density. Generally of course 
the kinetic energy equation is always determined by less than a divergence- 
less vector, and the zeroth order kinetic energy equation is degenerate in that 
it contains no useful information beyond the constraint of geostrophy. As in 
the case of vorticity dynamics we have to go to the first order expansion in 
order to find a prognostic equation for the kinetic energy density of the 
geostrophic field K 0 = 1 /2 (u0  z + v g and the available gravitational energy 
density of the geostrophic field A o = oF2(82/2) .  

The first order contributions to (5) and (6) are 

0 
- - K  o = - o ~  V " ( u o K o )  - V " ( p l U o  '1- P o U l )  - (ROW1).-  -{- aoW 1 ( S a )  
3t 

[Rlo=a[r~10+ 0 +a[F~], +a[L]I -  [b11 (Sb) 

/~ = AF~ + 8£ + A F  + 8f~ - b (7a) 

3 
- - A  o = - ~  V • (~oAo) - 8oW t (9a) 
3t 

[ ,41o= A[F~] o + 0 + 0 + [b]l (9b) 

,4 = A F  A + 3fA + 3s + b (7b) 

Equations 8 and 9 are our fundamental  kinetic and available gravitational 
energy density equations. The (a) versions show the detailed expansion 
structure of the contributing terms, and the (b) versions represent these 
schematically to facilitate comparison to the full eqs. 7a and 7b. Henceforth 
for convenience we drop the subscripts from eqs. 8b and 9b. 

Each term in eqs. 8 and 9 is of course an 0(1) quantity. Thus the 
physically small ageostrophic vertical velocity can do important  work against 
the vertical pressure gradients to this order although it cannot advect the 
geostrophic kinetic energy. 
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3.2. Elimination of fields not derivable from Po 

Equat ion 8 contains the ageostrophic pressure work flux which we indi- 
cate by 

~'1 = p0ul + uoPl  + lgpoWl (10) 

where k is the unit  vector in the z direction. 
To further decompose  ff~ and to express it in terms of Po, we use the 

familiar first order Rossby number  expansions of the m o m e n t u m  and 
thermodynamical  equations, viz. 

vl = Uo,+ afio" V U o -  flYVo +Pl_,: ( l l a )  

ul = - r o t -  afio" V V o -  f lYUo-Pb '  ( l l b )  

W 1 = - o V 2 p o . -  aI '2G • v(opo:) (12) 

where fl is listed in Table I and is 0(1). In eq. 12 the hydrostat ic relationship 
3o = Po: has been used. Cross-differentiating ( l l a ,  b) and using (12), yields 
the well known prognostic equation for the dynamical  vorticity, q 

O,q = 3, V2po + F 2 a , ( O p o : )  : 

= - a  V "  (noVZPo)  - aF  z V "  (n0(OPoo.)~) - flPox (13a) 

(~ = k + / ~ =  A F  R + A F  T+ AFp (13b) 

Q = V2po + FZ(opo . ) :  = R + T (13c) 

In Table III the symbols denot ing the terms in eq. 13 are elucidated. 
We insert (11a, b) and (12) in the definit ion of ffl and obtain 

~1 = ; [ -PoVot -  aPofio " VVo - flYUoPo - PlvPo + PlUo] 

+J[  PoUo, + aPofio" V U o -  flYVoPo + Pl,-Po + PlVo] 

- l c [  PoFZoPo., + poaFZno • v (Opoz) ] 

  =f[poul +pluo] +j[povl +p vo] + kp0wl (15) 
^ ^ 

where i, j are the unit  vectors in the x, y directions, respectively. 
The pressure work flux ffl still contains Pl but  since these terms are 

divergenceless, i.e., 3x(plrPo + Pl Pot) = 3y(plx Po + PlPox) they do not  con- 
tribute to the energy working rate. 

It is possible now to rewrite (8a) as 

0 
- - K o =  - a  V "  (noK o) - V " ( po R × not + a p ~ o "  V ( R × no) - flYP(No) 
3t 

+ ( poaI'Zpozt + poaF2ono. VPoz)z + 3oWl (16a) 
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TABLE III 

Pseudopotential vorticity terms 

Symbol Physical process Term 

Q 

T 

R 

A F R 

aFT 

A Fp 

Dynamical vorticity 

Thermal vorticity 

Relative vorticity 

Time rate of change of relative vorticity 

Time rate of change of thermal vorticity 

Divergence of relative vorticity advective flux 

Divergence of thermal vorticity advective flux 

Divergence of planetary vorticity 

F2(op:): + X72p 

F2(op:)- 

K72p 

O 
- -  ~ 7 2 p  
3t 

3 
r2~t(op=)= 

--ag 'V{V2p) 

eW 2i;.V ( op: ) _ 

- BP, 

/4 = AF~ + AF~ + 3f,~ -- b (8b) 

/ 4=  A G + A C + AFfl + A F  B + 3f t  + 3 f ~ -  b (16b) 

In eq. 16b we have indicated the several components  of AF~ and 3f:: they 
are also listed in Table IV together with their physical meaning and are 
further decomposed into terms associated with meridional and zonal compo-  
nents. 

We now elucidate the relationship between vorticity dynamics and trans- 
port  terms in the energy equations. The total energy density equation can be 
expressed as the sum of 9 and 16 with ~: x fi0 = - ~TP0 substituted, viz. 

3 
- - ( K  o + Ao) = - a  V "  (rio(Ko + Ao)) + V "  (poafio • V ( V P o ) )  
3t 

+ V  • (flYP~fio) + O~(Po"OF2G • Vpo:)  + v • (Po Vpo,) 

+3z(PoFZoPoz,) (17a) 

/4 + d -- A C + A G  + AF~ + a F ~  + ~L" + aFd  + 8L' (17b) 

The right hand side of eq. 17 can be expressed as - V 3  • ~" where (V3 • ) is 
the three-dimensional divergence operator  and F the 3-dimensional total 
energy flux vector 

= a(f ioAo + f ioKo) - P o  V P o , -  aPofio" V V p o -  - 

+ 

/ po 
kpowl 08a) 

(18b) 
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Symbol Physical process Term 

A F~ Zonal pressure working rate due to accelera- 3 , ( p p , )  = 3, (pv~) 
tion of the meridional geostrophic velocity 

A ~' F~ Meridional pressure working rate due to 3,. (pp,. ,)  = - ~,. ( p u t )  
acceleration of the zonal geostrophic 
velocity 

A ~ F," Meridional pressure working rate due to - 3,. ( p a h'.x7 u) 
advection of the zonal geostrophic velocity 

A, F~" Zonal pressure working rate due to advection 3~ (p a h'-V v ) 
of the meridional velocity field 

A ~ F k Zonal kinetic energy advective working rate - a 3~ ( uK ) 

A ~. F~. Meridional kinetic energy advective working - a 3~.( v K  ) 
rate 

A F~ ~ Pressure working rate due to Coriolis B ( p2 )., ~ V"  ( f lyHp)  
acceleration 2 

8f~ Vertical pressure energy flux divergence 3: ( p I" 2opet) 
due to time changes in density 

8f,~ Vertical pressure energy flux divergence 3~ ( p aF 2 h'. V op: ) 
due to horizontal advection of density 

A ,  E4 Meridional A.G.E. advective working rate - a ~ (vA) 

A F A Zonal A.G.E. advective working rate - a 3,.(uA) 

A n y  n o n d i v e r g e n t  vec tor  could  be  a d d e d  to F wi thou t  chang ing  (17a), an  

a rb i t r a r iness  impl i ed  in any  def in i t ion  of  energy  flux. This  vec tor  con ta ins  
the  E-vec to r  of  P l u m b  (1985) bu t  it is de f ined  for  the total  f low var iab les  
and  for  an  Euler ian  sys t em of  reference.  I t  con ta ins  advec t ive  fluxes and  
rad ia t ive  f luxes in the f o r m  of  p ressure  w o r k  d o n e  b y  ageos t roph ic  fields, 
and  it will be  useful  for  the d iagnos is  of  the p r o p a g a t i o n  of  ene rgy  in 
a r b i t r a r y  o p e n  ocean  regions.  

E q u a t i o n  17a can  be  wr i t t en  in t e rms  of  the d y n a m i c a l  vor t i c i ty  (13c) 

- - ( K o  + Ao)  = + V ' ( f i o a P o ( P o ~ x + p o ~ , + F 2 ( o P o ~ ) : ) + f l y p o f i o )  
Ot " 

+ V "  (P0 VP0, )  + O:(P0FZoP0~t) (19) 

wi th  the ident i f ica t ion ,  

a V • ( P o f i o q )  = AF~ + A F  A + A F ~  + 8 f ~  (20) 
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Equation 19 is equivalent to the quadratic energy invariant formulated 
directly from the vorticity dynamics, by multiplying eq. 13a by -P0 and 
writing 

-p0[3,[vZp0] + F 2 3t(OPoz)z] = + a  • . ( f ioPoq)  + f lpoxPo 

which is discussed in Pedlosky (1979). On the other hand, our approach 
demonstrates the connection between the terms in the primitive energy 
equations (7a, b) and the form they assume in the quasigeostrophic regime. 

4. SUMMARY EQUATIONS FOR ENERGY AND VORTICITY ANALYSIS EVA 

In the framework of quasigeostrophic dynamics many different phenom- 
ena occur characterized by different basic physical processes: wave propa- 
gation, instabilities, nonlinear interactions, horizontal and vertical cascades, 
turbulence, solitons, etc. The aim of this work is the interpretation of local 
dynamical mesoscale processes described by the dynamical vorticity equa- 
tion (13) and energetically by eqs. 16 and 9. While the study of local 
vorticity balances can give quantitative information about the redistribution 
of vorticity within the flow, the energy analysis is helpful for the physical 
interpretation of the processes, for their classification in terms of local 
instabilities and for the elucidation of the transport mechanisms in open 
regions. It is necessary to study time series of maps of terms occurring in the 
equations for a long enough period to obtain unambiguous results in 
appropriately chosen subregions of the flow. The choice of space-time study 
domains is illustrated later in the paper. 

Here we summarize the symbols, terms and equations that we will use in 
the examples of this paper and in future analyses of data sets and numerical 
model results. The vorticity equation is (13) 

3tq = 3t V 2p + 1 -̀ 2 3t ( Opz ) z = - a V . ( f i V 2 p ) - a F 2  V " (fi( op: ) . ) - t~p, 

(13a) 

= k + 7"= A F  R + A F  r +  AFp  (13b) 

with reference to Table III. The energy equations are (16a) and (9a) 

3t o - ~  V " ( u o K o )  - V " (Po~: × Uo, + ~ P ~ o "  V( lC  × Uo) - ¢ Y P ( ~ o )  

+ ( PoO F2po~, + PoaF20Uo " VPo~ ) ~ + aoW1 

I£ = A F  k + A F t  + AFfl  + A F d  + 3f'~ + 3 f¢  - b 

- - A  = - a  V " ( ~ A ) - ~ w  
3t 

A = A F A + b  

(16a) 

(16b) 

(9a) 

(9b) 



a) Vorticity diagram 

< <APT --/" FR > > 1 Q ( <~--~P> 

197 

b) Energy diagrams 
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Fig. 1. (a) Vorticity diagram for integrated divergences of advective vorticity fluxes. (b) 
Energy diagram for integrated terms in the energy equations (16) and (9). The area integral is 
done in an arbitrary domain in the horizontal plane. 

with reference to Tables II and IV. The non-dimensional parameters are 
found in Table I. Note that in the equations and tables of this section and 
henceforth we drop the subscripts 0 and 1 on the expanded field variables. 

In our analyses we will present maps of the instantaneous vorticity 
tendencies in (13) and working rates in (16), (9). In Fig. 1 we define 
schematic vorticity and energy budget diagrams for the horizontal and time 
integral values of the terms in eqs. 13, 16 and 9. We construct the diagrams 
of Fig. 1 only after long enough time has passed for the arrows to be 
meaningful. 

The Energy and Vorticity Analysis scheme summarized here, we refer to 
by the name EVA. This analysis scheme has been designed to be applied to 
any geostrophic pressure field, e.g., results of model runs, objective maps of 
oceanic data, etc. 

The vorticity equation terms (13) are evaluated with finite elements in the 
horizontal and finite differences in vertical as in the model of Miller et al. 
(1983). The derivatives in the energy equations (16) and (9) are evaluated 
with a fourth order finite difference scheme in horizontal, the finite dif- 
ference scheme of Miller et al. (1983) in vertical, and centered time dif- 
ferencing for the time rate of change of K and A. The code has been 
checked and validated using the results of the open ocean baroclinic 
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quasigeostrophic model  of Miller et al. (1983). The numerical schemes used 
for the energy equations have been found to give accurate ( <  1%) balances 
in the interior of the domain of integration. We neglect two points on each 
boundary  because of the mismatch between the quasigeostrophic model and 
the energy equations numerical schemes. 

5. THE BAROCLINIC ROSSBY WAVE 

We use eqs. 16a and 9a to describe the energetic signature, in an Eulerian 
system of reference, of a horizontally propagating baroclinic Rossby wave. 
The streamfunction is 

p = A ( z )  c o s ( k x  + / y  - (2a) 
with o~ -- ( - B k ) / ( k  2 + l 2 + X2), X 2 = D2/R 2. A(z)  is the vertical shape of 
the first internal baroclinic mode for a particular NZ(z) and R is the first 
internal Rossby radius of deformation. Equation 21 is an exact solution of 
the vorticity equation (13) for rigid bo t tom and top boundary  conditions 
(w 1 = 0  at z = 0 ,  - H ) .  We take N2(z)  from the MODE-I  region and 
choose for A(z)  the first baroclinic mode as illustrated in Miller et al. 
(1983). 

The /~ and A equations for the wave solution (21) reduce to 

_p2l O:(oFapp~,) + - - K = v ' ( p V p , ) + V "  f l ~  + p:w 
Ot 2 

I¢= A F '  + + b 

OA 
- -  p 2  142 

Ot 

A = b  

The Rossby wave is a particular nonlinear solution of eq. 13, the one 
which makes J(p ,  q) = 0. Then from (20) AF" = 0 = AF~ = A F  A = 6f~; there 
is no net work done by advective and nonlinear pressure work fluxes 
divergence meaning that there is no net growth of energy in the domain. We 
can already discriminate between the AFt, 2xFA, 6f;, 2xFfl and 2XF~ ~, AFt, 
6f~: the latter are associated in an Eulerian system of reference with the 
Rossby wave radiative flux while the advective and nonlinear pressure work 
flux divergence are due to the interaction of the waves with a nonhomoge- 
neous environment. 

In Fig. 2 the terms in the right hand side of the kinetic energy equation 
are displayed. The terms show a symmetric wave pattern, high and lows 
alternating in the domain with equal amplitude in absolute value with a 
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8 f  t - b 

Cl =0.I 

Fig. 2. Instantaneous maps of all the terms in eq. 16 at fixed z in the fluid for the Rossby 
wave solution (21). The abscissa of the pictures is in the zonal direction (x) ,  the ordinate in 
the latitudinal (y).  

periodicity of half the wavelength of the wave. The horizontal divergence of 
pressure work (AF~ t + AFfl) is spatially anticorrelated with the buoyancy 
work term at all levels, i.e., whenever the buoyancy work converts locally 
A ( K )  into K ( A ) ,  there is export (import) via horizontal pressure work flux 
divergence. This is the mechanism which maintains the horizontal transport 
of energy by baroclinic Rossby waves in the domain. It is associated with 
the linear part of the ageostrophic pressure work flux divergence: the wave 
has no net transport of energy in the domain via AF~ or A F  A but it does 
work on the environment due to its ageostrophic motion. The 6f~' contri- 
bution is also important but since f °  H 6f~' dz = 0 the phase of this term 
with respect to b and A F,~ changes with depth. 

In conclusion, the net horizontal kinetic energy transport by the wave is 
due to the correlation between P0 and that part of fil which corresponds to 
time rate of change of the ~eostrophic velocity and rotational effects due to 
/3. This energy flux ( ~  + Fff) is associated with the group velocity of the 
wave as opposed to the one defined in Longuet-Higgins (1964). 

In terms of energy integrals, if we take any subdomain in Fig. 2 and we 
average in x, y and t for any integral number  of half  wave periods the net 
contribution from each of the terms in eqs. 16 and 9 is zero. 

The case of an advected Rossby wave of the form 

p = A ( z )  cos(kx + ly - cot) - uy 

where u is a zonally uniform flow, is similar to the case just  described of a 
single Rossby wave. This time AFt,  AFA, 8ffl, AF~ are different from zero 
but  the instantaneous maps of the terms in (16) and (9) are still symmetric in 
the pattern of highs and lows. The time integral of all terms in eqs. 16 and 9, 
for any spatial subdomain average, now vanishes for any integer multiple of 
the wave period itself. This will be the case for any wave advected by a 
larger scale mean flow as we will see later. 
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6. T H E  B A R O C L I N I C A L L Y  U N S T A B L E  E A D Y  W A V E S  

The aim is to describe the local energy dynamics of baroclinic flows 
unstable to infinitesimal disturbances. The local growth of mechanical 
energy density (K  + A) of the disturbance is associated with the conversion 
of available gravitational energy from the mean flow which is maintained 
constantly at the same level of energy. No  feedback of energy to the mean 
flow is considered and the problem accurately represents only the initial 
growth of waves. Although the assumption of small amplitude perturbations 
growing on a larger scale mean flow is not applicable directly to many 
realistic geophysical fluid dynamics problems, this example is useful for 
comparative and interpretative purposes. In the past considerable attention 
has been paid to the study of the integrated energetics of the unstable Eady 
waves. Here we want to show the local t ransport /conversion of energy in 
the Eady waves for a subportion of the fluid which contains only a small 
part  of the wave and to find the signature of the process. 

The zonal mean flow fi is uniform in y, varying linearly in z between two 
vertical boundaries and confined between two rigid walls at y = + 1 in a 
uniformly rotating system (Eady, 1949). We expand in the amplitude ~, of 
the perturbation, i.e., p = fi + yp(1) + .y2p(2) + . . .  The vorticity equation for 
p{l}(x, y, z, t)is 
(a, + re a x ) ( v 2 p  `1' + F2op~p)=0 (22) 

where o = 1, F 2 = 4, h = -f ly,  a = 1. The boundary conditions are 
- (I) _(I) wll)=~,p~l}+Up:x - 1 4  = 0  at z = 0 , 1  

(23) 
p(1) = 0 at y = + 1 

X 

The solution of eq. 22 is found in terms of normal modes of the form 

p(1) = B(z) ek"t cos ly cos( kx + ~( z ) -  k~ ) (24) 

where 

t~(z)=tg ~[ c i s i n h / t z  ] 

i c I 2 cosh/zz - ½ sinh/az 

B(z)=I(coshl-tz 

/_t 2 - -  ( k  2 + 12)  

F 2 

m 

sinh t~z 12 c? sinh2gz 

2txlcl 2) + /~21cl 4 

c = c R + ic i = 1 + _ - coth -/~ /.t 
2 2 

- - tanh -~ ] 
2 ! 
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and 

l = ( n + l / 2 ) ~ ,  n = 0 , 1  . . . .  

The expansion of the relevant energy equations (16), (9) in Y is given in 
Appendix 1. We note that the contributions K (1t, A ~t) are not positive 
definite, and, in fact, that A8 and A9 could be obtained by multiplying (22) 
and the 0(y) expansion of (12), respectively, by p, p:. Note also that both 
sets /~(1), A(I) and /~(2), A(2) can be evaluated directly in terms of the first 
order growing perturbation solution eq. 24. The second order contribution 
governed by eqs. A10 and A l l  are positive definite and contain the usual 
conversion terms from mean to perturbation energy. 

We proceed to evaluate the O(7) eqs. A8 and A9 with (24). For both 
neutral and unstable solutions the instantaneous maps of each of the terms 

(a) 

(b) 

,,RA AFT Sf~ 

AF A ~ ZX~ 

C1:9.0 

, , j ,  L / 

C1:9 

(c) 

Z~FA 

CI : 3  

Fig. 3. (a) I n s t a n t a n e o u s  m a p s  of  t e rms  in eqs. 25 and  26 for  t = 0.8 (nond imens iona l )  and 

z = 0. Neu t r a l  Eady  wave case (k  = 4.5344 and  l = 07/2). (b) I n s t a n t a n e o u s  m a p s  of  the te rms 

in eqs. 25 and 26 for  z = 0 and  k = ~, l = ~t/2: uns tab le  Eady  wave case. (c) Same as in (b) 

bu t  at z = 0.5. 
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appear as simple alternating patterns of highs and lows with the same 
absolute value and equal areas over a wavelength. The pattern is not shown 
here because it is analogous to the structures of Fig. 3a, although this time 
the zonal periodicity is equal to the zonal wavelength of the wave and the 
meridional periodicity is half the meridional wavelength. A spatial average 
of the terms over a wavelength or a selected domain vanishes. For the 
neutral solution the average in time of the terms in eqs. A8 and A9 vanishes 
if the temporal interval is equal to the period of the propagating wave. At 
any point in the field the time series of each term in the unstable wave case 
is a simple growing wave form. Thus the integral from zero to T, as T 
steadily increases, fluctuates about zero. These properties occur in the O(~,) 
balance for any growing normal mode, since each term is simply a product 
of two mean fields and a first order field. Thus the first order energetic 
processes are simply redistributions of energy with no conversion process 
signature. Instantaneously the stable and unstable wave pattern of the terms 
in eqs. A8 and A9 is symmetric, i.e., highs and lows occupy the same space 
and have equal magnitude in absolute value. 

The signature of the local energy growth is contained in the O(~, 2) 
balance of terms in eqs. A10 and A l l .  The /~(2) and A (2) equations with 
~(z) only reduce to 

3 
- - K  (2,= --U ~xK (2, q- V .  (p (1)Vp[1) )q_  V .  (p ( l ,~  3x Vp(1,)  
3t 

+ 3:(FZop°)pJ~ )) + 3:(FZop°)~tpJ~) + F2op'l)v'l)fi:v ) + pj1)wlll) 

R =  + aFd + aF¢ + O + Sfd + b 

3 
• 2 ~ _ ( 1 ) _ ( 1 ) g  n ( 1 ) W ( 1 )  - - A  (2)= - -u  ~ A  (2) -  F oF: u P : v - l " z  t 

3t 

d=a G +a,,G +b 

where 

(25) 

(168) 

(26) 

(9b) 

U (1)2 + V(1) 2 F20 (p ! l ) )  2 
K(2) and A (2) --- 

2 2 

As indicated in (25) and (26) the advective (AFt, AFA) and nonlinear 
pressure work (3ffl, A Ffl) flux divergences involve interactions of the wave 
fields p(1), v(1), u o) with the mean flow. Furthermore only the AyF A and 
part of 3ffl contain the interaction of the wave with the vertical shear of the 
flow, which is the seat of the conversion of the mean flow energy to wave 
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energy. To this order in the ~, expansion the other terms AF', 8f~ are similar 
to the free Rossby wave radiative flux divergences. 

Figure 3a shows some of the terms in eqs. 25 and 26 for a neutrally stable 
wave with k = 4.5344, l = ~r/2. This neutral solution shows terms similar to 
the baroclinic Rossby wave solution of before, high and lows alternating in 
the field with the same absolute value and with a periodicity of half the 
zonal wavelength of the wave. The interpretation is exactly as in section 5 
for the nonadvected wave. 

The case of the growing wave is shown in Fig. 3b, c at two different 
depths in the fluid. The presence of instability is indicated by asymmetric 
patterns (i.e., the uneven spacing and unequal amplitudes of the highs and 
lows) of the terms 8f t, 6f~, b, AF~ and AF A. The source of energy for the 
disturbance is the available gravitational energy of the mean flow. A F4 
represents the rate of doing work by the wave 'Reynolds  heat flux', p{l~p~l~, 
against the meridional gradient of mean temperature/T:~.. A F  A is asymmetric 
at all levels and positive definite in the sense that the absolute value of the 
highs is bigger than the lows: it is the well known 'source'  term for the 
unstable waves. 

At the steering level (Fig. 3c) the buoyancy work is negative definite, i.e., 
is converting A ~2) into K~2); this represents the internal conversion process 
which allows the kinetic energy of the wave to grow at the expense of its 
available gravitational energy. The latter is growing at the expense of the 
mean flow available gravitational energy. At the vertical boundaries (Fig. 
3b) the buoyancy work is equal to zero since wl l~ = 0. 

The vertical pressure working rate 8f~ is the sum of its components  8f'~" 
shown in Fig. 3. The vertically integrated 6f~ contribution is equal to zero 
because of the boundary  conditions (23) and its symmetry about  the steering 
level. Thus 6f= changes sign between the vertical walls and the steering level. 
In particular between z - - 0  and z = 0.2, 6f~ imports energy while between 
z = 0.2 and z = 0.5 it exports it. The levels close to the vertical boundaries 
receive kinetic energy by vertical pressure work energy flux divergence from 
the interior of the fluid where the conversion via b is strongest. 

Componentwise,  6f~ is positive, and 6f~ is negative definite. 6f~, which 
contains the pressure work energy flux p~l)v~x)ofi:,, represents the rate of 
energy lost by the wave which at finite amplitude decreases the shear in the 
mean flow. It is interesting to point out that 6f~ and A~F A contain 
cross-correlations of the perturbation fields weighted by the mean flow shear 
which make the patterns' asymmetric. If we compare 6f~ and AF A at the 
steering and boundary  level, we see that the maximum local negative value 
of gf~ and positive value of AF A is also at the boundaries. At ever)' level the 
wave radiation field gives a net (in a negative definite sense) divergence of 
energy fluxes due to 8f~. Finally all the other terms, AFfl, ~F~, AxF A only 
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(b) 
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z= 0.5 

Fig. 4. Energy diagram for unstable Eady case. (a) Domain of integration superimposed on 
the instantaneous p(t) field, (b) energy diagram at z = 0, (c) energy diagram at z = 0.5. 

involve advections by the mean flow fi which yield symmetric patterns. A F~ 
is also asymmetric due to AF~ (not shown here); this is due to local growth 
of radiative transport of energy by the growing wave but does not involve 
interactions with the mean flow. 

We have taken horizontal domain integrals in a subportion of the flow 
field shown in Fig. 3 for the terms in eqs. 25 and 26 in the unstable case. We 
have then calculated the horizontal and time averaged (/~(2~) and ( ~ )  
balances in this subdomain for a time integral corresponding to half of the 
period of the neutral waves. The values are presented in Fig. 4. As noted 
above, the (3f~) decreases the kinetic energy of the perturbation while (3f'~) 
increases it; the (AF,~), (AFt) always export K, and at the steering level ( - b) 
has its maximum positive value. (AF A) is always positive. (Sf,) changes sign 
between the boundary and the steering level but <Sffl) and (Sf~) always 
have the same sign since the wave energy is growing everywhere and work is 
done against the horizontal mean gradient of temperature. 

We are interested in capturing the local signatures of the instability not 
only in the 0(72) equations but in a more realistic situation where both 
O(y) and O(y 2) contributions are not easily separated. We have then added 
eqs. 25 and 26 multiplied by ,/2 to the O(y) eqs. A8 and A9. The fields 
produced by this combined balance are shown in Fig. 5 for the case of the 
unstable wave with y = 0.01 at twice the e-folding time (total amplitude 
- 0.1). The fields show more complicated structures than in Fig. 3 but the 
asymmetries in the pattern are present in the same terms. More importantly 
the terms conserve the positive or negative definiteness as before. The 
integral in space and time of the terms in Fig. 5 thus have exactly the same 
direction of energy transport/conversion as in Fig. 4. The signature of the 
baroclinically unstable process for a realistic oceanic case as characterized 
by this study are: in the presence of growth of A and K (1) growing 
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t< Z~ F K /k FTr ~ fTr - b 
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CI = 0 . 0 5  

Fig. 5. Instantaneous maps for the unstable Eady case: O(y)+ O(y 2) balance, z = 0.5. 

asymmetries in AFA, b, 8f~ and AFt; (2) the positive (negative) definiteness 
of each of these terms; and (3) integrated energy diagram as in Fig. 4 for an 
event separable from a space- t ime background situation. 

7. THE BAROTROPIC INSTABILITY PROBLEM 

In this section we illustrate the local t ranspor t /convers ion energetics and 
signatures for the case that the energy source for the growing waves lies in 
the kinetic energy of the mean flow and the process involves the mean 
horizontal shear. The analytical example chosen is mathematically very 
simple and depth independent.  The barotropic mean flow is ~ = y  between 
y -- 0,1 and constant outside this region: at y = 0,1 we have then a jump in 
~,. which results in a source of energy for the waves. This is essentially the 
example presented by Gill (1982). 

The fields q~: p, u, v, w are expanded in the small amplitude 7 of the 
perturbation and the O(~,) perturbation is assumed to be everywhere a 
zonally propagating normal mode. The vorticity equation to the first order 
in y is 

[ 0 , + u a ~ ]  V2P (1)=0 (27) 

where a is taken to be 1. 
At y = 0,1 the continuity of the geostrophic normal velocity v 0 is imposed 

and the solution outside the meridional interval [0,1] is assumed to decay 
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exponentially. 
ageostrophic meridional velocity v 1, i.e. 

U(1) = -- [a t _4_ ~ ax ] /3!1)_+_/ax'(1) 

The solution in the meridional interval [0,1] is found to be of the form 

Also at y = 0 , 1  we impose the continuity of the 0 ( 7 )  

(28) 

/ 
p~l) = ek,,, c~(y) c o s l k x -  - -  

w h e r e  

C =  CR q- i c i ,  ¢ R =  ½ 

k,)2 kt)] 
+ f l ( y )  sin k x -  - -  (29) 

2 

. ( y )  = 

1 1 
m + c ~  

4 2k 

B ( y )  = 
c i cosh ky 

1 ) 2 +  

¢e2  (1 1) 
C i ~ - -  

4k 2 2 2k 

cosh ky + sinh ky 

c, is greater than zero if k < k~. = 1.2785 and as in the Eady problem we 
have a short wave cut-off. 

In Appendix 1 the relevant terms in the 0 ( 7 )  and 0(72)  equations are 
displayed and in particular the 0 (72)  balance for K = y  only, reduces eq. 
A10 to 

a 
+ v . (p '"  1') 

at 

+ V "  ( p " u  axVp{" + p%'l 'p , , , , j )  (30) 

/ ¢ =  AxF " + AyF~ + AF '  + AF~ + 0 + 0 + 0 (16b) 

For stable and unstable waves the maps of the 0(3,) terms (eq. A8) show 
high and lows alternating in the field with the same absolute values, a 
symmetric pattern. The interpretation is analogous to the 0 ( 7 )  equation 
discussion of section 6. The 0(72 ) equation again contains the 'source' 
terms for the instability or equivalently for the asymmetries in the flux 
divergence terms. 
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CT= 0.5 

Fig. 6. Ins tan taneous  maps  of terms in eq. 30 for the stable barot ropic  wave, k = 1.2785, 
t = 2 .  

Figures 6 and 7 show some of the terms in eq. 30 for the fastest growing 
wave (k = 0.7968) and the neutrally stable wave (k = 1.2785). As before, the 
neutral case terms are perfectly symmetrical and the t in~ integral over a 
multiple of half a wave period is zero. The unstable case (Fig. 7) is 
characterized by asymmetries in values of highs and lows. Only A, F~, A F~ 
and A F " remain symmetric. The A v F~ term (which in the barotropic case is 
physically analogous to the 'source' term A,.FA in the baroclinic instability 
case) contains the northward momentum flux due to the perturbation, 
v(~)u la). The only terms containing the interaction of the perturbation with 
the horizontal shear of the mean flow are A,. F~ and part of A Ffl. This time 
AFfl contains the pressure work flux by the perturbation p(1)v(1) against the 
mean horizontal shear field ~y. As expected both A Ffl and A F~ are larger 
in absolute value at y = 0, 1 where ~, changes sign. 

We have taken the space-t ime integral of the terms in eq. 30 in different 
subdomains. The energy diagrams are shown in Fig. 8 for two different 
regions of integration, and for the time integral from zero to T-= ~r/kc R as 
before. Here (AF  t )  and (AFt} are positive everywhere. (AF"} is negative 
since pressure work is done by the perturbation against the mean meridional 
gradient of ~; i.e., kinetic energy is lost by the perturbation working to 
decrease the shear in the mean flow. (AF,,} changes sign between the 
boundaries and the center of the domain since there is no energy flux in or 
out of the interval [0,1] but (AFt'} and (AFt )  have the same sign every- 
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Fig. 7. Instantaneous maps of terms in eq. 30 for the unstable barotropic wave, k = 0.7968, 
t =  2.0. 
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CI = 0.5 p(~ I 

b) Region 1 c) Region 2 

< E~;> z . 1 4 e ~  <E(~> z.o~ I 

I 
Fig. 8. Energy diagram for the unstable barotropic  wave case. (a) different Horizontal  domain 
of integration superimposed on the instantaneous p(1) field, (b) energy diagram for region 1, 
(c) energy diagram for region 2. 
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where. (AFt) and (AFt )  are equal in magnitude and opposite in sign since 
the total vorticity of the wave is zero (see eq. 20). 

The O(7) + 0(3 ,2) balance (not shown here) presents the asymmetries in 
the same divergence terms of the 0(72 ) balance. The positive (negative) 
definiteness of AFt, A F~(AFfl) persist also in this more realistic situation. 

In conclusion barotropic instability is characterized by the growth of 
asymmetries in AF ,  AF~ and AF~ terms with AFt, AF~ positive and AF~ 
negative definite. 

8. DATA ANALYSIS 

In this section we describe the analysis and the interpretation of a striking 
eddy merger event (Robinson et al., 1985a) revealed by the dynamical 
assimilation of oceanic data in the Harvard open ocean baroclinic quasigeo- 
strophic model (Miller et al., 1983). The methodology of approach to 
dynamical forecasting and interpolation in the ocean is explained in general 
in Robinson and Leslie (1985) and in detail in Robinson et al. (1986b) 
(hereafter referred to as RCPM), in the context of the study of this 
particular forecast experiment in the California Current system. We believe 
the process involved to be a finite amplitude barotropic instability of a 
baroclinic flow. The data set and detailed physical analyses are presented in 
RCPM. Here we illustrate the deduction of physical process by subjecting 
quasigeostrophically filtered data to EVA, in the context of our derivations 
and prior examples. 

The method consists of initializing the six level quasigeostrophic model 
with objectively analyzed data and integrating forward, updating the 
streamfunction p and the vorticity q at the boundaries as described below. 
This results in a spatially and temporally continuous model data set of 
quasigeostrophic pressure fields fully adjusted by the model to its internal 
dynamics. The local energy and vorticity budgets are evaluated on this 
dynamically interpolated data set; the advantage of this approach resides 

5506  5511 551-/ 5525 5551 

CI= 0.75 

Fig. 9. Streamfunction maps for the forecast experiment starting at Julian day 5506, ending at 
Julian day 5534. Model level 2 at 150 m. The inner dashed box indicates the EVA domain. 
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both in the ability to relate with real data processes in the ocean and in 
allowing the test of dynamical assumptions contrasting the forecast fields 
with the measurements. In Fig. 9 the streamfunction of a 28 day forecast 
experiment is presented for a (150 kin) 2 domain. The dynamical evolution of 
the streamfunction shows that two anticyclonic eddies merge during the first 
week, followed by a phase of expansion during the following 10 days and a 
subsequent phase of relaxation which leaves a single warm core eddy. Three 
'quasisynoptic' data sets were available centered at days 0, 14, and 28. The 
forecast experiment uses day 0 for initialization, and only the boundary strip 
data of days 14 and 28 for boundary condition updating (with a posteriori 
linear interpolation). The interior data of days 14 and 28 were reserved for 
verifications which were very good (see RCPM). 

Maps of the terms in the vorticity equation (13) are presented in Fig. 10. 
(Note that the EVA domain is stripped of the outer 20 km of the stream- 
function maps domain so that boundary effects in EVA are physical.) At 

TIME 

5511 

5517 

i~ ~ F  R ÷ AF T 

• L . 

5525 

CI = 25. 

Fig. 10. Vorticity terms in eq. 13 at different times during the forecast experiment. Model 
level 2 (150 m). 
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this level (150 m), AF R and AF T are comparable during the first 5 days. In 
the 'neck' between the two eddies AF R is the major contribution balanced 
by all other terms including a contribution (not shown) from a dissipative-like 
effect due to the filtering of vorticity (RCPM). In the following 10 days AF R 
becomes dominant over the vortex stretching term. At 400 m depth (not 
shown here), the divergence of advective fluxes of relative vorticity is always 
dominant and the forecast shows that the merging occurs more rapidly than 
at any other level in the fluid. At the end of the expansion phase A F R and 
AF T are comparable (AF R at somewhat smaller scales) and all the four 
terms contribute to the balance. 

The energy analysis of the forecast experiment is shown in Figs. 11 and 
12. The kinetic energy dynamics are dominated during the merger phase by 
a local decrease of kinetic energy in the northern eddy via both A Ffl and 
A.F~ (not shown) but with a dominant contribution by AxF ft. Energy is 
imported into the domain mainly by AyFfl which shows a strong conver- 
gence of radiative fluxes at the border of the northwestern eddy. At the same 
time A F~ and A Ffl grow locally in absolute value to almost balance the 

5511 

5517 

5525 

,(ii."L .~) 

zxy  AF K ~F~. 

CI =60.0 

Fig. 11. Terms in the kinetic energy eq. 16 at different times during the forecast expenment. 
Model level 2 (150 m). 
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contribution from AyF~ producing a divergence of energy fluxes in the same 
area. All the other terms in the kinetic energy equation are negligible at this 
level. During the expansion phase the horizontal divergence terms still 
dominate the evolution of the flow field; AF~ now plays a major role. AxF fl 
and AyF~ " change rapidly in time and contain somewhat smaller scales than 
in the first phase. AF~ is positive and AF= becomes negative such that it 
almost balances the contribution of AF~ locally; this pattern is reminiscent 
of the barotropic instability case of section 7. Here, however, the asymme- 
tries in AFfl and AF~ grow a different rates. We interpret these behaviors 
during the expansion and merger phases as a sign of a local nonlinear energy 
conversion between different horizontal wavenumbers in the flow. A subse- 
quent production of local divergence of energy fluxes decreases the shear in 
the area of interaction of the two eddies. During the relaxation phase there 
is a relatively simple balance between AF~ and AFt. 

Although it is not important quantitatively to the /£ balance, an imbal- 
ance among the terms discussed here produced a conversion of K to A via b 
during the merger and expansion phases. The available gravitational energy 
equation maps (Fig. 12) show that A is increasing in the northern eddy. The 

5517 ~ ~ 

b 

CI--5 

Fig. 12. Terms in the available gravitational energy equation (9) at different times during the 
forecast experiment. Model level 2 (150 m). 
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AF A term is smaller than b during the merger phase in the region of 
interaction of the two eddies. During the relaxation phase A F A and b 
become comparable and show an enhanced wave-like behavior. 

In Fig. 13 the energy and vorticity diagrams for the forecast experiment 
are shown. The horizontal area integral is done in the region of original 
contact of the eddies. The time series a, b, c show clearly the three phases. 
The vorticity balances (Fig. 13a) show that during the merger phase the 
major contribution is given by ( A F  R) and the most noticeable change is the 
vanishing of (AFT). In the expansion phase (AFR) continues slowly to 
increase. During the relaxation phase, {AFR), {AFr) oscillate and change 
sign and (AFT) becomes the dominant contribution. Process-wise, the 
merger and expansion phases are lumped together because they show 
analogous local and integrated vorticity balances. In the /£  time series (Fig. 
13b) the merger and expansion phases show remarkable changes in ( A F )  
and ( A F ) .  The onset of the expansion phase is indicated by the dramatic 
increase of ~AF~) and the sign change of {AFt). During the merger and 
expansion phases, ~ b) decreases the kinetic energy of the system and { 8f~) 
exports energy vertically. Towards the end of the relaxation phase all the 
contributions to the /£  balance are diminishing in absolute values. In the A 
balance (Fig. 13c) the maximum rates occur during the expansion phase 
which ends with a sign change of all the contributing terms. 

The time integrals of the terms in the time series of Fig. 13 have been 
taken starting from the initial time until 20 days later, at the end of the 
expansion phase. The relaxation phase has been omitted because we think 
that it is a dynamically distinct process, as discussed before. The diagram 
shows that the ~AF~) and ~AFfl) components are opposite in sign in a 
manner consistent with the barotropic instability case of section 7. (b) is 
positive and large in the interaction area of the eddies, comparable with 
(AFA). At level 3 (not shown here) the contribution by (AFA) is smaller 
than {b) and the whole process of merging is faster. (Sf~) and (AF')  both 
diverge energy out of the interaction area of the two eddies. 

The energy diagram supports the interpretation of the divergence maps: 
kinetic energy is redistributed horizontally by AFfl and AF~ to larger 
horizontal scales and is converted to gravitational energy by buoyancy work. 
It is interesting to conjecture that this might be a generalizable characteriza- 
tion of ocean eddy merging processes. 

9. D I S C U S S I O N  A N D  C O N C L U S I O N S  

In this paper we develop and illustrate a method for studying physical 
processes in local, open domains of a fluid governed by quasigeostrophic 
dynamics. The physical diagnostics are chosen to be energy and vorticity 
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balance analyses (EVA). The overall objective is to contribute to the 
dynamical analysis of real oceanic data and of data output from numerical 
models. Intensive data sets suitable for such dynamical analysis are limited 
in extent, and the dynamics of EGCM's is definitely spatially inhomoge- 
neous. Thus open regional analysis is required. Important  studies over the 
last few years have established the relevance of quasigeostrophic dynamics 
for many oceanic synoptic/mesoscale phenomena. Thus a consistent and 
comprehensive energy diagnostics for quasigeostrophic flows and relateable 
to more general flows is necessary and timely. 

In this study we: (1) derive a consistent and useful statement of geo- 
strophic energetics evaluated in terms of the quasigeostrophic pressure; (2) 
identify the ageostrophic origin of energy flux divergences; (3) relate the 
quasigeostrophic terms to their more general forms; (4) characterize some 
signatures of wave, instability, nonlinear interaction and conversion 
processes; and (5) illustrate the method of EVA applied to real data after 
quasigeostrophic filtering via numerical model interpolation. The EVA equa- 
tions are summarized, all symbols are defined, and the combined use of time 
series of maps, appropriately chosen space and time integrals, and schematic 
diagrams is described in section 4. The signature of wave, baroclinic, and 
barotropic instability processes are summarized in the final paragraphs of 
each of sections 5, 6 and 7, respectively. Importantly, growing wave instabil- 
ities are characterized by asymmetric patterns in maps of terms of the 
energy equations (unequal areas for, and unequal amplitudes of, highs and 
lows). Our results indicate: for barotropic instability processes, positive 
definite AFt, b and negative definite 2xF"; for baroclinic instability processes, 
positive definite A FA, ~f~ and negative definite AFt, A F,,, ~f~", b. 

Theory, modeling, experimental and observational data acquisition and 
analysis interact importantly in modern oceanography. The direct inference 
of a local nonlinear physical process from data via novel methodology 
should be of increasing importance as data assimilation and large scale 
modeling advances. In addition to the California Current region we are 
utilizing EVA in the POLYMODE region and the Gulf-Stream system, and 
find it a useful tool. Our work in progress includes the extension to 
enstrophy analysis and the use of EVA on shipboard computers to guide real 
time evolution of synoptic/dynamical  experiments. 
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APPENDIX 1 

Expansion of the energetics for instability studies 

All fields ~i: Uo, v0, wl, Po are expanded in the amplitude, ~,, of the 
perturbation as 

(~)i = Ol O) "I- ~/d/~} I) -~ ~2(~12) -{- " '"  (Al)  

and w[ °)= V~o °) = 0, U(o °) = fi(z, y),  po (°) = f i ( z ,  y). Here we take also fl = 0. 
We now expand eqs. 16 and 9. The zeroth order expansion of eqs. 16 and 9 
is identically equal to zero since the energy of the mean flow is not changed. 
To order 7 2 the terms in eqs. 16a and 9a result 

I£ = AF~ + AF~ + AF"  + 8f~ + 8f~ -- b (12) 

U(1) 2 _~_ U(1)2 
+ 0,(u<2)~) R =  Y(Ot(N(1)U)) -~-V20t 2 

( AF~ = - y  aK 0x(U(1)U) "1- O~ft (1)" V -- "1, 2 a~ O.~ 2 

--]-a~ Ox(/A(2)U) q-a . (a) .v(U(1)~)  --{- O ~ ( 2 ) - V ( ~  ) 

AFt= T(V" (fi VP~I')) + ~2(V"  (P  VP~ 2, ) -]" V "  ( p " '  re>I>)) 

AF~ a = ~/(V" (/OOgU 0 x V p `a,) -t'- V "  (/OO/U (1)" V V p ) )  

+T2(~7 • (fio~u O x ~Tp (2)) + V "(po~u ̀ I>" ~7~7p (1>) + O>,(po<v(2'pv,,) 

- ~ "  (P (I,0~ Ox" ~p(1)) + O.,,(p(1'0/u'l'/~v,,)) 

8f'~ = v( O:( or2fip~) ) ) + v2(0z(or2f ip}~ , + or2p,')p~> ) ) 
8 ~  ]/(Oz( 2---- (I) V2['~ [ F 2 (1):-7_(1) = a o r  pup:,  +aoFZfivmfi:>,))+ [o: tao p up:, 

+ o~oF2fiR (1)- Vp~ 1) + o~oF2u(1)fiz v + o~oF p u p : ,  + ao  

- b =  + V2(p t)w") + 

= A F  A + b (A3) 
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= 2 -  ( 1 )  ] ,2  -d 7(O,(oF p : p :  ))+ 
P~1) 2 

at o F  2 -  
2 

+ ~),(oJ]'2pzpj2))) 

AF A = -~, 

_y2 

aF20~ 2.( fi:p~l, ) + aF2ofi~l,. V - -  
( £ ) 2  

2 

lC-) . p:p.. ) aF2OU ax T . + a F 2 o t t  a , . ( -  _~2~ 

-- 2 

We now proceed tO eliminate from eqs. A2 and A3 the contribution of the 
terms containing the ~(2) fields. To do so, we note that the consistent O(,/2) 
contributions to the vertical velocity equation 12 and vorticity balance 
equation 13 are 

W(21 2_~(2) 2 -- (2) . (l) OtF2V(2)Ofi.). = - F  o1% ' - a F  oup. . , .  - aF2ofi (1) V p z  - (A4) 

a ~7 2p(2) 

0t  

q - a U  a x V 2 p  ~2) at) ~2)- + a U  ~1) ~ V 2 p  d) w 12) - -  U~..¢ " z . (A5) 

Multiplying (A5) by - f i  and (A4) by fi: we obtain 

~ _ _  ~'(2) - -O~U a x ( U ( 2 ) ~ )  - -  O / ~ f i  (1 ) "  V / g  (1) - -  O/fi (2 )"  V 

at 

+ v - ( ~  v p ? )  + v .  ( ~  a. vp '2') + 2,(~.~'2'~,,) 
+ V ' ( p a f i ' u ' V V p m ) + a . (  - T ' ' ~  p i - o p : 7  '~)) 

+ O : ( -  - 2 ,2) vp~l ,  fiV,2,ai.2ofi_,.) - , 2 )  pauF o p :  x + f iaF2af i  (l~ • + . + p:w 
(A6) 

0 
o r 7  - p ~ '  = - ~r~o~ a,.(~.p}2') - ~r~o~ - ~ ' '  vp~ ~' 

( £ ) 2  
- -  a F z o v  (2) 2,. f i  w (2) (A7) 

2 -" 

We next subtract the lfs (rhs) of A6 from the lfs (rhs) of A2 and similarly for 
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A7 and  A3. All 4~ ~2) terms cancel  and  there  results: 
t ~  0(~,~ 

~2 
K~'~ = - ~ ax(u~'~)  - ~'~- v 5 -  + v - (  ~ vp~ ~ ) + v .  ( ~ ax vp"') 

+ v  • ( ~ "  • v v ~ )  + a..( = '2 - - ' ' '  ) t , -  o~,.., 

A '1)= - ~ a r 2 u O x ( f i ~ p J "  ) - e ~ r 2 o f i  ( ' ' . v  -~- -fi:w ~'' ( 1 9 )  

to O(v:) 

+ V "  ( p ( l ' a u  ()x V P  (1) + aP(1)V(1)fivvf) + 0z( -p2-(l'-(1)u. k' Fzt ) ~ 

+ 0 . ( ~ r  2 - - ( ' } ~ - ' u o  ,~ u~, , ,~x + arZoP(')o'l)fiz~) +p~ '}w``) (A10) 

A ~2) = - a~  o~ ~ A-(2) - arZo-~uod)figz .y - p~l)w ~1) ( A l l )  

where  K ~1) = ~u (u, A O) = orzfizp~ 1) and K (2) = 1 / 2 ( u  ~1)2 + u~u2), A ~2) = 

1/2oFZ(p~l)) 2. The  e l iminat ion  of  the ~(2) fields has p r o d u c e d  ' R e y n o l d s '  
stress and heat  flux like terms, the well kn o w n  source  of  ba ro t rop ic -ba roc -  
linic instabilit ies,  in AFt, AF~ and they appear  in the 0 ( 7  2) equat ions .  The  

a a f~,  A F  2 terms in the O ( y  2) equa t ions  are left with a pressure  energy flux 
due  to cor re la t ion  be tween  p(1)~(D fields weighted by  hor izonta l  and vert ical  
shear  of the me an  flow. We will see that  the 0 ( 7 )  equa t ions  only  represent  
red is t r ibu t ion  of  energy in the field which essentially averages to zero in t ime 
everywhere .  
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