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A new method to estimate the vertical part of the background-error covariance matrix for
an ocean variational data assimilation system is presented and tested in the Mediterranean
operational daily analysis system. The operational, seasonally varying error covariances
are compared with high-frequency estimates from a Bayesian Hierarchical Model (BHM)
which estimates distributions for the vertical error covariances from two data-stage inputs:
model anomalies and differences between model background and observations, i.e. so-called
misfits. It is found that the posterior mean BHM-error covariance estimates that vary on
5-day time-scales reduce the misfits root mean square of the analysis vertical profiles of
temperature and salinity by 10–20% versus analyses arising from covariances that vary on
seasonal time-scales or those from the BHM given only model anomalies as data stage inputs.
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1. Introduction

The assimilation of observations in operational oceanography
must be performed rapidly in order to produce a forecast in real
time. Further, such assimilation must be based on models that are
able to resolve the oceanographic processes of interest at the finest
affordable spatial and temporal scales and it should assimilate all
data, both satellite and in situ.

These specific operational conditions require the use of
data assimilation schemes with a number of assumptions and
simplifications in order to combine, in near-real time, a large
number of observations with high-resolution oceanographic
models that have large computational requirements. For example,
the global systems providing forecasts with the highest horizontal
resolution by MetOffice, Mercator, US Navy and BlueLink
apply either the three-dimensional variational (3D-Var) data
assimilation schemes (Cummings and Smedstad, 2013; Blockley
et al., 2014), or simplified versions of the Singular Evolutive
Extended Kalman (SEEK) filter and the Ensemble Kalman Filter
with climatological estimates of background-error covariances
(Brasseur and Verron, 2006; Oke et al., 2007). As another example,
the daily oceanographic analysis cycle of the Mediterranean
Forecasting System (MFS), assimilating all available satellite and
in situ observations with a model having the horizontal resolution
of approximately 6 km and 70 levels (Dobricic et al., 2007; Pinardi
and Coppini, 2010) is accomplished in 2 min, while 5 min are
required to run a 1-day-long forecast on a machine with relatively

few processors. This computational efficiency is achieved by
applying a 3D-Var scheme named ‘OceanVar’ (Dobricic and
Pinardi, 2008) which simplifies the time and space variability of
the error covariance matrix.

The OceanVar scheme splits the estimate of background-
error covariance into slowly and rapidly varying parts. The
slowly evolving part contains the vertical error covariances in
temperature (T) and salinity (S), since it is thought that the
physical process time-scales underlying these vertical covariances
are typically longer than the daily data assimilation cycle.
These vertical covariances are computed seasonally from model
simulation T, S anomalies and vary between horizontal regions
with different dynamical characteristics. The rapidly evolving part
of the error covariances are considered only for errors related to
sea level and the horizontal velocities (Dobricic and Pinardi,
2008).

An important background error in the MFS system appears
to be associated with the vertical representation of the seasonal
and main thermocline variability (e.g. Dobricic et al., 2005; Adani
et al., 2011; Pinardi et al., 2011). For the Mediterranean Sea, the
maximum errors concentrate in the first 50 m of the water column,
where the seasonal thermocline forms, and in the intermediate
layers (200–400 m), where advection of intermediate salty waters
from the eastern Mediterranean occurs. The water formation
processes, both in the mixed, intermediate and deep layers,
have high-frequency components, from a few hours to days,
that are difficult to model using only low-frequency seasonal
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variability in the vertical error covariance of T and S. Thus, it
is important for data assimilation to better represent the vertical
error variability while maintaining computational efficiency,
adhering to operational time constraints.

There are several well-known methods that can account for
the model dynamics in the data assimilation error covariances.
In oceanography they include the four-dimensional variational
data assimilation (e.g. Weaver et al., 2003; Di Lorenzo et al., 2007;
Moore et al., 2011), the ensemble Kalman filter (Evensen, 1994)
and methods based on the reduced-order approximations of
background-error covariances (e.g. Lermusiaux and Robinson,
1999; Brasseur and Verron, 2006). While with the linear
assumption all these methods provide dynamically consistent
estimates of the background-error covariances with the actual
dynamical evolution of the model state, they also require a large
number of model integrations. Therefore, their applicability in
the operational environment where the analysis must be available
in real time is possible only with a certain reduction of the model
resolution and/or the model domain. As already mentioned, this
may be avoided in the variational approach by 3D-Var and in the
optimal interpolation approach by simplified SEEK or Ensemble
Kalman Filter in which climatological estimates approximate
background-error covariances.

Alternatively, we consider hierarchical Bayeisan methods for
data assimilation. The use of Bayesian methods in the atmospheric
and ocean sciences goes back quite some time (e.g. Epstein,
1962; Olsen, 1975). More critically for this application, Berliner
(1996) described a simple hierarchical Bayesian paradigm for
modelling physical processes, which has since proven useful
across a variety of atmospheric and ocean processes (e.g. the
recent summaries in Cressie and Wikle, 2011; Wikle et al., 2013).
Wikle and Berliner (2007) discussed the plausibility of using this
hierarchical Bayesian paradigm in the context of a traditional data
assimilation analysis, extending the purely Bayesian connections
to data assimilation as discussed in Lorenc (1986). One way
to implement such a hierarchical Bayesian data assimilation
approach is to model the covariance structure associated with the
background- and/or model-error covariances, and if possible, to
do so in a time-varying fashion. Hierarchical Bayesian models for
covariance matrices have been shown in the statistical literature
to be facilitated by various forms of matrix decompositions
(e.g. Daniels and Purahmadi, 2002; Chen and Dunson, 2003).
Such methods have not been used in the context of data
assimilation.

In this study we propose a method for estimating the temporal
evolution in the background-error covariances by adopting the
Bayesian Hierarchical Model (BHM) approach (e.g. Berliner,
1996; Cressie and Wikle, 2011) and extending the statistical
methodology of Chen and Dunson (2003). We seek to develop
an error covariance BHM that allows for resolving temporal
evolution, on 5-day time-scales, of the vertical error covariance
matrix. In particular, the hierarchical Bayesian framework allows
for borrowing strength from data time series, and can easily
accommodate multiple data sources. In our case, we will use data
both from T and S anomalies from a reanalysis dataset and actual
differences between observations and model background state
estimates, so-called misfits. The latter contain the high-frequency
variability in the vertical error covariances discussed above. The
BHM will use these two data stages to estimate the high-frequency
vertical error covariance variability for OceanVar. We refer to this
model as ‘BHM-error covariances’ (for Bayesian Hierarchical
Model for Error Covariances) and we will show its impact on the
MFS analysis quality.

The article is organized as follows: section 2 describes the
data assimilation and the error covariance formalism, section 3
the model and the numerical experiments, while sections 4
and 5 discuss the results of assimilation experiments using the
observations of only one Argo profile as well as a complete,
satellite and in situ, data assimilation case. A discussion section
concludes the article.

2. BHM for background-error covariances

2.1. Data assimilation scheme and error covariance matrices

OceanVar computes the ocean analysis by minimizing the
following cost function:

J = 1

2
δxTB−1δx + 1

2
(d − Hδx)TR−1(d − Hδx) , (1)

where δx = x − xb is the perturbation in the model space
around the background state xb, B and R are background- and
observational-error covariance matrices, H is the linearized form
of the observational operator H(), and d = y − H(xb) is the misfit
between observations y and background estimates. All model field
state variable perturbations make up δx, i.e. temperature, salinity,
horizontal velocities and sea surface height. The minimization
is achieved by making perturbations in a control space. The
mapping of perturbations into a control space is given by:

δx = Vv, (2)

where v is the perturbation in the control space and V is
the mapping operator representing the square root of the
background-error covariance matrix, i.e.

B = VVT. (3)

In Dobricic and Pinardi (2008) V is defined as a sequence of
linear operators:

V = VFVHVtS . (4)

In Eq. (4), VF represents a sequence of linear operators that
describe the filtering and velocity part of background-error
covariances, not important for this study, and VH represents
horizontal error covariances for temperature and salinity that
are modelled by a Gaussian correlation function depending on
the radial distance. The operator VtS represents vertical error
covariances of T and S at the seasonal time-scale, tS. In the
MFS operational system, VtS is composed of 20 vertical Empirical
Orthogonal Functions (EOFs) computed for each season from
anomalies relative to the seasonal mean of a long model simulation
(Dobricic et al., 2007).

2.2. Time-varying vertical covariance modelling with a BHM

Following Berliner et al. (2003) and Cressie and Wikle (2011),
we organize the BHM error covariance implementation into
components leading to a posterior distribution for vertical
T and S error covariances. The posterior distribution arises
according to Bayes Theorem as the convolution of probability
distributions for: (i) data stage inputs; (ii) process model stage
formulations; and (iii) the parameters from each (data and
process). These components are described in greater detail in
this section. The Appendix briefly discusses the procedure for
estimating the posterior distribution given these components. A
particular innovation in this application is the inclusion of misfit
information from Argo profiles as a data stage input. These data
support the higher temporal frequency that is the goal for the
vertical error covariance model for T and S.

We use the BHM to substitute the VtS in Eq. (4) with an
operator containing faster time-scales, of the order of a few days.
Let

BVt = VtVt
T, (5)

be the vertical error covariance matrix component of Eq. (3),
where the subscript t represents the shorter time-scale temporal
evolution and Vt the faster time-scale operator to be constructed
with BHM.
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Two forms of input data are used in the BHM. The first are
the daily anomalies in each model point, xti, of the actual model
state with respect to the 2003–2008 monthly mean mean values,
indicated by the overbar with T:

qti = xti − xti
T. (6)

The second are the misfits defined as differences between
observations yti and background estimates with their monthly
mean value again subtracted:

dti = yti − H(xti) − {
yti − H(xti)

}T
, (7)

where H() is the observational operator, considered here to be a
three-dimensional linear interpolator. Vector xti contains vertical
profiles of temperature followed by vertical profiles of salinity
for each horizontal point i, while vector yti contains in the same
sequence temperature and salinity profiles by Argo floats.

2.2.1. BHM: Data model

The BHM data stage incorporates the assumption that the two data
sources, Eqs (8) and (9), follow Gaussian (normal) distributions
conditioned on the true temperature and salinity background
errors, represented by the 2n-dimensional vector et , where 2 is
the number of variables (temperature and salinity) and n is the
number of depth levels, i.e.

qt |et ∼ N(Hqt et , �qt ), (8)

and

dt |et ∼ N(Hdt et , �dt ), (9)

where Hqt and Hdt are mqt × 2n and mdt × 2n dimensional
incidence (zero/one) matrices accounting for potential missing
observations at time t, where mqt and mdt are the number of
levels for which we have data at time t for q and d respectively,
and �qt and �dt are the associated mqt and mdt -dimensional
measurement-error covariance matrices defined as

�i,t =
(

σ 2
i,tT 0

0 σ 2
i,tS

)
, (10)

for i = d, q. We will specify prior distributions for the variance
components in Eq. (10) in the parameter stage (section 2.1.3).

2.2.2. BHM: Process model

In order to reduce the computational cost and filter the
computational noise, we assume that the background-error
covariance matrix in Eq. (3) can be represented in terms of 2n × p
dimensional seasonal EOF vertical error structure functions, UtS ,
and the associated p-dimensional faster-varying amplitudes β t .
The BHM error process model is then given by:

et = UtSβ t + ηt , ηt ∼ N(0, τtI), (11)

where τt is the error variance that accommodates small-scale
variability and ensures that the error covariance matrix implied
by Eq. (11) is non-singular. The amplitude coefficients

β t ≈ N(0, �t �t �T
t �t) (12)

use a modified Cholesky decomposition form for the covariance
matrix, where �t is a diagonal matrix with elements proportional
to the standard deviations of the random variable βt and
�t is a lower triangular matrix that is associated with the
correlations among the elements of β t (Chen and Dunson,

2003). Implementation of the hierarchical model is facilitated by
recognizing that we can write et equivalently as

et = UtS�t�tbt + ηt , ηt ∼ N(0, τtI), (13)

which suggests that we can write the time-varying covariance
matrix BVt = var(et) in the following form:

BVt = UtS�t �t �T
t �t UtS + τtI . (14)

2.3. BHM: Parameter models

To complete the hierarchical formulation, we must specify
distributions for the parameters in the process model Eq. (13).
In particular, we specify the elements of the diagonal matrix �t

and the lower triangular elements of �t to follow independent
random walk distributions as given in the Appendix. In addition,
the data model variance components given in Eq. (14) and the
time-varying additive variance component in the same equation
are assumed to be inverse-gamma prior distributions (see the
Appendix). Estimation is then carried out using Markov Chain
Monte Carlo (MCMC) methods as summarized briefly in the
Appendix.

2.4. Application of the BHM-error covariance to the MFS data
assimilation system

The two data stage vectors, qit and dit , contain T and S daily
values extracted from a Mediterranean reanalysis dataset (Adani
et al., 2011) for the period from 2003 to 2008 in the northwestern
region of the Mediterranean (Figure 1). This figure shows the
two data inputs as anomalies from their monthly means. It is
evident that while qit has a large periodic component for T,
corresponding to the variance associated with the formation of
the seasonal thermocline in the region, the S components of
qit and dit for both T and S have a more ‘episodic’ structure
and variance content on time-scales of a few days. This higher-
frequency variability corresponds to mixed- and deep-layer water
formation events and advections of salinity anomalies. This region
contains the Gulf of Lions, which is one of the few global sites
of deep convection in the Northern Hemisphere winter. The
complicated and wide-ranging seasonal and episodic water mass
variability in the Gulf of Lions provides an opportunity for
thorough testing of the time-varying error covariance taken from
the BHM.

For application in the MFS data assimilation system, we have
computed 40 seasonal EOFs, UtS , for the daily dataset of qti from
the surface to 1000 m, as done in the operational system Dobricic
et al. (2007). This corresponds to 46 model levels and thus the
data stage input vector has a dimension of 92 with 46 levels for
temperature and 46 levels for salinity.

The new high-frequency vertical operator is then obtained by
an eigenvalue decomposition of BVt . This is done by applying
the Lanczos algorithm on BVt in Eq. (14). Thus, in OceanVar the
operator Vvt defined in Eq. (5) becomes:

Vvt = StS Lt , (15)

where the columns of StS are eigenvectors and diagonal elements
of Lt contain square roots of eigenvalues of BVt . It should be
noted that the eigenvalue decomposition of BVt has different
square roots than the lower triangular decomposition defined
in Eq. (14). However, the difference is only due to a change in
the control space, while in the physical space both definitions
of the square root should give the same perturbations of T
and S. The decomposition in Eq. (15) is needed in order to
optimize the minimization algorithm in OceanVar. By visually
comparing the temporally evolved BVt with different choices of
the data stage period used to determine β t in Eq. (12), we have
chosen to update BVt every 5 days because any shorter time-scales
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Figure 1. The model (a, b) anomalies and (c, d) misfit profile time series for (a, c) salinity, and (b, d) temperature, averaged over region 3 of the northwestern
Mediterranean shown Figure 5(a).

would not have enough misfits to sample the region adequately
since Argo observations in the Mediterranean Sea have a 5-day
surfacing cycle (Poulain et al., 2007). So this article contrasts
the seasonal background vertical-error covariance from the
operational system, changing abruptly four times per year, versus
BVt from BHM-error covariance method wherein variability in
error covariances can smoothly resolve temporal scales on the
order of 5 days.

Figure 2 shows two examples of how the BHM method
changes the estimates of the error covariances. On 10 February
2006 the BHM estimates of BVt exhibit variances of background
temperature and salinity three times larger than the climatological
estimate for winter. The increase in variance is even larger
on 10 July 2006 with respect to climatological variances in
summer (Figure 2). The latter difference is especially large for the
surface temperature. Clearly, the BHM method has increased the
covariance, adding information to the seasonal estimates from
the variability of model and misfit vertical profiles on particular
days.

An interesting feature of temperature error variances on 10
February 2006 is the presence of three local maxima: at the
surface, level 20 (∼ 125 m) and level 40 (∼ 615 m). The last two
are positioned quite deep and may reflect the uncertainties due
to the weak vertical stratification and enhanced deep mixing.
Eventually the fact that the background temperature errors
at levels 20 and 40 are negatively correlated may indicate the
possible mixing of temperature between these two levels. That is,
the negative change of temperature at level 20 could be correlated
with the positive change of temperature at level 40 as a product of
mixing that does not significantly change the temperature between
these two levels, but expands the thickness of this well-mixed
layer.

It can be further seen in Figure 2 that in summer both seasonal
and BHM estimates show the largest error covariances in the
temperature mixed layer in the top 10 levels (down to ∼ 40 m
depth), while the winter covariances are more equally spread
towards deeper layers and between temperature and salinity. This
general agreement between climatological/seasonal and BHM
covariances reflects the dynamical processes of stratification due
to the heating of surface layers in summer and weak stratification
due to the surface cooling in winter.

Figure 3 shows the vertical covariances in temperature and
salinity errors with temperature errors at level 10 (∼ 40 m). Once
again, the major difference between the climatological and BHM
estimate is the large increase in the covariance magnitudes in
the BHM estimate. The increase is especially evident in the top
layers. On 10 July 2006 the BHM estimate shows an opposite
sign in the temperature covariance at the surface with respect
to level 10. This feature may indicate the process of the vertical
mixing which may enhance or reduce the vertical stratification.
The climatological estimate has the same-signed temperature
error covariance, indicating an overall heating or cooling process
near the surface layers. Isolated mixing events, occurring over a
few days, would be missing from the seasonal background-error
covariances.

In Figures 2 and 3, the BHM error covariance matrix used is
the mean of the posterior distribution for BVt . While it can be
argued that the posterior mean B is a sensible choice to examine
the impact of faster time-scale vertical error covariances in T and
S, it does not fully exploit the power of BHM.

The variance of background-error covariances matrices
estimated by the BHM is shown in Figure 4. In the EOF
space scaled by the layer thickness and standard deviations of
temperature and salinity anomalies (Dobricic et al., 2005, give

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 182–194 (2015)



186 S. Dobricic et al.

(a) (b)

(c) (d)

Figure 2. (a) shows the operational VVtS VT
VtS

vertical error-covariance matrix in winter for the region of the northwestern Mediterranean, (b) shows the BHM BVt

estimate on 10 February 2006. (c) shows the operational VVtS VT
VtS

vertical error covariance for summer, and (d) its BHM BVt estimate on 10 July 2006. The numbers

on the axis refer to the model levels where the first 46 values represent temperature and the second 46 values represent the salinity levels. Matrix blocks representing
covariances of T and S, and their cross-covariances are divided by a cross over the matrix. T and S covariance blocks are labelled on the axes. Dimensions are physical
(◦C for temperature and psu for salinity). Note that each panel has a different colour bar.

the description of the computation of EOFs), the temperature
variance is concentrated at levels 15–25 (75–200 m) in winter and
at level 5 (15 m) in summer. Salinity variance has the maximum
at the surface in winter and at level 20 (125 m) in summer. In the
physical space the temperature variance in winter and in summer
becomes large near the surface, and it dominates the variance of
BHM estimates of BVt .

In later work, we will consider implications to be drawn
from the posterior distribution shapes and changes from prior
specifications for covariances and parameters of the BHM. As a
second step toward this end, we compare below analyses obtained
from the posterior mean covariances with those from a single,

randomly selected, realization of the covariance from the posterior
distribution for BVt .

3. Numerical experiments

3.1. Description of MFS system

MFS consists of an Ocean General Circulation Model (OGCM)
implemented in the whole Mediterranean Sea (Oddo et al.,
2009) and the OceanVar data assimilation scheme (Dobricic
and Pinardi, 2008). The OGCM is based on the NEMO code
(Madec, 2008) and it has a regular latitude–longitude grid with
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(a) (b)

Figure 3. Covariances with temperature at level 10 (40 m) for temperature and salinity for region 3 of the northwestern Mediterranean: (a) operational values (green)
for winter and BHM estimates (black) on 10 February 2006, (b) operational values (green) for summer, and the BHM estimates (black) on 10 July 2006. Full lines
represent temperature and dashed lines salinity at 46 model levels. Units are physical (◦C for temperature and psu for salinity).

a resolution of 1/16◦; i.e. 7 km in the meridional and 5 km
in the zonal directions. The model has 72 levels with a level
thickness of 3 m at the surface, smoothly increasing to 300 m
for the deepest level (5000 m). The model extends far into the
Atlantic Ocean in order to freely simulate the exchange through
the Gibraltar Strait. It uses an implicit free surface scheme
and utilizes the European Centre for Medium-range Forecasts
(ECMWF) operational atmospheric analyses for the calculation
of atmospheric fluxes. The Mediterranean part of the horizontal
model domain is shown in Figure 5.

The OceanVar data scheme assimilates, with a daily cycle, in situ
observations of temperature and salinity profiles by Argo drifters,
temperature profiles from expendable bathythermographs
(XBTs) and satellite observations of Sea Level Anomaly (SLA), as
described in Dobricic et al. (2007).

3.2. Experimental set-up

The performance of the BHM estimate of the background vertical-
error covariances is compared with the climatological estimate in
the period from 1 January to 1 September 2006, using the mean
covariance estimate from the BHM posterior distribution. During
this period, two Argo floats continuously occupied positions in
the northwestern part of the Mediterranean Sea, where the BHM
estimated distributions for new background-error covariances
on 5-day time-scales (Figure 4). During this 8-month period,
the ARGO floats covered different vertical stratification regimes.
This period spanned the well-mixed and often vertically unstable
conditions leading to deep convection in late winter, to the
strongly stratified surface layers in summer.

Six experiments were performed as summarized in
Table 1. Two control experiments (CNTRL and CNTRL-
A) use the seasonal estimate of vertical background-error
covariances. Two experiments (BHM-Q and BHM-A-Q)
use the BHM estimates that include only the T and S anomalies,
i.e. the q data stage in Eq. (8). The remaining two experiments
(BHM-QD and BHM-A-QD) use BHM estimates that also include
the misfits in Eq. (9). The first set of three experiments (CNTRL,
BHM-Q and BHM-QD) assimilate only in situ temperature and
salinity profiles from a single Argo float (the blue circles in

Figure 5) which occupied the region of interest in the northwest-
ern Mediterranean. This set of experiments was used to evaluate
how each error covariance estimate is able to resolve the ver-
tical structure of temperature and salinity corrections without
any impact from other observations. The second set of three
experiments (CNTRL-A, BHM-A-Q and BHM-A-QD) assimi-
late all in situ and SLA observations in the Mediterranean, but the
estimates of the BHM background vertical-error covariances are
done only in the northwestern region.

3.3. Experiments with the assimilation of a single Argo float

The impact of the different estimates of background-error
covariances is illustrated in Figure 6. It shows the observed,
background and analyzed profiles of temperature and salinity
for the first assimilation step in the 8-month period for the
first three experiments where only a single Argo float was used.
We focus on this particular time step because the background
profiles for the control and BHM experiments are identical and
the differences in the analysis are solely due to different error
covariance estimates. As shown in Figure 6, the temperature
and salinity analyses with and without BHM are significantly
different. The difference is especially evident at depths between
200 and 350 m where the BHM analysis forms a local minimum in
both temperature and salinity, while the control analysis has the
minimum only in salinity. Minima in temperature and salinity
at the depths between 200 and 350 m indicate the presence of
cold, low-salinity waters intruding into the offshore regions. The
salinity and temperature minima are positioned just above local
maxima in temperature and salinity which indicate the presence
of the Levantine Intermediate Water advected from the east.

The differences in the analyses were even larger later in the
period, showing the cumulative effect of using the BHM vertical
error covariances. Figure 7 shows how, even at the later time,
the BHM analysis produces different vertical profiles of
temperature and salinity. Although in this case it is not possible
to subtract the impact of background fields that differ in each
experiment and the comparison is not independent, once again
in the BHM case, the analyzed temperature and salinity are
closer to the observations in places with large vertical gradients.
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(a) (b)

(c) (d)

Figure 4. The variance of BVt is shown in (a, b) scaled and (c, d) physical spaces on (a,c) 10 February 2006, and (b, d) 10 July 2006. The numbers on the axis refer
to the model levels where the first 46 values represent temperature and the second 46 values represent the salinity levels. Matrix blocks representing covariances of T
and S, and their cross-covariances are divided by a cross over the matrix. T and S covariance blocks are labelled on the axes. The scaled space is non-dimensional,
and in the physical space the dimensions are ◦C2 for temperature and psu2 for salinity. Note that each panel has a different colourbar and the line spacing is not
constant.

Table 1. List of the six experiments used for the evaluation of the impact of BHM
background-error covariances.

Experiment
name Short description Observational dataset used

CNTRL Climatological EOFs One ARGO profile asimilated
BHM-QD BHM EOFs with Q and D One ARGO profile assimilated
BHM-Q BHM EOFs only with Q One ARGO profile assimilated
CNTRL-A Climatological EOFs All SLA and ARGO assimilated
BHM-A-QD BHM EOFs with Q and D All SLA and ARGO assimilated
BHM-A-Q BHM EOFs only with Q All SLA and ARGO assimilated

Both temperature and salinity profiles at depths between 50 and
150 m are smoother and closer to observations in the BHM
analysis.

The accuracy of the analysis is evaluated by calculating the
RMS of misfits for the ARGO data. As the sampling frequency of
ARGO is 5 days, we argue that the advection is not strong enough
to propagate away the information from the previous analysis,
so that the RMS of misfits gives us an almost independent
data evaluation of the analysis quality. The assumption that the
information from the previous analysis is not advected far from
the float may be partly justified by the fact that the float is advected
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(a)

(b)

Figure 5. Positions of (a) Argo floats and (b) SLA tracks for the period January–August 2006. Blue dots in (a) indicate the positions of the single Argo float used for
the assimilation in experiments CNTRL, BHM-Q and BHM-QD, and red dots indicate positions of other floats. The straight lines denote region 3 in which the BHM
error covariances are calculated. In (b) colours indicate the number of SLA observations during the experiment.

at the depth of 350 m where velocities are typically smaller than
in the upper layers. It should be further noted that in 5 days,
the errors from inaccurate model equations and the atmospheric
forcing could become the dominant factor in the RMS error of
misfits.

Figure 8 shows the RMS of misfits in successive 5-day periods
averaged over the 8 months, and Figure 9 shows the relative
difference between the RMS for BHM-Q and BHM-QD and the
RMS of CNTRL. With respect to CNTRL, temperature misfits
are reduced in both BHM-Q and BHM-QD. BHM-QD shows
the overall best performance, mainly by reducing the maximum
error in both temperature and salinity at 50 m by about 20%. The
salinity analysis in experiment BHM-QD is also most accurate in
the deep layers where the relative improvement also reaches 20%.

The mean of temperature misfits was negligible except at
the surface where all experiments underestimated the observed
temperatures by 0.2 ◦C, while the mean of salinity misfits was
negligible except at the layer below the surface where it reached
0.08 psu (not shown).

3.4. Experiments with assimilation of all observations

In the second group of experiments, all observations of
temperature and salinity and satellite altimetry are assimilated
in the entire Mediterranean basin. The only difference between
experiments CNTRL-A, BHM-A-Q, and BHM-A-QD is the
different BHM vertical background-error covariances used in the
northwestern region. Contrary to the previous set of experiments
with a single Argo float sampling the vertical T and S profiles,
now satellite SLA observations are also assimilated. In this case,

the vertical background-error covariances are used by the data
assimilation scheme to extrapolate the information from the
sea-level misfits onto increments of temperature and salinity
throughout the water column. This is an even more important test
for the BHM estimate of vertical background-error covariances
because the extrapolated vertical profiles of temperature and
salinity could be different from the in situ profiles near Argo float
positions and this would generate inconsistencies if the vertical
error covariances are not appropriate for the specific time.

Figures 10 and 11 show the RMS of temperature and salinity
misfits for CNTRL-A, BHM-A-Q and BHM-A-QD. In particular,
this time BHM-A-Q exhibits larger RMS than CNTRL-A in
the top 300 m of the water column, while BHM-A-QD exhibits
consistently lower RMS of misfits throughout the water column.
The RMS of salinity misfits is reduced up to 20% at 100 m for
the BHM-A-QD with respect to CNTRL-A. It is interesting to
notice that the relative improvement of the RMS of temperature
and salinity misfits is comparable and sometimes even larger
than the improvement obtained with a very similar model set-up
and the sequential variational (SVAR) data assimilation scheme
(Dobricic, 2013), which dynamically estimates the evolution of
background-error covariances.

At the surface, the RMS of temperature misfits is slightly
increased, while the RMS of salinity misfits is slightly decreased.
Once again, as in experiments with the single float, it can be argued
that the difference between RMS of misfits near the surface can
also be attributed to errors in the atmospheric forcing. The
RMS of misfits calculated with respect to Argo observations
and SLA outside the northwestern region (not shown) were
practically indistinguishable between experiments. Apparently
the effect of the BHM vertical error covariances is only local to
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(a) (b)

Figure 6. Profiles of background (green), observation (black), CNTRL analysis (blue) and BHM-QD analyses (red) for (a) temperature and (b) salinity. Analyses are
made on 2 January 2006 by using the first ARGO profile in the northwestern Mediterranean. The dots indicate observations.

the region where it is applied. Also, it appears that the vertical
error structures in BHM were not significantly different in order
to reduce the uncertainty of the sea-level field even within the
region of interest. The RMS of SLA misfits (not shown) are
approximately the same in all three experiments. It could be
that the horizontal formulation of background-error covariances
is more important for the sea level uncertainty, or that simply
the improvement seen in temperature and salinity fields is not
detected by SLA observations.

In experiments with all observations, the mean of temperature
and salinity misfits was very similar to the one obtained in the
experiment with a single float. It was negligible in the deeper layers
and near the surface reached 0.2 ◦C for temperature and 0.08 psu
(not shown). We may assume that, in all experiments, misfits
were random, except close to the surface where in addition to the
initial state error they could have been significantly influenced by
model and atmospheric forcing errors.

As noted earlier, the analyses to this point are based on the
posterior mean vertical error covariance from the BHM. We
expect that individual realizations from the posterior will yield
different analyses and different values for misfit RMS. As a first test
of this assumption, we have performed an additional experiment
with all available observations and a randomly chosen realisation
from the posterior distribution of BHM parameters. The RMS of
temperature and salinity misfits is shown in Figures 10 and 11
by the dashed line. In this experiment the RMS of temperature
misfits is significantly reduced in the top 100 m with respect to all
other experiments, but it is larger than the one by the CNTRL-A
below. In the top 300 m, the experiemnt also produces the largest
RMS of salinity misfits.

The RMS misfit reductions due to a randomly selected
realization from the posterior distribution for the vertical error
covariance are not as favorable as they were for the posterior mean
case. We have yet to fully explore and summarize the information
content of the full posterior distribution in this context.

4. Discussion

In this study we implemented a BHM approach to estimate
the high-frequency, temporally variable part of the background
vertical temperature and salinity error covariances in Eq. (14).
In the traditional MFS system, only seasonally varying vertical
EOFs are used from the analysis of model T and S anomalies
(i.e. the ‘q’ data). The BHM-error covariance method instead
allows us to combine two sources of information, the model
anomalies and the misfits (i.e. the ‘d’ data). These are the data
stage inputs to the BHM which then determine time-varying
error covariances and variances, on 5-day time-scales, from a
re-analysis dataset from 01 January to 1 September 2006 using
seasonal EOFs calculated from a longer period, from 1997 to 2007.
The posterior mean BHM-error covariance matrices introduce
background-error covariance features that are more consistent
with the current model dynamics and misfits.

The method is applied in the MFS operational set-up to
assimilate different kinds of data. The impact of the new BHM-
error covariances is tested in two sets of numerical experiments:
single Argo and all data experiments. Sensitivity of the BHM
error covariance method to the two data stage inputs is tested
by restricting (or not) the inclusion of misfit data together with
the model T, S anomalies. In the first set of experiments, we
evaluated the improvements due to the BHM method when the
innovation is due to temperature and salinity profiles from a
single Argo float, in a single sub-region of interest. In the second
set of experiments, the impact is evaluated in a more realistic
ocean forecast configuration where the background temperature
and salinity error covariances extrapolate the information from
satellite SLA observations in combination with in situ observations
from several ARGO floats.

The experiments presented here evaluated the impact by
calculating the RMS of temperature and salinity misfits in
the region where the new background-error covariances were
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(a) (b)

(c) (d)

Figure 7. Profiles of background (green), observation (black) and analysis (red) for (a, c) temperature and (b, d) salinity. Analyses are made on 7 May 2006 for (a, b)
experiment BHM-QD and (c, d) experiment CNTRL. The dots indicate denote observations.

(a) (b)

Figure 8. The RMS of (a) temperature (◦C) and (b) salinity (psu) for experiments assimilating a single Argo float, from the CNTRL experiment (cyan), the BHM-Q
experiment (blue) and the BHM-QD experiment (red).
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(a) (b)

Figure 9. As Figure 8, but for the relative difference between the RMS of misfits in each experiment and the RMS of misfits in the control experiment, for CNTRL
(cyan), BHM-Q (blue) and BHM-QD (red).

(a) (b)

Figure 10. The RMS of misfits for (a) temperature (◦C) and (b) salinity (psu) for experiments assimilating all observations, from CNTRL-A (cyan), BHM-A-Q (blue)
and BHM-A-QD (red). The black dashed line shows the RMS of misfits for the experiment with the randomly chosen realization of BHM.

applied. Both sets of experiments showed that the BHM method
improved the accuracy of the analyses with respect to the original
seasonal background-error covariances method. However, the
improvement was not significant when the BHM method used
only the data stage with model anomalies. On the other hand,
when the misfits were used as additional data stage inputs, the
RMS of temperature and salinity misfits was significantly reduced
for all parameters over the 8-month study period.

This result may be surprising, because it is generally
believed that only model anomaly estimates should lead to
more accurate background-error covariances with respect to
seasonal/climatological estimates (e.g. Di Lorenzo et al., 2007).
The reason for this result may be due to the fact that the BHM does
not estimate the covariances from a full set of perturbed model
states, but splits the error covariance into horizontal and vertical
modes, the latter valid for relatively large regions. Therefore, the

addition of the information from misfits can significantly improve
the performance of the BHM method and produce more accurate
analyses than the application of model climatological estimates
only.

It should be noted that the idea to combine the current
information from misfits in order to update the estimates of
background-error covariances has been applied in several other
studies. For example, Wang et al. (2008) increased the variance
of the ensemble anomalies by scaling it with averaged squares
of misfits. Desroziers et al. (2005) modified the covariances
by using the diagnostics of the cost function. Contrary to
these methods, the BHM method includes the misfit additional
information by using the least feasible number of assumptions
regarding the relationship between observational and background
errors by applying a general Bayesian theory and Monte Carlo
sampling.
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(a) (b)

Figure 11. As Figure 10, but for the relative difference between the RMS of misfits in each experiment and the RMS of misfits in the control experiment.

It is interesting to note that, by combining the climatological
estimates (for the EOFs) with the current model estimates
of background-error covariances, the BHM method has some
similarity to the hybrid method applied in Hamill and Snyder
(2000), Etherton and Bishop (2004) or Wang et al. (2007).
However, one of the major differences between these two methods
is that in the hybrid method the weights given to the climatological
and model estimates are arbitrary, while in the BHM they arise
directly from the computations based on Bayes’ theorem.

There are several possible future extensions of the BHM method
for estimating background-error covariances. One possibility may
be to apply it with an ensemble of analyses and forecasts in
a framework similar to the hybrid analysis method. Another
possibility is to refine the vertical error process model in a
way similar to the one given in Behringer and Leetmaa (1998).
Furthermore, one could sample realizations of the BHM-error
covariances instead of using only the posterior mean. In particular,
this extension could evaluate a major assumption made in this
study that the mean of the posterior distribution is the most
appropriate estimate for background-error covariances. In all
future extensions, the BHM will be an excellent framework for
defining in a theoretically consistent way the covariances of errors
between background parameters.
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Appendix

Estimation of time-varying vertical error covariances by Markov
chain Monte Carlo

Section 2 outlines the BHM for time-varying covariance matrices.
A summary of the data model, process models, and parameter
models for this BHM is given in Table A1. Note that the

hyperparameters for the distributions given in the table were
chosen to be as non-informative of prior distributions as
possible, with the notable exception that we seek to minimize
the importance of the additive variance component τt and so put
a fairly tight prior on it with a fairly small mean. In addition, we
have specified tighter priors for the measurement error variance
components, with more uncertainty represented in the salinity
measurements than the temperature measurements.

As is standard now in the analysis of BHMs, we utilize a
Markov Chain Monte Carlo (MCMC) procedure to obtain
samples from the ergodic distribution corresponding to the
posterior distribution of all random quantities in the model
(process and parameters) given the observations (e.g. overviews
in Robert and Casella, 2004; Cressie and Wikle, 2011). We
note that the choice of the process and parameter distributions
here simplify the implementation of the MCMC in that all
parameters can be updated through Gibbs sampling steps with
the exception of the λt parameters, which must be sampled using

Table A1. Hierarchical model summary.

Data models
dt |et ∼ N(Hdt et , �dt ), t = 1, . . . , T
qt |et ∼ N(Hqt et , �qt ), t = 1, . . . , T

Process model
et |�t , �t , bt , τt ∼ N(UtS�t�t bt , τt I), t = 1, . . . , T

Parameter models (I)
for t = 1, . . . , T

bt ∼ N(0, I)
γt (i) | σ 2

γ (i) ∼ N{γt−1(i), σ 2
γ (i)}, i = 1, . . . , ng

log{λt (i)}| σ 2
λ (i)∼N

[
log {λt (i)} , σ 2

λ (i)
]
, i=1, . . . , p

Parameter models (II)
τt ∼ IG(2.0, 2000)∗, t = 1, . . . , T
γ0(i) ∼ N(0, 10), i = 1, . . . , ng

log {λt (i)} ∼ N(0, 10), i = 1, . . . , p
σ 2

γ (i) ∼ IG(2.01, 0.99), i = 1, . . . , ng

σ 2
λ (i) ∼ IG(2.10, 0.09), i = 1, . . . , p

σ 2
d,T ∼ IG(2.0, 10),

σ 2
d,S ∼ IG(2.0, 20),

σ 2
q,T ∼ IG(2.0, 10),

σ 2
q,S ∼ IG(2.0, 20).

∗IG(a,b) corresponds to an inverse gamma distribution with mean (1/b)/(a-1)
and variance (1/b)2/((a-1)2(a-2)).
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a Metropolis–Hastings step. The MCMC was run for 20 000
iterations beyond a 2000 iteration burn-in.
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