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This article analyzes the ocean forecast response to surface vector wind (SVW)
distributions generated by a Bayesian hierarchical model (BHM) developed in Part
I of this series. A new method for ocean ensemble forecasting (OEF), the so-
called BHM-SVW-OEF, is described. BHM-SVW realizations are used to produce
and force perturbations in the ocean state during 14 day analysis and 10 day
forecast cycles of the Mediterranean Forecast System (MFS). The BHM-SVW-OEF
ocean response spread is amplified at the mesoscales and in the pycnocline of
the eddy field. The new method is compared with an ensemble response forced
by European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble
prediction system (EEPS) surface winds, and with an ensemble forecast started from
perturbed initial conditions derived from an ad hoc thermocline intensified random
perturbation (TIRP) method. The EEPS-OEF shows spread on basin scales while the
TIRP-OEF response is mesoscale-intensified as in the BHM-SVW-OEF response.
TIRP-OEF perturbations fill more of the MFS domain, while the BHM-SVW-OEF
perturbations are more location-specific, concentrating ensemble spread at the sites
where the ocean-model response to uncertainty in the surface wind forcing is largest.
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1. Introduction

The aims of this article are (1) to analyze the impact of the
Bayesian hierarchical model (BHM) surface vector winds
(SVW), hereafter BHM-SVW, derived in Part I of this
series (Milliff et al., 2011) on the ocean ensemble forecast

(OEF) response and (2) to compare the response with other
ensemble-forecast-generating methods. The assessment will
be carried out for the short-term, open-ocean Mediterranean
Forecasting System (MFS: Pinardi et al., 2003; Pinardi and
Coppini, 2010). The MFS produces deterministic ten-day
ocean forecasts starting from ocean analyses that incorporate
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both satellite and in situ data. The MFS ocean forecasting
model is eddy-resolving and mesoscale variability dominates
the flow field on weekly time-scales. Phase and amplitude
errors associated with the growth, decay and propagation of
the eddies are the main causes of forecast predictability loss.
Forecast errors in temperature, salinity and sea level double
on time-scales of a few days (Tonani et al., 2009).

Given that the predictability limit of short-term ocean
forecasting is associated with oceanic mesoscale eddies,
any ocean ensemble forecasting method should consider
both initial conditions and atmospheric forcing errors. The
impacts of high-resolution and high-intensity scatterometer
winds on the ocean response have been documented
in prior work (Milliff et al., 1999, 2001), showing that
high-resolution winds affect both the mesoscale and the
time-mean circulation. In particular, the high-resolution
properties of scatterometer winds are necessary to force deep
mixing events, ocean upwelling and ocean-eddy variability
(Kersalé et al., 2010) accurately. Thus, we hypothesize
that inputs from scatterometer winds are essential in the
development of a probabilistic ensemble ocean forecast
system, focused on ocean mesoscales. Starting from the
uncertainty in atmospheric SVW fields, Part I of this article
constructed an ensemble of initial conditions consistent with
the assimilation of ocean observations and atmospheric wind
errors during the analysis cycle of the MFS. This article will
now study the characteristics of the ten-day OEF standard
deviation, i.e. the spread, derived from ensemble initial
conditions and BHM-SVW forecast wind realizations.

The BHM-SVW-OEF spread will be compared with
the ensemble standard deviation produced with (1) wind
realizations coming from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Ensemble Prediction
System (EEPS) and (2) a fixed initial-condition perturbation
method, already shown to be efficient for producing spread
on ocean mesoscales (Pinardi et al., 2008). The EEPS forcing
members display large-scale differences (Buizza, 2006), while
the differences in BHM-SVW realizations are broad-band
and include high wave-number signals. These differences are
explored in greater detail in section 3.3 of this article. The
sensitivity of the OEF spread to the ocean forecast model
horizontal resolution will also be studied for both the BHM-
SVW and ECMWF EPS ensemble-generating methods.

The impact of wind forcing errors on ocean ensemble
forecasts has been studied by other authors. Andreu-Burillo
et al. (2002) developed a pseudo-random perturbation
method for winds and performed 100 forecasts with the
same initial condition, generating an ensemble spread in
the mixed layer (first 100 m). Auclair et al. (2003) again
used pseudo-random perturbations of the winds, initial
density, lateral boundary conditions and river inputs, for a
coastal model domain. They showed that the model response
spread is sensitive to each perturbation type depending on
the dominant ocean-current regime. Lucas et al. (2008)
perturbed winds, air temperature and incoming solar
radiation fields, deducing the errors from the comparison
of the ECWMF re-analysis forcing fields with data from the
Co-ordinated Ocean-Ice Reference Experiments (CORE).
Again, the perturbations to the ECMWF re-analysis fields
were modelled in a pseudo-random way and the ocean
response peaked in the eddy field of the Gulf Stream
and tropical regions of the North Atlantic. However, the
perturbations at 100 m needed several months to grow,
limiting the utility for real-time daily ensemble forecasting

systems. These previous attempts did not use realistic
estimates of the atmospheric wind errors such as we have
developed with the BHM-SVW method and they did not use
model-adjusted initial-condition perturbations, as we have
shown in Part I of this article (Milliff et al., 2011).

In section 2 we describe the main characteristics of the
MFS operational ocean forecasting system and the different
resolution models used in this article. Section 3 describes
the two ensemble-generating methods from BHM-SVW and
EEPS winds and section 4 offers the comparison of ensemble
responses with the two methods. Section 5 describes an
alternative initial-condition perturbation method and a
comparison with the previous ensemble results. Section
6 describes the vertical temperature and salinity structure
of the ensemble variance generated by the BHM-SVW-OEF
method and section 7 provides a summary and conclusions.

2. The Mediterranean Forecasting System: assimilation
scheme and models

The MFS∗ is composed of a large observational network, a
numerical prediction model and a data-assimilation scheme.
The observational network consists of real-time satellite
and in situ data. The latter include temperature vertical
profiles down to 700 m provided by a ‘ship of opportunity’
programme (Manzella et al., 2007) and temperature and
salinity profiles down to 700 and 2000 m implemented by
the MedArgo program (Poulain et al., 2007). The real-
time satellite measurements include along-track sea-level
anomaly (SLA) from altimetry (Le Traon et al., 2003) and
sea-surface temperature (SST: Buongiorno-Nardelli et al.,
2003).

The MFS ocean model is described in Tonani et al.
(2008) and here we outline only its main characteristics.
The model has 71 non-uniform z-coordinate levels and a
horizontal resolution of 1/16◦ × 1/16◦. The model domain
covers the Mediterranean Sea and a portion of the Atlantic
Ocean where an Atlantic box is designed to parametrize
coupling between the Mediterranean and the Atlantic. The
operational model is forced by ECMWF surface fields using
interactive air–sea physics (Pinardi et al., 2003). A lower
resolution implementation of the MFS numerical ocean
model, with 71 vertical levels and a horizontal resolution of
1/4◦ × 1/4◦, is also used in this article. The geographical
domain of the low-resolution model is the same as that of
the high-resolution model except for the Atlantic box, which
is taken from previous investigations at the lower resolution
(Korres et al., 2000; Brankart and Pinardi, 2001). In the
following, the high- and low-resolution versions of the MFS
models are referred to as MFS1671 and MFS471 respectively.
The MFS471 model is initialized from MFS1671 fields using
bilinear interpolation.

The atmospheric forcing used in the MFS is derived
from the ECMWF analysis fields and the ten-day ECMWF
single deterministic forecast fields, starting at 1200 UTC.
Deterministic forecast winds are generated twice a day by
the ECMWF atmospheric model starting from an analyzed
initial condition and integrating forward in time for the
next ten days. In addition to this deterministic system, the
ECMWF operational model once a day runs a 51 member
ensemble prediction system that will be described in

∗http://gnoo.bo.ingv.it/mfs

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 137: 879–893 (2011)



Mediterranean Forecast System response 881

section 3.2. The ECMWF forecast model has a spectral
representation with a triangular truncation of 511 waves
in the horizontal and 60 levels in the vertical (T511L60),
which means a nominal horizontal resolution of 40 km.
The surface fields are utilized in a reduced regular grid of
0.5 × 0.5 degrees of latitude and longitude. The ECMWF
surface winds, mean sea-level pressure, air temperature,
relative humidity and cloud cover are used in bulk formulae
(Pettenuzzo et al., 2010) that, combined with the model SST,
provide momentum and heat fluxes to the ocean model.
The ocean operational outputs that use the deterministic
ECMWF SVW analysis and forecast fields will hereafter be
called the control.

All the real-time data are assimilated in both ocean
models using a reduced-order optimal interpolation
scheme adapted by Dobricic et al. (2007) to produce daily
ocean analyses. Ocean state analyses are constructed using
ECMWF surface-analysis forcing fields and by assimilating
available ocean data using a one-day temporal window. The
error-covariance matrix is a reduced-order, multivariate
matrix, described in detail in Dobricic et al. (2005).
The order reduction results from the decomposition of
the error covariance into leading vertical and horizontal
modes. The vertical modes are multivariate temperature,
salinity and sea-surface height (SSH) empirical orthogonal
functions (EOFs) for different regions and seasons in the
Mediterranean Sea. The assimilation scheme is sequential
and at the end of each day the error-covariance matrix is
used to correct the background model fields, producing an
analysis snapshot, considered as initial condition for the
next day’s analysis or forecast.

In Figure 1, the MFS analysis and control forecast cycle are
schematized. At day J of the week, a 14 day analysis period is
started from day J − 14 to J − 1, producing 1A–14A analysis
fields. A control forecast is then started from the 14A analysis
snapshot (Day 0 of the forecast period), producing 1F–10F
control forecast fields. Both MFS1671 and MFS471 models
use the same assimilation scheme, observational data and
deterministic atmospheric forcings.

3. Ocean ensemble methods generated by wind ensem-
bles

In the following two subsections we will describe the two
ocean ensemble forecast methods that use wind-forcing
perturbations to generate ocean ensemble forecasts.

3.1. The BHM-SVW ocean ensemble forecast method

The BHM-SVW posterior distributions, developed in Part
I of this article (Milliff et al., 2011) are used to design a
new ensemble forecast method, the so-called BHM-SVW
ocean ensemble forecast (OEF) method. As detailed in Part
I, the BHM-SVW is a probabilistic model, the output of
which is the posterior distribution of the SVW at each grid
location for each output time (i.e. every 6 h on a regular
0.5◦ grid). According to Bayes’ theorem, the posterior
distribution results from the normalized product of a
data-stage distribution and a process-model distribution
(multiplied by marginal distributions for the parameters
arising in data and process models; see Part I). Parameters
of the data-stage distribution account for observational
errors (i.e. from scatterometer winds) and analysis and
forecast errors (i.e. from ECMWF fields). Parameters

of the process-model distribution represent terms and
uncertainties in the stochastic equation representation of the
Rayleigh friction equations (see Part I). The high-resolution,
high-accuracy data-stage inputs from scatterometer winds
provide the SVW posterior distributions with realistic kinetic
energies at high wave numbers. The high wave-number
properties of the BHM-SVW realizations drive localized
spread in the initial condition members at 14A, as shown in
Part I, section 5.2. The error-covariance matrix is identical
for each BHM-SVW-EOF member during the analysis
period and thus the 14A initial conditions differ only because
of the BHM-SVW realizations used to force the model.

The differences with respect to other existing methods are
twofold: (1) the wind realizations force the models during
the assimilation cycle in order to produce initial-condition
perturbations and (2) the BHM-SVW realizations transition
smoothly between the analysis and forecast periods. The
first feature ensures that perturbations grow in the ocean
field only where observations are not sufficient to reduce the
initial-condition uncertainty. The second feature ensures
that the ensemble forecast and analysis wind fields have
distribution variances that are smoothly changing across the
analysis and forecast periods.

The BHM-SVW-OEF method is then designed as follows
(Figure 1). During the 14 day analysis period, each ocean
ensemble member is forced with a different BHM-SVW
realization, while assimilating the ocean temperature,
salinity and SLA observations. The n ocean initial conditions
produced at day J are then forced with the corresponding
n BHM-SVW realizations in the forecast period: n is 10
for MFS1671 and 100 for MFS471. The cost of integrating
MFS1671 constrains the ensemble size even though the
greater number of degrees of freedom in the higher-
resolution model might justify a larger n. It is important
to note that the BHM-SVW realizations produce not only
perturbed wind stresses and thus momentum fluxes, but
also perturbed surface heat and water fluxes as well. Using
interactive bulk formulae in the model together with BHM-
SVW perturbs all surface fluxes affected by uncertainty in
surface winds.

3.2. The EEPS ocean ensemble forecast method

The second ocean ensemble forecast method studied in this
article uses SVW realizations from the ECMWF ensemble
prediction system (EEPS). We call this method the EEPS
ocean ensemble forecast (EEPS-OEF). EEPS for the global
atmosphere has proven to be useful in a wide range of
applications (Buizza, 2006). However, the utility of EEPS
surface winds as forcing to generate ocean ensemble forecasts
has not been tested. It will be compared here with the
BHM-SVW-OEF method.

EEPS uses singular vectors to perturb the atmospheric
forecast initial conditions (Lacarra and Talagrand, 1988;
Farrell, 1990). The singular vectors identify patterns with
maximum growth rates within the first 48 h of the forecast
and for synoptic scales. Small errors in the initial-condition
state will amplify most rapidly in patterns corresponding
to the leading singular vectors, and will affect the forecast
accuracy (Buizza and Palmer, 1995). Since the end of 2000
and up to 2005, the operational implementation of the EEPS
includes 50 perturbed members at T255L62 resolution, plus
an unperturbed forecast (i.e. 51 ensemble members in total).
The nominal resolution of the EEPS winds is approximately
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Figure 1. Schematic of the MFS analysis and forecast control cycle and the BHM-SVW-OEF method: J indicates the day at which the forecasts start,
1A–14A and 1F–10F indicate analysis and forecast days respectively. The n BHM-SVW realizations are used to force OEF members starting from different
analysis initial conditions created at 14A.

80 km, i.e. two times lower than the deterministic ECMWF
forecast winds.

The EEPS-OEF method makes use of a single analysis field
snapshot at 14A as the initial condition for the ocean forecast.
For the high-resolution model, MFS1671, 10 forecasts are
forced by EEPS wind members. For the low-resolution
model, MFS471, all 51 members of the EEPS are used. The
EEPS-OEF method has a clear disadvantage in terms of
producing useful spread in the ensemble forecast, since it
starts from an unperturbed initial condition.

3.3. Comparison between BHM and EEPS SVW distribu-
tions

Figure 2 shows the posterior SVW amplitude standard
deviation generated by the BHM and EEPS, and a
comparison with the root-mean-square (rms) forecast
error. The latter is defined as the rms of the difference
between ECMWF 10 day deterministic wind forecasts and
the corresponding wind analyses, computed for 255 10 day
forecast periods in the years 2000–2004 and averaged over
the basin. The BHM-SVW and the EEPS wind spread
are instead calculated for the period from 25 January–17
February 2005 only. For EEPS the spread is calculated as
the standard deviation from the mean of the 51 ensemble
members. The BHM-SVW amplitude, W(x, y, t) = |U|,
is calculated from the BHM-SVW realizations and the
distribution is given by

W(x, y, t) ∼ N[Wmean(x, y, t), σ 2
W ]; (1)

for notation see Part I (Milliff et al., 2011), where x, y, t
denote space and time coordinates and σW is the standard
deviation represented in Figure 2, which provides a succinct
depiction of the important differences in probabilistic BHM-
SVW (red) and deterministic EEPS wind (blue) forcing-
ensemble standard deviations. The variances in the wind
forcing ensembles over the forecast time provide a context
for the comparison of ocean ensemble forecast results.

Clearly, different concepts of uncertainty are being
implemented in the EEPS and BHM-SVW distributions.
For the BHM-SVW case, the uncertainties in the surface
wind during the analysis period derive from parameters
selected to represent observational errors (i.e. for QuikSCAT
and ECMWF analysis winds) and process-model errors.

Figure 2. Comparison of wind amplitude spread for different wind
ensemble-generating methods and the ECMWF surface wind forecast
errors. (a) Wind amplitude spread σW (see Eq. (1)) of the BHM-SVW
distribution during analysis and forecast periods (25 January–7 February
2005 (1A–14A), 8–17 February 2005 (1F–10F)). b) As (a) but for EEPS
winds during the forecast period. (c) ECMWF rms forecast error computed
for the period 2000–2004 and averaged over the basin.

During the forecast period, the error parameters represent
uncertainties in the ECMWF forecast winds and the
process model. Figure 2 shows that the spread varies
periodically during the period 1A–14A due to the insertion
of scatteromenter data. The spread remains constant during
the forecast period, since the ECMWF forecast wind variance
has been modelled as time-independent (see Milliff et al.,
2011). The EEPS wind spread (blue curve) instead mimics
the growth of the forecast error (black curve), albeit offset
to lower amplitude after day 6F. The BHM-SVW amplitude
spread during the 1F–10F period is slightly larger than
1.5 m s−1, which is the spread of EEPS winds and the forecast
error at day 5F.

It is important to note the difference between EEPS and
BHM SVW distribution spreads at 1F. The BHM-SVW
method smoothly carries the variance information from the
analysis time to the forecast period without discontinuities.
EEPS instead grows from almost zero at the forecast initial
time to a value larger than 2.5 m s−1. This rapid error growth
may cause unwanted response in the ocean forecast ensemble
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and contamination by ocean surface gravity waves, as has
been shown in other articles (Powell et al., 2009).

In order better to describe the differences between EEPS
and BHM-SVW distributions, Figure 3 shows snapshots
of the SVW and wind curl from the two data sets in
the northwestern Mediterranean Sea during a Mistral
event occurring on 14 February 2005, i.e. day 7F. Three
realizations are shown from the EEPS and BHM-SVW
ensemble winds. The amplitude of the wind curl is larger
in the deterministic forecast winds (indicated as ‘control’)
compared with the EEPS, probably due to the low resolution
of the EPS atmospheric model as described before. EEPS
members differ in synoptic-scale patterns while the BHM-
SVW are different at finer spatial scales, i.e. subsynoptic
or atmospheric mesoscales. The scales of uncertainty given
by these two wind ensembles are not overlapping, since
the EEPS distributions focus on the error growth in
the 500 hPa geopotential height field while the BHM-
SVW distributions focus on the surface wind errors as
characterized by QuikSCAT. Our analyses indicate that the
surface atmospheric flow field exhibits finer spatial scale
errors, probably due to orographic effects and land–sea
temperature and humidity differences. In the sections below,
we will show that the smaller-scale uncertainties in the wind-
field realizations are important in generating an ensemble
response at the ocean mesoscale.

4. Comparison of BHM-SVW and EEPS ocean ensemble
forecast methods

In this section we compare the ocean responses of the two
ensemble ocean forecast perturbation methods described
in the previous section for the high-resolution MFS1671
and low-resolution MFS471 model systems. The ocean
ensemble forecast initial conditions are generated by BHM-
SVW-OEF during the period 25 January–7 February 2005
(1A–14A), while the forecast period is from 8–17 February
2005 (1F–10F). This ensemble forecast case study is carried
out in parallel with the control MFS forecast for the same
period.

The ocean initial-condition spread for the BHM-SVW-
OEF with MFS1671 has been discussed in Part I (Milliff et al.,
2011). We have shown there that the initial-condition spread
in SSH and SST is located in specific regions of the basin,
where we suspect that ocean hydrodynamic instabilities,
eddy interaction and eddy propagation processes are
occurring.

4.1. High-resolution model ensemble response

Figure 4 compares the BHM-SVW-OEF and EEPS-OEF
responses at the end of the forecast period (day 10F, 17
February 2005) for the MFS1671 model. The daily mean
SSH for the control forecast at day 10F (Figure 4(a)) shows
high SSH and intense gradients along the southern coastlines
of the basin and along the northern Levantine coastline,
off Turkey. Local maxima occur in the Algerian current
(6◦E, 38.5◦N) and in the area of the Mersa-Matruh gyre
(29◦E, 32◦N). Sub-basin-scale cyclonic gyre circulations are
indicated by SSH minima in the Gulf of Lyon (5◦E, 42◦N),
the central Ionian Sea (19◦E, 38◦N) and the Rhodes Gyre
region of the Levantine Sea (27.5◦E, 35◦N).

Figure 4(b) shows that the BHM-SVW-OEF spread is
localized in specific regions, at the scale of the eddies, and it

has doubled in amplitude from the initial-condition values
(see figure 9 of Part I: Milliff et al., 2011). The spread is
associated with large gradients in the SSH field that identify
currents (i.e. the Algerian current in the western basin from
0–10◦E, the Atlantic–Ionian Stream in the central Ionian
Sea from 15–20◦E and the North African current up to the
western edge of the Mersa Matruh Gyre in the Levantine
basin from 20–30◦E). In these regions, the SSH spread for
BHM-SVW-OEF reaches values of 6 cm. On the other hand,
spread for the EEPS-OEF method (Figure 4(c)) is large
everywhere and non-localized (i.e. a basin-wide uniform
value of approximately 2.5 cm). Additional amplitude in
SSH spread for the EEPS-OEF occurs in the Aegean Sea, the
Adriatic Sea and the Gulf of Gabes (10◦E, 34◦N), as well as
in the same regions identified for BHM-SVW-OEF but at
smaller amplitude. On the other hand, low spread is evident
in the Sicily Strait and the near-shore areas of the Algerian
current, where dominant winds probably have low variance.

For both methods, the average response spread is relatively
small (order 3 cm) and comparable to the SLA satellite errors
(Dobricic et al., 2005). The area of maximum ocean response
spread corresponds to the large-variance areas in the BHM-
SVW realizations, as shown for example in figure 7 of Part
I. However, not all the areas of high BHM-SVW spread
generate an ocean response spread and this is probably due
to the presence of unstable ocean dynamical features that can
amplify the perturbations given by the BHM-SVW winds.
The Algerian current seems to be a region that amplifies
the ocean response to the wind uncertainty during the
assimilation and the forecast periods we have analyzed (see
Part I and Part II of this article respectively).

The highest ensemble variance values are observed in
both the BHM-SVW-OEF and EEPS-OEF responses at the
location of the Algerian current anticyclonic eddies, one
of which during this period is centred at 6◦E, 38.5◦N.
Figure 5 shows how this structure is represented in the
ensemble responses to both the BHM-SVW-OEF and EEPS-
OEF. Figure 5 also depicts the effect of evolving currents in
three ensemble members for each method on the simulated
trajectories of six drifters released at the centre of the
anticyclone in each member at day 1F and tracked through
day 10F. In this depiction, it is clear that the BHM-SVW-
OEF members present a wider range of possible states than
the EEPS-OEF members. A mesoscale eddy structure has
detached in the period between 1F and 10F (not shown)
from the northeastern edge of the anticyclone in BHM-
SVW-OEF members 1 and 2, but not in member 3. The
western border of the anticyclone is interacting with a
second smaller eddy in BHM-SVW-OEF members 1 and
3, but this process is almost absent in BHM-SVW-OEF
member 2. The cyclonic circulation north of the anticyclone
strengthens in member 2 and not in the others. Conversely,
the three EEPS-OEF members do exhibit similar variability,
being different only in the strengthening/weakening of the
cyclonic synoptic eddy on the northern border of the
anticyclone. The simple trajectory simulations allow us
better to visualize the effect of the uncertainty on the
dynamical evolution of the anticyclonic eddy due to the
deterministic components of the particle trajectories, since
no random dispersion due to Lagrangian subgrid scales
was considered. In this simplified framework, we observe
that the EEPS-OEF does not allow for any of the particles
to exit the anticyclonic eddy, while the BHM-SVW-OEF
exhibits a greater spread, i.e. members 2 and 3 show several
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Figure 3. Western Mediterranean wind fields from three realizations of the EEPS (left column, including the unperturbed EPS fields at the top left) and
the BHM-SVW (right column). Surface winds (vectors, m s−1) and wind curl (colour contours, N m−3 ∗ 106) for 14 February 2005 at 0000 UTC, day 7F.

particles escaping the eddy centre in different directions.
Figures 3 and 5 are consistent in that the EEPS winds do not
contain spatial variability at length-scales commensurate
with the ocean mesoscale, while the BHM-SVW realizations
do. This variability at high wave numbers in BHM-SVW
(also demonstrated in the spectra from Part I) drives greater
ensemble spread in the SSH response over the course of the
ocean forecast. Figure 5 demonstrates this in two ways.
Firstly, the SSH contours (colour) for each realization
exhibit widely different morphologies for each BHM-
SVW realization (right column) versus the very similar
morphologies even at day 10F in the realizations forced
by EEPS (left column). Secondly, the particle trajectories
tracked over all 10 forecast days for each realization suggest

that the spread differences are evident throughout the 10
days of the forecast.

Isern-Fontanet et al. (2006) explained the dynamics of
similar Algerian current anticyclonic eddies in terms of two-
dimensional turbulence. In particular, they showed that the
high current amplitude rim of the eddy is characterized by
shear stresses and strains that can cause large changes in
the paths of drifters released in the eddy core. Our results
show that forcing with realizations from a SVW posterior
distribution that is consistent with uncertainties in the wind
observations produces differences in the eddy rim circulation
responses, leading to sensitivities in particle trajectories.

The BHM-SVW-OEF method seems to be more effective
than EEPS-OEF in generating changes in the jets around the
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Figure 4. MFS1671 SSH fields for 17 February 2005, last day of forecast period (10F). (a) Control forecast daily mean SSH (contour interval is 0.03 m).
(b) Standard deviation (m) of SSH from BHM-SVW-OEF at 10F. (c) Standard deviation (m) of SSH from EEPS-OEF at 10F. The contour interval in (b)
and (c) is 0.05 m.

anticyclone and the interaction of the anticyclone with
nearby mesoscale eddies. The pinch-off of the border
of an anticyclone, the merging of two eddies and the
cyclogenesis near an anticyclone are all familiar processes
associated with nonlinear barotropic/baroclinic instabilities
of open-ocean eddies (McWilliams et al., 1983; Pinardi and
Robinson, 1987). The BHM-SVW-OEF method seems to
be capable of amplifying, in one week, the initial-condition
perturbations on the time- and space-scales of the open-
ocean baroclinic/barotropic instability processes.

The mixed instability process manifests itself in the
convoluted behaviour of the eddy borders and merging
of different size eddies (Pinardi and Robinson, 1986;
Masina and Pinardi, 1993). These adjustment processes
are manifested in the SSH structures shown in Figure
5. Furthermore, in Figure 6 we provide further support
to the interpretation of baroclinic instability, showing a

density section across the Algerian current anticyclonic
eddy at 5◦E, 39◦N. High values of BHM-SVW-OEF density
spread are found down to 400 m (Figure 6(b)), consistent
with a process of mixed instability of open-ocean eddy
borders (Pinardi and Robinson, 1987). EEPS-OEF does not
perturb the pycnocline of the anticyclonic eddy, only the
surface density of the cyclonic eddy north of it (see Figure
5), and it alters the pycnocline structure of the Algerian
current. The wind perturbations from both BHM-SVW
and EEPS can produce subsurface ocean responses that can
persist for many months after the event, thus showing the
temporally delayed effects of surface forcing uncertainties.
The ocean response associated with perturbed wind forcing
is a nonlinear function of the ocean dynamics present in the
region of forcing.

We argue that the different ocean ensemble spread vertical
structure is directly related to the different scales of the SVW
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Figure 5. MFS1671 SSH mean daily fields at day 10F (17 February 2005) and six simulated particle trajectories (black lines) for EEPS-OEF members 1–3
(panels (a), (c), (e)) and for BHM-SVW-OEF members 1–3 (panels (b), (d), (f)). The contour interval is 0.01 m. Trajectories depict simulated drifter
paths from 1F–10F.

fields. In the BHM-SVW-OEF case, the spread is amplified
around the unstable eddy jets, enabling multiple realizations
of a process of barotropic/baroclinic instability, while in
the EEPS-OEF case the spread is at lower amplitude and
suggestive of large-scale, surface-intensified modes.

4.2. Low-resolution model ensemble response

In this section we study the response of the lower
resolution forecasting model, MFS471, to the BHM-SVW-
OEF and EEPS-OEF wind ensemble spread for the canonical
ensemble experiment. We expect that the BHM-SVW-OEF
method will be sensitive to the model resolution, since
the method amplifies the unstable modes associated with
ocean mesoscales and the MFS471 model is not eddy-
resolving (the Rossby radius of deformation is 10–15 km
in the Mediterranean Sea). The MFS471 is started from

the upscaled initial condition at 1A, so the impact of low
resolution is present throughout the analysis and forecast
periods.

Figure 7 shows the effects of the lower resolution model
in the control forecast SSH (top panel), which is smoother
than the equivalent field of Figure 4. In the BHM-SVW-OEF
spread (middle panel) the maxima are somewhat localized
as in the high-resolution case, but the amplitudes are lower
(below 1 cm everywhere). The BHM-SVW-OEF method
does not seem to be as effective at low resolution in
amplifying the wind perturbations in the ocean response
in the horizontal or vertical (not shown). On the other
hand, the EEPS-OEF low-resolution experiment exhibits a
similar response to the corresponding high-resolution case
in terms of both structures and amplitude. The localized
spread areas (i.e. Algerian Current, Mersa Matruh gyre,
etc.) are missing in the EEPS-OEF low-resolution case and
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Figure 6. Meridional section of σ = ρ − 1000 (kg m−3) at 5◦E (Algerian coast to the left, French coast to the right) for 17 February 2005 (10F). (a)
MFS1671 daily mean σ for the control forecast at 10F. The contour interval is 0.1 kg m−3. b) σ standard deviation for BHM-SVW-OEF at 10F. (c) σ

standard deviation of EEPS-OEF at 10F. The contour interval in panels (b) and (c) is 0.01 kg m−3.

the large-scale uniform response is dominant. The overall
response is less sensitive to the model resolution than in the
BHM-SVW-OEF case. This result supports the notion that
the new method, BHM-SVW-OEF, amplifies the uncertainty
due to winds on ocean mesoscales, while EEPS-OEF mainly
changes the uniform, large-scale SSH patterns.

5. Comparison with an initial-condition perturbation
method

In this section we compare the wind ensemble perturbation
methods above with a more traditional initial-condition
perturbation method. Pinardi et al. (2008) have developed
a thermocline intensified random perturbation ocean
ensemble forecast method (TIRP-OEF) that prescribes
initial perturbations with an ad hoc horizontal and vertical
structure.

The temperature and salinity perturbed initial conditions,
Tp and Sp, are written as

Tp(x, y, z, t0) =T(x, y, z, t0) + p(x, y)
M∑

j=1

ejfj(z), (2)

Sp(x, y, z, t0) =S(x, y, z, t0) + p(x, y)
M∑

j=1

ejgj(z), (3)

where t0 is the initial time, T and S are the temperature and
salinity fields at 14A, p(x, y) is a two-dimensional horizontal
structure field with random amplitude and fj(z) and gj(z)
are pre-defined vertical structure functions with amplitudes
ej. This method was originally used to generate Kalman-
filter background-error ensembles in Evensen (2003) and
extended by Pinardi et al. (2008) with vertical structure
functions.
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Figure 7. MFS471 SSH fields for 17 February 2005, last forecast day (10F). (a) Daily mean SSH fields from the control forecast, contour interval is 0.05 m.
(b) Standard deviation (m) of SSH for BHM-SVW-OEF. (c) Standard deviation (m) of SSH for EEPS-OEF . The contour interval in panel (b) is 0.0005 m
and that in panel (c) is 0.005 m.

For this experiment, 20 vertical structure functions were
selected from a set of EOFs computed from the analysis of
the variance of a long ocean model simulation. The ej are the
explained variances or eigenvalues for each mode. The EOFs
have maximum amplitude at the depth of the thermocline,
around 100–200 m, and they are discussed in Pinardi et al.
(2008), Dobricic et al. (2005) and Sparnocchia et al. (2003).
The p field at each grid point is modelled by a Gaussian
function with a decay radius of 60 km that roughly mimics
the size of large mesoscale eddies in the Mediterranean Sea.
The amplitude of p was set in order to obtain horizontally
integrated perturbations up to a value of ±0.2 cm in the
SSH initial states. Initial perturbations of greater amplitude
generate a noise signal in the forecast ensemble spread that
does not allow clear identification of dynamical patterns in
the forecast response (not shown).

The TIRP perturbations are clearly not consistent with
data assimilation, since each point in the domain has the
same probability to be perturbed, regardless of whether
or not an observation has been assimilated close by.
Furthermore it is a method not strictly related to the wind-
driven response and is ad hoc in that all free parameters (i.e.
the number and type of EOFs, the horizontal structure radius
and the amplitude) are decided on the basis of experience.

The TIRP-OEF method implemented here produces 10
perturbed initial T and S fields for the MFS1671 model. The
initial-condition ensemble members are forced by the single
deterministic ECMWF wind forecast from 8–17 February
2005.

In Figure 8 we show the TIRP-OEF spread at 10F.
The values are relatively large, up to 4 cm, and they
are preferentially organized around mesoscale circulation
structures. Three maxima of SSH spread can be identified
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Figure 8. TIRP-OEF SSH standard deviation (m) at 10F. The contour interval is 0.005 m.

Figure 9. σ = ρ − 1000 (kg m−3) field standard deviation of TIRP-OEF at 10F. The contour interval is 0.01 kg m−3 .

in the Algerian current, Ionian Sea and Levantine basin
around the Mersa Matruh gyre, as in the case of BHM-SVW-
OEF. The section at 5◦E (Figure 9) reveals a density-spread
structure similar to that observed in the BHM-SVW-OEF
experiment (Figure 6(b)), but at slightly smaller amplitude
and shallower depths. The BHM-SVW-OEF and TIRP-
OEF methods seem to have commensurate forecast ocean
responses; more so than for BHM-SVW-OEF and EEPS-
OEF. This suggests that the two ensemble methods activate
similar dynamical processes.

We argued above that the BHM-SVW spread is asso-
ciated with ocean mixed barotropic–baroclinic instability
processes. The TIRP perturbations are designed to produce
modifications of the initial vertical stratification, thus chang-
ing the potential energy of the initial field at the thermocline,
and potentially activating baroclinic/barotropic instabilities.
Comparing Figures 4, 6, 8 and 9, it is evident that both meth-
ods can produce spread growing around either localized
circulation structures, such as the Mersa-Matruh gyre and
the Ionian Stream, or mesoscale open ocean eddy fields, such
as the anticyclonic eddy of the Algerian current. The TIRP-
OEF spread, however, depends on the choices of the initial
vertical EOFs (not shown) and the initial random ampli-
tude. It will be difficult to generalize TIRP-OEF even in the
Mediterranean Sea, where the thermocline depth changes
are seasonal and the field is dominated by mesoscale eddies.

6. Ensemble variance versus forecast and model errors

A set of 47 BHM-SVW-OEF experiments of the same kind
as described in the previous sections was performed for

the period January–December 2006. Ensemble forecasts are
produced once a week and there is no propagation of
ensemble uncertainties between successive OEF cycles. Each
cycle is considered to be independent even if the OEF initial
conditions at day 1A are only one week apart and they
are all coming from the sequential analysis cycle of MFS.
The nearly one-year-long experiment allows us to check the
properties of the BHM-SVW-OEF spread for a period of
time that covers an entire cycle of formation and destruction
of the thermocline. It also allows us to compare this spread
response with the forecast and model error variance.

In a perfect model scenario, wherein it is assumed that
the model numerical integration does not introduce any
error, the variance associated with the ensemble members
around their ensemble mean is an optimal estimate of the
forecast error. If M is the number of OEF cycles, and each
cycle is composed of N members, then Leutbecher and
Palmer (2008) demonstrate that under the perfect model
assumption the following limit is satisfied:

lim
M→∞

1

M

M∑

m=1

γ = 0 and γ = 1 − (N + 1)σ 2
m

(N − 1)ε2
m

,

(4)

where σ 2
m = 〈(Xm − X

m
)2〉 is the variance of the mth OEF

cycle, X is in our case the temperature or salinity field at
different depths and ε2

m is the mean-square error of the mth
ensemble, computed as the difference between the ensemble
mean and the truth, considered here to be the XBT and
Argo observations. In our specific case we also compute the
average of ε2

m and σ 2
m between 1F and 10F.
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Figure 10. Values of γ (see text) as a function of depth and for temperature
and salinity fields for the period January–December 2006 and averaging
between day 1F and 10F values.

In real applications the limit of γ usually differs from
zero. Negative values of γ indicate overdispersive ensemble
behaviour, i.e. the ensemble forecast variance is larger than
the mean-squared forecast error. Positive values ofγ indicate
underdispersive ensembles, i.e. the ensemble variance is
too small compared with the mean-squared error. For
instance, Powell et al. (2009) show that the Intra American
Seas ocean ensemble prediction system had values of
γ = −0.32 and γ = 0.88 for SSH and SST respectively. The
overdispersive behaviour of SSH in Powell et al. (2009) was
artificially induced by inertia-gravity waves generated by the
unbalanced initial conditions. Underdispersive ensembles
are usually more common than overdispersive ensembles
(Houtekamer and Mitchell, 2001).

The BHM-SVW-OEF is always underdispersive, as shown
in Figure 10. Over a series of 47 ensemble prediction cycles
we found values of γ = 0.89 for SSH (not shown), while
values for temperature and salinity range between 0.7 and
0.95. Underdispersive minimum values are found in Figure
10 between 0 and 100 m for temperature and between
30 and 200 m for salinity. This result quantifies what was
found before for the January–February 2005 study case. The
BHM-SVW-OEF method amplifies the ensemble spread in
the surface layer (0–100 m) and in the main thermocline
(100–200 m), but is not efficient in exciting all forms of
uncertainties that contribute to the total forecast error. In
fact, the BHM-SVW-OEF method maps only the forecast
uncertainties that project on to the possible errors in the
wind fields over the 14 day analysis cycle, and it is reasonable
that it will underestimate the total forecast error.

Another estimate of the forecast system error is given by
the rms of the difference between the model simulation
during analysis time and the observations, i.e. the so-
called misfit (Dobricic et al., 2007). The rms of the misfit
quantifies the errors due to data scarcity, data-assimilation
inadequacies and the limited representation of processes
by the numerical model. The rms of the misfit is typically
used as the estimate of the background field or first-guess
errors. We compare the vertical BHM-SVW-OEF ensemble
spread with the rms of the misfit to show how much of
the background error field the BHM-SVW-OEF method
captures in different seasons.

Figure 11 shows that summer intensification of the rms
misfit is reproduced by the BHM-SVW-OEF method but the
amplitude is largely underestimated (i.e. note the changing
grey-scales in Figure 11). This large underestimation is
partially due to data scarcity in the computation of the misfits
when compared with the ensemble spread computed over
every grid point in the discretized Mediterranean domain.
The BHM-SVW-OEF method is capable of producing,
without any ad hoc assumptions, seasonal errors due to the
formation of the thermocline, which is the most significant
error source in ocean forecasting models, associated with
the forcing inaccuracies and the mesoscale eddy field. The
slowly evolving error fields in the subsurface, shown by
Figure 11, could also be carried forward so as to amplify
the signal in subsequent assimilation forecast cycles. These
results indicate that the BHM-SVW-OEF method could be
used in the future to produce ensemble members that can
quantify the model background-error covariance matrix.

So far we have been looking at the properties of the
ensemble variance, trying to understand the ocean response
to perturbations from different surface forcings, but the
question of how effective the ensembles are in reducing
forecast error has yet to be discussed. Available buoy
and satellite data support limited forecast verifications for
the three ensemble methods compared in this article. For
the period January–December 2006 there were 22 ARGO
profiles, 77 XBT temperature profiles and 55 satellite tracks
of SSH providing 1761 estimates of SLA. These data were
compared with the 10 day forecasts for the year. Table I shows
the forecast errors versus these data for (a) a single forecast
forced by deterministic forecast ECWMF winds and (b) the
ensemble mean forecasts for the three ensemble methods
compared in this article. The BHM-SVW OEF skill scores
match those of the control. The EEPS-OEF temperature
rms is slightly smaller than the control, but the SLA rms
is larger. The TIRP-OEF skills are worse than control for
all comparisons. At this early stage of development, the
BHM-SVW OEF ensemble mean forecasts are not better
on average than a single deterministic forecast. In fact, the
verification statistics of Table I are averaged over the entire
Mediterranean and this does not highlight the uncertainty
localization properties of the BHM-SVW-OEF method.

7. Conclusions

In this article we have studied different methods of ocean
ensemble forecasting applied to the Mediterranean Sea. We
have developed a new method, called BHM-SVW-OEF, that
uses the posterior realizations of winds coming from the
BHM-SVW distributions described in Part I of our work
(Milliff et al., 2011). The method produces initial-condition
perturbations during a 14 day analysis cycle leading up to
the 10 day forecast period by forcing with the BHM-SVW
realizations. Part I of this article shows that initial-condition
spread in SSH and SST is localized in high-shear and
eddy-rich regions during the analysis cycle. Continuing
with the BHM-SVW realizations in the forecast period,
perturbations grow, doubling in amplitude in ten days.
The BHM-SVW-OEF method generates an ocean forecast
spread that is concentrated in the ocean mesoscale eddy
field. The variance on this scale is probably connected to
mixed barotropic/baroclinic instabilities of the open ocean
flow field.
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Figure 11. Vertical distribution of temperature and salinity rms of misfits and BHM-SVW-OEF ensemble spread averaged for the whole Mediterranean Sea
for the period June–December 2006. (a) Rms of misfit and (b) BHM-SVW-OEF spread for temperature in ◦C. (c) Rms of misfit and (d) BHM-SVW-OEF
spread for salinity in PSU.

Table I. Root-mean-square (rms) errors of forecasts for the period January–December 2006 for temperature, salinity and
sea-level anomaly (SLA). Units are◦C, psu and m. The rms is calculated as an average over the entire Mediterranean Sea

for all vertical levels (‘All’), at 30 and 100 m.

Forecast Temperature Salinity SLA

All 30 m 100 m All 30 m 100 m

Deterministic forecast 0.37 0.41 0.4 0.18 0.28 0.22 0.04

BHM-SVW-OEF 0.36 0.41 0.34 0.18 0.28 0.23 0.04
EEPS-OEF 0.36 0.39 0.39 0.18 0.28 0.22 0.05
TIRP-OEF 0.43 0.50 0.48 0.20 0.30 0.25 0.05

The new method has been compared with two
more traditional methods of generating ocean ensemble
perturbations and forecasts. The first uses the EEPS surface
winds starting from a single initial condition and forcing the
ocean forecast ensemble with 10 realizations. The second
is an ad hoc perturbation method for the T and S initial

condition fields, i.e. the so-called thermocline intensified
random perturbation (TIRP).

BHM and EEPS winds differ substantially during the
forecast time. EEPS wind ensemble spread mimics the
forecast error growth in the ten-day forecast period while
BHM-SVW ensemble spread is constant over the same

Copyright c© 2011 Royal Meteorological Society Q. J. R. Meteorol. Soc. 137: 879–893 (2011)



892 N. Pinardi et al.

period. This is probably a shortcoming of the BHM-
SVW assumptions that can readily be improved in future
versions. In contrast, during the analysis period, the BHM-
SVW distributions carefully track sources of surface wind
forcing uncertainty. This uncertainty can be quantified in
an objective way (Chin et al., 1998; Milliff et al. 1999,
2004) using abundant scatterometer and analysis data so as
to yield realistic estimates of the wind uncertainties. EEPS
winds instead try to maximize uncertainty in the growth
of errors for the atmospheric forecast focused on middle-
troposphere geopotential-height dynamics. The EEPS-SVW
realizations exhibit large-scale differences in the surface
winds (associated with synoptic disturbances with a scale
of several hundred km), while the BHM-SVW realizations
differ at finer scales (see Figure 3). Our results show that
the finer scale differences in the BHM-SVW realizations can
amplify the perturbations on ocean eddy scales much more
efficiently than the EEPS-SVW realizations.

Furthermore, the EEPS-SVW fields are not able to alter the
vertical stratification of the water column sufficiently, while
the BHM-SVW-OEF vertical density spread peaks at the
pycnocline of the eddies and retains significant amplitudes
below. The BHM-SVW-OEF method activates a vertical,
thermocline density ensemble spread that is much larger and
more eddy-intensified than the one generated by the EEPS-
OEF method. EEPS winds have been successfully applied
to probabilistic modelling of ocean waves (Roulston et al.,
2005), where depth-intensified response is less important.
Our results suggest that short-term ocean circulation
forecasts show a limited response to EEPS SVW realizations,
mainly confined to the surface and at basin scales.

The experiments conducted with high- and low-
resolution ocean models and the BHM and EEPS SVW
realizations show a very different forecast response for the
two methods. While the EEPS-OEF method yields almost
identical ensemble spread between high- and low-resolution
experiments, the BHM-SVW-OEF spread amplitude and
structure depend crucially on the high-resolution model
eddy-field representation. As such, the BHM-SVW-OEF
method will be particularly useful for coastal ocean
forecasting systems, where the uncertainty due to winds
is very important and high resolution is mandatory.

The comparison between BHM-SVW-OEF and TIRP-
OEF methods demonstrates analogous responses in the
ensemble spread generated by the two methods. The
TIRP-OEF and the BHM-SVW-OEF produce thermocline
intensified responses on ocean mesoscales, with the former
slightly more effective in the horizontal and equivalent
to the latter for the vertical ensemble spread. However,
the TIRP method is not connected to data-assimilation
constraints and is sensitive to the EOF modes chosen. The
TIRP-OEF method is ad hoc and needs to be customized,
probably on seasonal and interannual time-scales, for
general applications.

Ensemble techniques are generally evaluated in terms of
their ability to reduce and account for forecast error. We
have shown that the BHM-SVW-OEF method does not fully
represent the forecast or background field errors. In fact
only a small percentage of the forecast error is accounted
for in terms of ocean BHM-SVW-OEF spread. However, the
vertical structure of the ensemble density spread mimics the
background field errors well, being peaked at the thermocline
and seasonally varying in depth (Figure 11).

At this research stage of development, we argue that the
BHM-SVW-OEF offers a competitive method of producing
short-term ocean ensemble forecasts if compared with other,
more conventional, methods. Furthermore, it starts from an
objective evaluation of uncertainty in the atmospheric forc-
ing for the ocean models and it avoids discontinuities in
variance between analysis and forecast periods. The BHM-
SVW-OEF method is the only one that can provide con-
sistent wind realizations during both analysis and forecast
cycles for an oceanographic ensemble forecasting system.
This ensures continuity between the analysis and forecast
periods, avoiding the excitement of large-scale gravity-wave
mode disturbances due to artificial changes in the surface
winds. A natural extension of this work will be the considera-
tion in the BHM-SVW of time-varying wind-variance errors
for the forecast period and the combination of ad hoc TIRP
perturbations with BHM-SVW during the analysis period.
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